ВСЕ О ТРИОНАХ

<u>Trions at low electron density limit</u>

- 1. Charged exciton-electron complexes (trions)
- 2. Singlet and triplet trion states
- 3. Modulation doped QWs
- 4. Trions in optical spectra
- 5. Action of magnetic fields on the trions
 - Trions at high electron density limit
- 6. Combined exciton cyclotron resonance
- 7. Combined trion cyclotron resonance
- 8. Combined exciton electron processes in PL spectra
- 9. Trion Zeeman splitting

LOW 2DEG DENSITY

Two electrons+one hole states

Trions at weak magnetic fieldsTrions at high magnetic fieldsExcited states of trion

Charged exciton – electron complex (trion)

Negatively charged Trion X⁻ similar to ion H-

X electrons hole **Positively charged Trion** *X*⁺ *Similar to ionized molecule H*+

Singlet and Triplet trion states

 $U_{nlm} \neq 0$, if $l \neq 0$ one electron is in *1S* and the second is in *2P* state – dark triplet

Or if $n \neq 1$ one electron is in *1S*, and the second is in a 2S state bright triplet

Experimental studies of trions

Modulation doped structures

2DEG density varied from $n_e = 5*10^9 \text{ cm}^{-2}$ to $9*10^{11} \text{ cm}^{-2}$

Optical processes with the trion participation

Изменение концентрации при подсветке

Зависимость энергии связи триона от ширины ямы

Сила осциллятора экситона приходящаяся на элементарную ячейку равна силе осциллятора триона на один электрон, также Как для связанных экситонов

Singlet and Triplet Trion states in magnetic fields

Singlet trion in magnetic fields

The circular polarization of the trion absorption (reflectivity line) in magnetic fields can be used to determine electron concentration by pure optical method

 X_{hh}^{-} and X_{lh}^{-} resonances appear in opposite circular polarizations

Triplet trion in high magnetic fields

PL spectra: CdTe/CdMgTe 2D electron gas at 1.5 K at ~83 T (in 100T LP)

Singlet and Triplet in high fields

EXCITON-ELECTRON SCATTERING

(excited states of a trion in magnetic fields)

Exciton – electron scattering

The scattering leads to high energy tail of the exciton absorption line. In magnetic fields it splits into separate lines because the electron spectrum becomes discrete = excited states of trions in magnetic fields.

We can neglect the trion binding energy because $E_{ex}^b >> \hbar \omega_c >> E_{Tr}^b$

$$e + ph \Longrightarrow Ex + e^*$$
$$\frac{1}{2}\hbar\omega_e^c + \hbar\omega = E_{exc} + \frac{3}{2}\hbar\omega_e^c$$

The intensity of the ExCR absorption line is comparable with the intensity of the exciton line

Combined exciton –cyclotron resonance ExCR

Combined processes in Dense 2DEG

Three electrons+one hole states

In the dense 2DEG two-electron processes emerge in the spectra **TrCR**

There are two electrons in the initial state; an incident photon creates an exciton which binds with one of the electrons forming a trion; and the second electron excites on the second Landau level

$$e + e + ph \Rightarrow Tr + e^{*}$$

$$\frac{1}{2}\hbar\omega_{e}^{c} + \frac{1}{2}\hbar\omega_{e}^{c} + \hbar\omega = E_{tr} + \frac{3}{2}\hbar\omega_{e}^{c}$$

$$\hbar\omega = E_{tr} + \frac{1}{2}\hbar\omega_{e}^{c}$$

Trion Cyclotron Resonance

Line of the TrCR is observable at filling factors > 1. The intensity of the TrCR line is proportional to the second power of the 2DEG density

Surprising Trion stability against free electron screening

Экситон исчезает из спектра при относительно малых концентрациях электронов, а трион остается

CdTe/CdMgTe 80A

ZnSe/ZnMgSSe 80A

Сила осциллятора экситона не зависит от плотности 2DEG

Затухание экситона растет с ростом плотности

Спектры поглощения (PLE) как функция концентрации

Figure 5: Absorption spectra of CdTe/CdMgTe quantum wells at different densities of free electrons. Solid lines are experimental spectra, symbols present results of calculation at $E_F = 2.5$ meV (upper panel) and $E_F = 10$ meV (lower panel), respectively. Dashed lines are contributions of trion and exciton.

Trion Zeeman splitting as a function of the electron density

The value of the exciton and trion Zeeman splitting?

$$e_{init} + ph \rightarrow Tr = (Ex + e_{fin})$$

Because the initial and the final state of the electron are the same (the same spin and the same Landau level) we should see only the exciton Zeeman splitting on exciton and on trion line

Photoluminescence

In PL the exciton and trion Zeeman splitting are equal

Exciton and trion Zeeman splitting at high electron concentrations

This is possible only in the case if the initial and final spin state of the electron are not the same – we need spin-flip

For spin-flip we need spin-orbital interaction. This can be the triplet-singlet splitting of the trion

In the initial state the photon creates virtual state of the triplet trion. Because of very fast spin-flip of one of the electrons in the final state we have the singlet trion (already real). This is the process reversal to the ExCR An incident photon creates a virtual trion in the triplet state. This trion produces a spin-flip with one of the electrons on the first Landau level. As a result, in the final state, we get a trion in the singlet state plus an electron on the second Landau level with opposite spin.

This reaction looks

$$e_1^{\uparrow} + e_2^{\uparrow} + ph \rightarrow Tr^t + e_1^{\uparrow} \rightarrow Tr^s + e_2^{\downarrow}$$

Фотолюминесценция трионов

Спектры ФЛ в зависимости от концентрации электронов

In heavily doped QW in zero magnetic fields the PL line is shifted to the low energies from its position in low doped structure. The value of this shift is of the order of Fermi energy

В магнитном поле линии триона и экситона «возрождаются»

Combined processes in PL

Shake-up

Shake up процессы SU

$$Tr \Rightarrow ph + e^*$$
$$E_{tr} = \hbar\omega + (N + \frac{1}{2})\hbar\omega_e^c$$
$$\hbar\omega = E_{tr} - (N + \frac{1}{2})\hbar\omega_e^c$$

In <u>Emission</u> the initial state is: trion in a ground or excited states; $Tr \rightarrow ph + e^*$

the final state is: an electron above Fermi level

The energy of the transition is

 $\hbar\omega = E_{Tr} - E^* \le E_{Tr} - E_F$

Linear shift of the trion line in magnetic fields

In the final state after the trion recombination a free electron remains. It can appears in the unoccupied states above Fermi level

$$E_{tr} = \hbar\omega + E_F \Longrightarrow \hbar\omega = E_{tr} - E_F$$

In magnetic fields the Fermi energy decreases as

$$\frac{1}{2}\hbar\omega_{_{e}}^{^{c}}$$

Magnetic field

$$\hbar\omega_{ph}^{\pm} = \hbar\Omega_c(n) - E_{tr} \pm \Delta(B) - E_F(B) + \alpha B + \beta B^2 + E_G$$

Figure gives the energy positions of maxima of emitted bands which are described by equation

The shape of the states in presented by the Gaussian form

$$\rho_n^{\pm}(E) = \frac{eB/(4\pi\hbar)}{\sqrt{2\pi\Gamma_n^2(B)}} \exp\left\{-\left[E - \hbar\omega_{ph}^{\pm}(n)\right]^2 / \left[2\Gamma_n^2(B)\right]\right\}$$

Conclusions

In 2D structures containing electron gas the scattering effects are enhanced.

In the presence of magnetic fields the electron energy spectrum becomes discreet and the scattering processes revel as combined excitonelectron processes.

In such processes we can see directly only the exciton transition but the state of the additional electron, which we can not see, reveals only in the final result.