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Spin noise spectroscopy is a promising technique for reveal-
ing the microscopic nature of spin dephasing processes in
quantum dots (QDs). We compare the spin-noise in an ensem-
ble of singly charged QDs calculated by two complementary
approaches. The Chebyshev polynomial expansion technique
(CET) accounts for the full quantum mechanical fluctuation
of the nuclear spin bath and a semi-classical approach (SCA)
is based on the averaging the electron spin dynamics over all
different static Overhauser field configurations. We observe

a remarkable agreement between both methods in the high-
frequency part of the spectra determined by static nuclear fields.
The low-frequency part is determined by the long time fluctu-
ations of the Overhauser field. We find small differences in the
spectra depending on the distribution of hyperfine couplings.
The spin-noise spectra in strong enough magnetic fields where
the nuclear dynamics is quenched calculated by two compli-
mentary approaches are in perfect agreement.

© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction The promising perspective of combin-
ing traditional electronics with novel spintronics devices lead
to intensive studies of the spin fluctuations in semiconduc-
tor quantum dots (QDs) [1–4]. The spin noise technique
was originally developed for the observation of magnetic
resonance in sodium atoms [5] and is used to monitor the
spin Faraday or Kerr rotation effect on the linearly polarized
continuous wave probe. Successfully applied to various semi-
conductors [6, 7] this approach has the potential to reveal the
intrinsic dynamics of electron or hole spins interacting with
its environment, see Refs. [8, 9] for recent reviews.

For the spin dynamics of a single electron confined in
a semiconductor QDs various interactions play a role. The
main contribution of the Fermi contact hyperfine interac-
tion has been identified [10, 11] described by the central
spin model (CSM) [12]. Charge fluctuation of donors and
acceptors and electron–phonon interactions provide addi-
tional relaxation mechanisms [13]. Even though the CSM
is exactly solvable [12], the explicit solution is restricted
to a finite size system of N < 50 nuclear spins [14, 15].

Over the last decade, a very intuitive picture for the cen-
tral spin dynamics interacting with a spin bath has emerged.
The separation of time scales [16] – a fast electronic preces-
sion around an effective nuclear magnetic field, and slow
nuclear spin precessions around the fluctuating electronic
spin – has motivated various semiclassical approximations
[16–21] which describe very well the short-time dynam-
ics of the central spin polarization. Since experiments are
performed on QD ensembles [1–4] an averaging over the
contribution of different QD has to be performed.

In this paper, we compare the spin-noise spectra for QD
ensembles obtained using a quantum mechanical approach
based on a CET [22–25] and semiclassical approach to spin
fluctuations in singly charged QDs [13]. While the original
application [23] of the CET was restricted to the propagation
of a single wave function, we have used an extension to ther-
modynamic ensembles to access the high temperature limit
relevant to the experiments.

Both approaches require information on the distribu-
tion of hyperfine couplings in the QD ensemble and the
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fluctuating Overhauser field generated by the nuclear spins
confined in the QD. We have used the experimentally
determined distribution of diameters of the quantum dots
[26] to obtain the distribution functions assuming a Gaussian
or an exponential electronic wave function of the electronic
bound state of the QD.

2 Modeling the spin dynamics in the quantum
dots The spin-decoherence of a single electron spin con-
fined in a semiconductor QD is mainly governed by the
hyperfine interaction between the electron spin S and the sur-
rounding nuclear spins Ik [10, 11, 16, 21, 27]. In an applied
external magnetic field B = BnB (nB being the unit vector
in field direction, and B = |B|) the Hamiltonian is given by

H = ωLS · nB +
N∑

k=1

AkIk · S, (1)

where the Larmor frequency ωL = gμBB is introduced, g

is the electron g-factor, and we put � = 1. In Eq. (1), the
summation is carried out over the nuclei interacting with
the electron, Ak are the corresponding hyperfine constants,
N is number of relevant nuclear spins. For simplicity, we
restrict ourselves to s = 1/2 nuclear spins. In a more realistic
model of GaAs QD one has to take into account nuclear
s = 3/2 spin states. This would make the bath spins even
more classical and does not change the qualitative behavior of
the noise spectrum unless stress-induced quadrupolar nuclear
interactions [20] are included in the calculation.

The fluctuations of the Overhauser field BN = ∑N

k=1 AkIk

define the energy scale 1/T ∗ = [
∑

k
A2

k
]1/2, which governs

the short-time spin dynamics. At the time scale ∼T ∗, the
nuclear fields can be treated as static. In typical GaAs QDs
T ∗ ∼ 1 ns [16]. The spin dynamics of nuclei becomes impor-
tant at a longer time scale ∼ √

NT ∗ (being on the order of
1 �s). To address the dynamics at such times one has to
solve CSM. 1 Although it is exactly solvable using the Bethe-
ansatz approach [12], the explicit evaluation of the spin
dynamics is only possible for small numbers of bath spins
(N < 50) [15], therefore we resort to numerical approach,
see below.

2.1 Chebyshev polynomial expansion technique
We have applied the CET [22–25] to calculate the spin auto-
correlation function and the spin noise in the CSM described
by Eq. (1). The CET has originally been proposed to propa-
gate single initial state |ψ0〉 under the influence of a general
time-independent and finite-dimensional Hamiltonian H :

|ψ(t)〉 = e−iHt|ψ0〉 =
∞∑

n=0

bn(t)|φn〉. (2)

1At much longer times one has to take into account the dipole–dipole
interactions between nuclear spins which do not conserve the total spin and
may also lead to the nuclear spin diffusion. These processes are disregarded
hereinfater.

The infinite set of states |φn〉 obey the Chebyshev recursion
relation [24]

|φn+1〉 = 2H ′|φn〉 − |φn−1〉, (3)

subject to the initial condition |φ0〉 = |ψ0〉 and |φ1〉 =
H ′|ψ0〉, with the dimensionless Hamiltonian H ′. The latter
is defined as H ′ = (H − α)/�E, where �E is the spectral
width and α is the center of the energy spectrum. The time-
dependence is included in the expansion coefficients bn(t) =
(2 − δ0,n)ine−iαtJn(�Et) containing the Bessel functionJn(x),
δn,m is the Kronecker δ-symbol. Since Jn(x) ∼ (ex/2n)n for
large order n, the Chebyshev expansion converges quickly as
n exceeds �Et. This allows to terminate the series (2) after a
finite number of elements NC guaranteeing an exact result up
to a well defined order. The main limitation of the approach
stems from the size of the Hilbert space, since each of the
states |φn〉 must be constructed explicitly.

For the evaluation of the spin autocorrelation function

Sα(t) = 〈Sα(t)Sα(0)〉 =
D∑

i=1

〈i| ρ0eiHtSαe−iHtSα |i〉 (4)

we resort to a stochastical method. Here {|i〉} denotes the
complete basis set of the Hilbert space of dimension D, ρ0 is
the density operator of the equilibrium system andα = x, y, z

labels the Cartesian coordinates. It has been shown [24] that
calculation of the full trace can be replaced by summing
over Ns random states |r〉 the error scales as 1/

√
NsD. The

parameter D grows exponentially with N, only a few random
states are required for an accuracy evaluation of the trace for
large N. For calculation of the autocorrelation function, the
CET is used to propagate the two states |r1〉 = Sα |r〉 and
|r2〉 = ρ0 |r〉. The noise spectrum

Sα(ω) =
∫ ∞

−∞
Sα(t)eiωt dt (5)

is obtained by an analytical Fourier transformation of the
autocorrelation function: the spectral information is encoded
in the Chebychev polynomial and the dependence on the
Hamiltonian enters via momenta generated from two differ-
ent initial states by Chebyshev recursion. For more technical
details, see Refs. [24, 25].

2.2 Semi-classical approach It has been noted that
quantum mechanical simulations of the spin dynamics up to
N = 1000 using the TD-DMRG [28, 29] shows remarkably
good agreement with the SCA [13, 16–18, 20] on short time
scales. Apparently, the bath spins can be replaced by a
frozen classical spin for large N on the short time dynamics
on the time scale T ∗. On longer time scales, T ∗ 	 t, both
approaches deviate from the exact solution. Merkulov et
al. have argued [16] that neglecting of the dynamics of the
Overhauser field pins the long time value of spin-correlation
function to Sz(t = 0)/3 in the absence of an external
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magnetic field since the decay is caused by pure dephasing.
The TD-DMRG, on the other hand, accumulated errors due
the Trotter–Suzuki decomposition of the time-evolution
operator and growing entanglement in the matrix-product
state ansatz which limits the time evolution to time scales
t < 100T ∗, see Refs. [28, 29] for details.

In the classical picture [13, 16], the electron precesses
fast around a sum of the Overhauser field and the external
magnetic field, while the individual nuclear spin Ik precesses
slowly around the electron spin on a time scale given by
1/Ak ∼ √

NT ∗ 
 T ∗. Replacing the bath dynamics with a
static Overhauser field �N given in units of a Larmor fre-
quency, the electron spin fluctuations δs(t) can be described
by the Langevin approach applied to the Bloch equation as
follows [13]:

∂δs(t)

∂t
+ δs(t)

τs

+ δs(t) × (ωL + �N) = ξ(t) . (6)

Here ξ(t) denotes the fictitious random force field. Its corre-
lator does not depend neither on B nor on �N and is given by〈
ξα(t′)ξβ(t)

〉 = δαβδ(t − t′)/2τs, and τs is an additional elec-
tron spin-relaxation time caused by, e.g., electron–phonon
interaction. To connect the electron spin dynamics in a sin-
gle frozen Overhauser field with the quantum mechanical
calculation, we have to average over all possible Overhauser
fields. For conduction band electrons, the distribution func-
tion F(�N) is isotropic and approaches a Gaussian [16]
for large N whose variance is given by 1/2[T ∗]2. In the
absence of magnetic field the spin fluctuations are isotropic,
Sx(ω) = Sy(ω) = Sz(ω) ≡ S(ω), and it has been shown that
the spin fluctuation spectrum is given by [13]

S(ω) = π

6

{
�(ω) +

∫ ∞

0

d�NF (�N) (7)

× [�(ω + �N) + �(ω − �N)]

}
,

where F (�N) = 4π�2
N
F(�N), �N = |�N | and

�(ω) = 1

π

τs

1 + (ωτs)2
. (8)

In the realistic limit of very slow electron spin relaxation,
τs 
 T ∗, �(ω) can be replaced by a δ-function and the inte-
gral in (7) can be solved analytically: we recover the Fourier
transformation of spin-decay function function derived by
Merkulov et al. [16, 25, 30] using a Gaussian distribution
function F(�N).

2.3 Distribution function of the hyperfine cou-
plings The coupling constants Ak entering the CSM are
proportional to the square of the absolute value of the elec-
tron wave function at the k-th nucleus [10, 11]. The envelope
of electron wave function depends on the details of the con-
finement potential and band parameters of the system under
study. Ignoring the microscopic details, we use the generic

form [31]

ψ(|r|) ∝ exp

[
−1

2

( |r|
L0

)m]
, (9)

where L0 is the characteristic length scale of the QD. For m =
2, ψ(r) is a Gaussian, and it takes the form of hydrogen s-state
for m = 1. Assuming a spherical shape of a d-dimensional
quantum dot, we find the probability distribution P(A) of the
hyperfine coupling constants [25]:

P(A) = d

m

1

rd
0 · A

[
ln

(
Amax

A

)]d/m−1

, (10)

where Amax is the largest coupling constant in the center of
the QD. The smallest coupling constant is determined by
the cutoff radius R regularising the distribution P(A) and
entering the ratio r0 = R/L0. By calculating the average
A2 = ∫

dAP(A)A2, we find that the characteristic time scale
T ∗(L0) is proportional to L

d/2
0 and independent of cutoff R.

The spin noise spectra are measured, as a rule, for QD ensem-
bles. To describe this case, one also has to take into account
the spread of QDs sizes. As a simplest possible model we
follow Ref. [26] and assume that the distribution of QD radii
in QD ensembles can be approximated by a Gaussian with a
standard deviation σr given by σr/L0 ≈ 0.15.

In the full quantum mechanical approach, we are aver-
aging the spin-noise spectrum of a single CET calculation
[25] over typically 100 different configurations of randomly
generated sets {Ak} drawn from P(A). For performing the
ensemble average over many QDs, we use a Gaussian dis-
tribution for the QD radii [26] and the scaling T ∗ ∝ L

d/2
0 to

randomly assign a characteristic time scale T ∗(L) to each
individual generated set {Ak} by proper normalization.

For the semi-classical approach [13] we assume a Gaus-
sian distribution of the Overhauser fields in a single QD
characterized by T ∗ as stated in Ref. [16] and average this
Gaussian over the same distribution of QD radii as in the
full quantum mechanical approach to obtain the nuclear spin
distribution function F (�N).

3 Comparison of the two approaches Now, we
present a comparison of the spin-noise spectrum obtained
from the fully quantum mechanical CET and SCA.

3.1 Zero external magnetic field We begin with the
results at B = 0. All approaches fulfil the spectral sum rule:
the integrated spin-noise spectrum must be 1/4, determined
by the value of the autocorrelation function at t = 0 [25]. We
have used the time scale T ∗ = 〈T ∗(L0)〉 as inverse unit of
energy (frequency) in all of our plots where we present the
spin noise spectra averaged over the distribution of QD radii.
This averaging is denoted as 〈· · ·〉 in what follows.

Since the characteristic time scale T ∗ ∝ L
d/2
0 depends on

the QD dimension d, we present our results for a Gaussian
(m = 2) and exponential envelope function (m = 1) for d =

© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.pss-b.com
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Figure 1 Analysis of the spin-noise spectrum Sz(ω) at zero exter-
nal magnetic field. Comparison of Sz(ω) between the semiclassical
approach (SCA) and fully quantum mechanical CET for two dif-
ferent envelope functions, m = 1, 2, and d = 3 (a) and d = 2 (b).
Panel (c) combines the CET results of (a) and (b). For all CET calu-
lations, the ratio between the largest and smallest coupling constant
has been set to Amax/Amin = e9/4 and Sz(ω) has been averaged over
200 individual QDs. For each QD, we included N = 18 nuclear
spins each coupled to the electron spin with a random coupling con-
stant Ak generated from P(A) and the distribution of characteristic
timescales. For the SCA, we set τs = 50T ∗.

3 in Fig. 1a and for d = 2 in Fig. 1b. In order to compare
the finite size CET calculations for the different electronic
envelope functions, we determined the cutoff radius such
that the ratio between the largest and the smallest hyperfine
coupling in the simulation always remains at Amax/Amin =
e9/4 ≈ 9.4877.

In the SCA each individual QD is characterized by a
Gaussian distribution of Overhauser fields whose width is
determined by T ∗(L0). Consequently, the SCA results are
only dependent of the dimension d and the distribution of
QD radii. We have obtained the distribution F(�N) enter-
ing Eq. (7) by averaging the radius-dependent Gaussian
over the distribution function of the radii, i.e., F(�N) =
〈F[�N, T ∗(L0)]〉.

Figure 1a and b clearly show that the high-energy tails
of the CET spin-noise spectrum S(ω) are independent of the
detailed shape of the envelope function and perfectly agrees
with the SCA results. Only for low frequencies ω 	 1/T ∗

deviations of the two approaches are observed. Those differ-
ence are related to the different treatment of the Overhauser
field: While the SCA neglects the fluctuation of Overhauser
field and performs the limit N → ∞, the quantum mechan-
ical CET includes the full dynamics of the small finite size
nuclear spin. The slow precession of the individual nuclear
spins yields a shift of the conserved spectral weight below
the maximum ωT ∗ ≈ 1/

√
2 to lower frequencies in the CET.

Furthermore, the slight differences in the noise spectra of
m = 1 and m = 2 are related to the differences in the distri-
bution function P(A) given by Eq. (10).

In Fig. 1c, we have combined the CET results of Fig. 1a
and b for both dimensions. The overall qualitative agreement
is remarkable. The high frequency tails, however, are clearly
dependent on the dimension which can be traced back to
the different scaling of T ∗(L0) ∝ L

d/2
0 . We omitted the SCA

results in Fig. 1c since the differences between the SCA data
in 2D and 3D are similar to those of the CET and are also
related to the scaling of T ∗(L0). The coincidence of S(ω) for
ω → 0 is caused by the finite number of Chebyshev poly-
nomials entering the CET approach. Detailed description of
low frequency spin noise spectra is beyond the scope of the
present paper [25].

3.2 Finite external magnetic field Let us turn to
the evolution of the spin-noise spectrum in a finite magnetic
field applied in x-direction. In the presence of the magnetic
field, the fluctuation spectra of transverse, Sz(ω), Sy(ω), and
longitudinal, Sx(ω), components become different [13]. In
what follows we focus on the case of Voigh geometry and
address the spin z-component noise spectrum, Sz(ω). Since
according to Fig. 1c, there are only very subtle differences
between the different dimensions, we restrict ourselves to
d = 3. We present a comparison of the SCA and the CET for
three different dimensionless magnetic fields b = ωLT

∗ =
1, 3, 5 in Fig. 2. For completeness, we have added the data
of Fig. 1a, i.e., the curves for b = 0.

For b = 1, the CET peak position has almost approached
the SCA value. At small frequencies, however, the differ-
ences prevail: fluctuations of the Overhauser field, which are
neglected in the SCA, are still important. The CET faster
shifts the weight of the non-decaying fraction of the auto-
correlation function, originally described by the �(ω)-peak
at b = 0, to higher frequencies than the SCA. Furthermore,
the application of the external magnetic field suppresses the
quantum-fluctuation of the nuclear spin bath the stronger, the
higher field strength b. At b = 3 and b = 5 hardly any dif-
ference are observable. The peak position in the spin-noise
spectra is given by ω∗ = √

ω2
L + (T ∗)−2/2 and approaches

the electron Larmor frequency ωL only at large magnetic
field, ωL 
 1/T ∗ [25].

So far, we have not taken into account the variation of
the electronic g-factors in a QD ensemble. Owing to the size
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Figure 2 The spin correlation function Sz(ω) is shown for a vary-
ing external magnetic field applied along the x-direction, whose
strength is given by b = ωLT ∗. For clarity, an offset proportional
to b has been added to the individual curves. All shown results are
based on d = 3 dimensional QDs and the ensemble average has
been applied as described in the caption to Fig. 1. For the SCA we
set τs = 50T ∗.

quantization effects, the g-factor tensors of electron and holes
in QDs show not only considerable derivations from isotropy
but additionally vary with the size and shape of the QD [32].
Our aim here is to demonstrate qualitatively the effect of g-
factor spread, hence, we are not trying to present a realistic
modeling for a specific experiment. Hereafter, consider the
Voight geometry for the applied magnetic field only with
magnetic field directed along one of the main axes of g-factor
tensor, and a Gaussian distribution function

P(g) = 1

�g
√

2π
exp

[
− (g − g0)2

2(�g)2

]

onto the spin-noise spectrum, where g0 is the average gxx

component of g-factor tensor, �g is the width of the distri-
bution.

Since the differences in Sz(ω) are subtle and vanish
for large magnetic fields, we restrict our discussion on the
impact of a g-factor distribution to the case d = 3 and m = 2.
The results for two different values values �g/g = 0.1, 0.2
and three different magnetic fields b = 1, 3, 5 are depicted
in Fig. 3. For completeness we added the data of Fig. 2 as
panel (a), corresponding to �g = 0. The CET results are
plotted as solid line, while the SCA data have been added
as dashed line in the same color for the same magnetic field.
By plotting in Fig. 3 the data as function of (ω − ω∗)T ∗, we
clearly show that the finite frequency maxima are located
at the analytically predicted effective Larmor frequency ω∗,
which approaches the bare Larmor frequency ωL only at
very large b-fields. For small fields, the spectral contribution
near ω ≈ 0 remains visible. Upon increasing the spread of
the g-factors, the broadening of the spin-noise peak at ω∗ is
increasing with increasing magnetic field as can be seen in
Fig. 3b and c. Again, the CET and the SCA agree perfectly
at large magnetic fields.

Figure 3 The spin correlation function Sz(ω) for three different
finite magnetic fields b = 1, 3, 5 applied along the x-axis and dif-
ferent distributions of g factors plotted as function of the shifted
frequency (ω − ω∗)T ∗: (a) the same data as Fig. 2 for a fixed
g = g0, Gaussian distributions of g-factors with (b) �g/g0 = 0.1
and (c) �g/g0 = 0.2. The CET data are depicted as solid line, the
SCA curves as dashed line of the same color. For the SCA, we set
τs = 50T ∗.

4 Conclusions We have presented a comparison of a
semiclassical approach and fully quantum mechanical calcu-
lation of the spin-noise spectra of quantum dot ensembles.
While the CET approach is limited to small bath sizes but
treats the quantum fluctuations exactly, the SCA includes the
correct limit N → ∞ but neglects the nuclear spin dynamics.

We find a very good agreement between both approaches
for the high-frequency parts of the spin-noise spectrai n the
absence of magnetic field: the SCA and the CET predict the
same short-time dynamics of the spin autocorrelation func-
tion. Since the CET includes the full quantum fluctuations
of the nuclear spin bath the low frequency spectrum differs
between the methods and is sensitive to the distribution func-
tion of the hyperfine coupling constants. Application of an
external magnetic field suppresses quantum fluctuations and
spin-noise spectra agree remarkably for large magnetic fields
significantly exceeding the Overhauser field fluctuation scale
1/T ∗.

© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.pss-b.com
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