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We show experimentally that the uniaxial stress applied along
the twofold symmetry axis of a high-quality heterostructure
containing a wide GaAs/AlGaAs quantum well leads to consid-
erable modification of the exciton-polariton reflectivity spec-
tra. We observe: (i) the energy splitting of the light-hole and
heavy-hole exciton resonances to appear and (ii) the increase of
the quasiperiod (divergence) of spectral oscillations related to

the optically allowed exciton-polariton transitions. A theoreti-
cal analysis shows that the first effect is due to the strain-induced
reduction of crystal symmetry. The divergence of spectral oscil-
lations is found to be due to the strain-induced decrease of the
heavy-hole exciton mass. The effective mass is reduced by 5% at
the pressure of P = 0.23 GPa. This effect shows the potentiality
of spectroscopic ways of strain detection in semiconductors.

© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction Optical spectroscopy has proven to be
an efficient method to study excitons in semiconductor struc-
tures. It reveals coupling to light and size quantization of exci-
tons confined in thin semiconductor crystals or wide quantum
wells (QW) [1, 2]. The QW interfaces break the wave vector
selection rules for optical transitions. In particular, this con-
cerns the transitions from or to exciton states with large wave
vectors, K > q, where q is the wave vector of light at the ex-
citon resonance frequency. This symmetry lowering leads to
the appearance of quasiperiodic spectral oscillations in re-
flectivity spectra [3, 4]. Multiple experimental studies show
that these oscillations manifest quantization of the center-of-
mass exciton motion [2, 5–14]. By introducing an effective
wave vector for each quantum-confined state, one can ex-
tract the exciton energy dispersion, that is the dependence of
the exciton kinetic energy on its wave vector, K, from the
observed spectral features.

An efficient approach to the analysis of the exciton op-
tical response is the polaritonic model, which accounts for
the modification of exciton dispersion due to its coupling
to light, thus allowing one to model the reflectivity spec-
tra [10, 15–19]. Previous studies have clearly shown that the
dispersion is weakly affected by the QW confinement for

the well width of LQW > 6aB, where aB is the exciton Bohr
radius [6]. This is why the bulk exciton dispersion can be
studied experimentally in wide QWs. The spectral positions
of exciton (exciton-polariton) resonances in these structures
are dependent on the exciton effective mass [20].

In GaAs-type crystals with degenerated valence band,
the effective masses of heavy-hole and light-hole excitons
are most thoroughly studied [15, 16]. The exciton mass is
very sensitive to various types of interactions that may in-
duce heavy-hole–light-hole mixing (hh–lh mixing). In par-
ticular, the heavy-hole and light-hole subbands are coupled
by the electron–hole Coulomb interaction and by the QW
potential [21–23]. As is shown in these papers, this coupling
results in several effects, in particular, in a nonparabolicity
of exciton dispersion and in a change of exciton mass. The
hh–lh coupling and, consequently, the exciton dispersion can
be also modified by external perturbations, e.g., by the ex-
ternal magnetic field applied along the exciton confinement
direction (Faraday geometry) [11–14]. The authors of these
papers observed a magnetic-field-induced change of exciton
dispersion, which was treated as the result of exciton states
mixing. They discussed the observed effects in terms of a
change of exciton mass.

© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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2 D. K. Loginov et al.: Reduction of exciton mass by uniaxial stress in GaAs/AlGaAs QWs

Mechanical strain causing the splitting of the valence
band changes the hh–lh coupling strength and may strongly
affect the exciton dispersion. The strain can be induced by in-
ternal forces in heterostructures with the lattice-mismatched
layers, e.g., InGaAs/GaAs structures [24–27]. An applica-
tion of external stress is an efficient method of control of the
hh–lh coupling and its effect on the exciton spectra [28–32].

The strain causes energy shifts of exciton states due to
a change of the bandgap. The experimental study of these
energy shifts in optical experiments allows one to determine
deformation potentials. The knowledge of deformation po-
tentials is of practical importance, e.g., for the fabrication
of semiconductor devices consisting of layers with different
lattice constants.

Many experimental works have been devoted to the
strain-induced effects in heterostructures with relatively
narrow QWs, L ≤ 30 nm, and superlattices as well as in
QW-based devices, see, e.g., Refs. [33–40]. The authors
demonstrate the efficiency of the application of external
stress to the control of the hh–lh coupling and, corre-
spondingly, of various properties of such devices as laser
diodes and high-electron-mobility transistors (HEMPTs).
Introduction of a local pressure by a pin has been also used
to create a trap for polaritons in a microcavity [41, 42].

The basic theory of strain-induced effects in semiconduc-
tors was developed by Bir and Pikus [28]. It is applied in the
works we cited above for the analysis of the strain-induced
shift of exciton states in narrow QWs. No experimental evi-
dence for the effect of uniaxial strain on the polariton states in
wide QWs has been reported so far, to the best of our knowl-
edge. A theoretical analysis of the strain effect in a wide
GaAs QW is given in Ref. [43], where a uniaxial stress ap-
plied along the crystal axis [100] is considered. A remarkable
change (convergence) of masses of the heavy- and light-hole
excitons has been predicted in this work.

The present work is devoted to the theoretical and exper-
imental studies of the mass-convergence effect in polariton
reflectivity spectra of a wide QW in the presence of a uniaxial
stress applied along the [110] axis. The application of stress in
this direction is of practical importance because chipping the
structure perpendicular to [110] allows one to easily obtain a
piece of the structure with strongly parallel planes. This prop-
erty of the GaAs-based structures is frequently exploited, for
example, for preparation of semiconductor lasers [38]. We
used this property to prepare a sample for our experiments.
The high quality of the structure studied has allowed us to
observe many spectral oscillations, which are shifted to the
higher energy if pressure is applied. Remarkably, the shift
increases with the increase of the quantum number N of the
confined exciton state, and it reaches 5 meV for N = 16 at
the pressure of P = 0.23 GPa. We have modeled theoreti-
cally the strain effect on the exciton dispersion using the
method similar to one described in Ref. [43] for the strain
applied along the [100] axis.

2 Exciton Hamiltonian in a crystal under uniax-
ial stress We consider an exciton propagating along the

z-axis (crystal axis [001]) in a crystal characterized by the
zinc-blende symmetry. We restrict our discussion of the ex-
citons with wave vectors |K| > 1/aB corresponding to the
“large-exciton-momentum limit” [23]. The experimentally
observed spectral oscillations (see Section 4) well correspond
to this limit of wave vectors. We therefore ignore several less
important effects, such as the exchange coupling of exci-
ton states, the nonparabolicity of exciton dispersion, and the
coupling of the ground and excited exciton states, extensively
discussed in the narrow QW limit |K| < 1/aB [44]. We also
neglect the effects related to the corrugation of the valence
band [23]. They are weak and do not directly affect spectral
resonances in our system.

In the framework of the approximations introduced, the
exciton energy in a crystal with no strain is as follows [23]:

H (0)
Xh,l = Eg − RX + �

2K2
z

2Mh,l

. (1)

Here, Eg is the band gap and RX is the exciton binding energy,
Kz is z-component of the exciton center-of-mass wave vector.
The translational masses of the heavy-hole and light-hole ex-
citons are defined as: Mh,l = me + mh,l, with effective masses
of electron, me, and hole, mh,l = m0/(γ1 ∓ 2γ2). Here, γ1 and
γ2 are the Luttinger parameters and m0 is the free electron
mass.

The Hamiltonian of an exciton, according to Ref. [23],
is represented by an 8 × 8 matrix consisting of two identical
diagonal 4 × 4 blocks. The first block describes the optically
active heavy-hole and light-hole exciton states (exciton spin
projections Jz = ±1), whereas the second one represents the
optically inactive states (Jz = 0, ±2).

Basic wave functions of such a Hamiltonian include the
wave function of a moving exciton, Ψ (Kz), as the coordi-
nate part and the eight-component spinor with one nonzero
component, νj,s:

|j, s〉 = νj,sΨ (Kz), (2)

where j = ±3/2, ± 1/2, and s = ±1/2 are the projections
of the spin moments of the hole and the electron, respectively,
to the z-axis.

Let us now consider the impact of uniaxial strain P ap-
plied along the [110] axis. Components of the strain tensor
have a simple form [28, 45]:

εxx = εyy = −(S11 + S12)
1

2
P,

εzz = −S12P,

εxy = −S44

1

2
P,

εxz = εyz = 0, (3)

where S11, S12, and S44 are components of the elastic compli-
ance tensor. Such strain, in particular, leads to the appearance
of the linear in the hole wave-vector terms in the Hamilto-
nian [46, 47]. In the case under consideration, these terms

© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.pss-b.com
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couple the exciton 1s- and np-states and lead to variation of
the exciton binding energy. However, this change is small
comparing to the effects discussed in the present paper.

The most remarkable effect of the crystal strain is the
alteration of the valence band Γ8 described by the Bir–
Pikus Hamiltonian [28, 46]. This Hamiltonian does not cou-
ple the optically active and inactive states. Therefore, we
consider only the 4 × 4 block with basic functions |j, s〉 =
| ± 3/2, ∓1/2〉, | ± 1/2, ±1/2〉 describing the optically ac-
tive states.

To simplify our analysis, we change the basis (2) as fol-
lows:

|hα〉 = 1√
2
|3/2, −1/2〉 ± i√

2
| − 3/2, 1/2〉,

|lα〉 = 1√
2
|1/2, 1/2〉 ± i√

2
| − 1/2, −1/2〉. (4)

Here, the upper and lower signs correspond to the indices
α = x′ and α = y′, respectively. These states can be excited
by the light polarized along [110] and [11̄0] axes, which are
the axes of optical anisotropy induced by the uniaxial strain.

A matrix of the exciton Hamiltonian for optically active
states constructed using wave functions (4) is composed of
two 2 × 2 blocks:

ĤX =
(

Hhα V

V ∗ Hlα

)
, where α = x′, y′. (5)

Here,

Hhx′ = Hhy′ = H (0)
Xh −

(
a − b

2

)
(S11 + S12) P,

Hlx′ = Hly′ = H (0)
Xl −

(
a + b

2

)
(S11 + S12) P,

V = i
d

4
S44P, (6)

where a, b, and d are the deformation potentials [28]. Since
the states corresponding to α = x′ and α = y′ are decoupled,
the problem for each such block can be solved independently.

The solution of the eigenvalue problem for the Hamilto-
nian (5) is trivial:

E1,2 = 1

2

(
Hhα + Hlα ±

√
(Hhα − Hlα)2 + 4|V |2

)
.

(7)

This shows that the deformation potential a is accounted
for in the sum of terms: Hhα + Hlα, that governs the overall
shift of the quantum-confined exciton states. Deformation
potentials b and d are included in the expression under the
square root and, therefore, they govern the splitting of the
heavy-hole and light-hole exciton bands. This splitting de-
pends also on the exciton wave vector K so that the applied

strain modifies the exciton dispersion. This dependence is
important for the interpretation of the polariton spectra in
Section 4. Here, we would like to note that perturbation V

plays a similar role as an operator that splits the conduction
and valence bands in topological insulators, superconductors,
and graphene, which results in the appearance of a nonzero
mass [48–50].

The uniaxial strain also couples the light-hole states with
the split-off valence-band states, alterating the light-hole
mass [28]. Estimates show that the energy shifts of the ex-
citon states caused by this coupling are small compared to
those caused by the hh–lh coupling. This is why we do not
consider this effect in what follows.

The theoretical model considered above allows one to
also analyze the tensile strain. In particular, as it follows
from Eqs. (6) and (7) for case P < 0, the ground state of
the light-hole exciton is shifted lower in energy than that
of the heavy-hole exciton. Because the dispersion curvature
for the light-hole exciton is larger than that for heavy-hole
exciton, they are crossed at some wave vector K. Mixing
of the heavy-hole and light-hole exciton states results in the
anticrossing of these dispersion curves that strongly modify
the exciton dispersion. We will not discuss the tensile strain
in detail because our experimental data are obtained only for
positive stress.

3 Dielectric permittivity in the presence of uni-
axial strain In our analysis of the reflectivity spectra, we
employ a model of the polariton wave interference in a wide
QW described, e.g., in Refs. [2, 16, 19, 10]. We assume that
the incident light is directed perpendicular to the sample sur-
face and linearly polarized along one of the optical anisotropy
axes. The exciton–photon interaction is described by the per-
turbation operator (see, e.g., Ref. [51]):

Vd = −(dh + dl)E
(α), (α = x′, y′), (8)

where E(α) is the electric field of a light wave and dh,l are
the dipole matrix elements for heavy-hole and light-hole ex-
citons. The square of the matrix elements can be expressed
as: d2

h = 3d2
l = �ωLTε0Ω, where �ωLT is the energy of the

longitudinal–transverse splitting [15], ε0 is the background
permittivity, and Ω is the crystal volume [52].

The excitonic component of the polariton wave function
is a linear combination of heavy- and light-hole exciton wave
functions (4):

Ψα(Kz) = Cvac|vac〉 +
∑
β=h,l

Cβα|βα〉, (9)

where Cβα, Cvac are the expansion coefficients and |vac〉 is
the crystal vacuum state.

Dispersion relations, wave functions, and permittivity
with respect to exciton–photon interactions can be obtained
following the method described, e.g., in Refs. [43, 51]. To
this end, one should first solve a secular equation taking into

www.pss-b.com © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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account interactions (8):⎛
⎜⎝

Hhα − �ω V −dhE
(α)

V ∗ Hlα − �ω −dlE
(α)

−dhE
(α) −dlE

(α) Hvac − �ω

⎞
⎟⎠

⎛
⎜⎝

Chα

Clα

Cvac

⎞
⎟⎠ = 0.

(10)

Here, Hvac = 0 is the energy of the vacuum state and �ω is
the photon energy. The expansion coefficients Ch,lα can be
easily found from this matrix equation in the limit of very
weak optical excitation where Cvac ≈ 1.

Resonant polarization of the medium due to exciton–
photon coupling can be now expressed in terms of the Ch,lα

coefficients [16, 51]:

4πP(α) = 1

Ω
〈Ψα|e · r|Ψα〉 = 1

Ω
(dhChα + dlClα)

= 4πχlαE
(α) + 4πχhαE

(α). (11)

This expression defines contributions to the optical sus-
ceptibility from the heavy-hole and light-hole exciton res-
onances, χh,lα. The resonant susceptibility is obtained from
Eq. (10):

4πχhα = H̃lα�ωLT

H̃hαH̃lα − |V |2
± 1√

3

V�ωLT

H̃lαH̃hα − |V |2
,

4πχlα = 1

3

H̃hα�ωLT

H̃hαH̃lα − |V |2
± 1√

3

V�ωLT

H̃lαH̃hα − |V |2
.

(12)

Here,

H̃h,lα ≡ Hh,lα − �ω + iΓh,l,

where Γh,l is a phenomenological parameter introduced to de-
scribe processes of energy dissipation. The upper and lower
signs in relation (12) correspond to the light polarization
along the x′ and y′ axes. We should stress that the suscep-
tibility χh,lα depends on the exciton wave vector K through
H

(0)
h,lα, see Eqs. (1) and (6).

One should also keep in mind that, even without the
exciton resonances, the uniaxial strain induces the optical
anisotropy of crystals due to the piezo-optic effect [53, 54].
This effect leads to an additional background permittivity,
which, in the basis of light waves polarized along x′ and y′

axes, is described as follows [53, 54]:

−δεx′ = δεy′ = π44P ≡ δε, (13)

where π44 is the component of the piezo-optic tensor.
The total permittivity of the medium that accounts for

contributions (12) and (13) has the form:

εα(ω, Kz) = ε0 ± δε + 4πχhα + 4πχlα, (α = x′, y′).

(14)

Figure 1 Modification of the dispersion curves for polaritons of h-
and l-types in the bulk GaAs under the application of strain along the
[110] axis. The black dashed and blue solid curves are the dispersion
curves at P = 0 and P = 0.23 GPa, respectively. The overall shift
of the dispersion curves due to the strain is omitted. Notations h, l,
and p are explained in the text.

In order to obtain the dispersion relations for polariton
eigenmodes, one should solve the dispersion equation [4]:

εα(ω, Kz) = c2K2
z

ω2
, (15)

where c is the light velocity and εα(ω, Kz) is described by the
expression (14).

Eq. (15) has independent solutions for α = x′ and α = y′,
which correspond to two linear polarizations of the incident
light. For each polarization, the equation is a polynomial of
the third order overK2

z
. It describes three dispersion branches.

An example of the dependences for the strained and un-
strained GaAs is shown in Fig. 1. The material parameters
used in the calculations are listed in Table 1. Curves in the
figure are marked according to the largest expansion coeffi-
cient in the polariton wave function at large Kz. Notations “h”
and “l” correspond to the heavy-hole and light-hole polari-
ton branches, while “p” stands for the photon-like polariton
branch.

The deformation leads to the reduction of the GaAs crys-
tal symmetry group from Td to D2d . Therefore, the disper-
sion curves of the exciton-like modes of h- and l-types are
shifted to higher energies and are split due to the diagonal
terms of Hamiltonian (10). The dispersion curves are addi-
tionally split due to the hh–lh coupling described by matrix
element V of Hamiltonian (10). As seen in Fig. 1, the h-
type branch becomes steeper as the pressure increases. This
behavior is a signature of the reduction of effective mass
for h-type exciton-polaritons. At the same time, the l-type
branch becomes flatter, which is equivalent to the increase of
the exciton mass. In the first approximation, this effect can
be described as the convergence of effective masses of the
h- and l-type exciton-polaritons. We should note that this al-
teration of polariton mass is different for different directions

© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.pss-b.com
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Table 1 Material parameters used in computation. Electron mass me, bandgap energy Eg, and Luttinger parameters γi are taken from
Ref. [58]; elastic compliance tensor components Sij are taken from Ref. [59] and given in the 10−12 cm2 dyn−1 units; deformation potential
constants a, b, and d are taken from Ref. [60].

�ωLT ε0 me (m0) γ1 γ2 Eg (eV) S11 S12 S44 π44 a (eV) b (eV) d (eV)
(meV) [56] [57] (GPa−1) [53]

0.08 12.56 0.067 6.8 2.3 1.520 1.172 −0.365 1.68 1.5 −6.7 −1.7 −4.55

of the polariton propagation [28, 55]. In the general case, the
uniaxial stress results in an anisotropic change of tensor of
the exciton mass. The convergence of the exciton masses
is not a universal effect and may occur in some geometries
of experiments, in particular, with pressure along the [110]
direction for excitons propagating along the [001] direction
considered here.

4 Experimental reflectivity spectra and their
analysis We have studied a semiconductor structure with
the GaAs/Al0.3Ga0.7As quantum well grown by the molec-
ular beam epitaxy on [001] GaAs substrate. The QW
width is LQW = 240 nm. Besides the QW and barrier lay-
ers, the heterostructure contains several thin technological
layers GaAs, AlAs, AlGaAs, and a technological superlattice
GaAs/AlGaAs of total width 430 nm. All these technological
layers are not important for the present study.

The reflectivity spectra have been measured using a stan-
dard setup consisting of a white-light source (an incandes-
cent lamp), a 0.5-m monochromator, a helium closed-cycle
cryostat, and a photodiode. The lamp radiation filtered by
the monochromator was directed at an angle close to normal
to the sample surface. Incident light was linearly polarized
along the [110] axis. The reflected beam was detected by the
photodiode. In the optical scheme used, the photolumines-
cence of the sample excited by weak monochromatic light
was negligibly small and did not affect the detected signal.
To apply a stress to the sample, we have designed a mechani-
cal micropress. It consists of two anvils, one of which is fixed
and the other one is pressed by a piezotransducer. The sam-
ple is fixed between the anvils. An electric voltage is applied
to the piezotransducer that results in application of the stress
to the sample due to the piezoelectric effect. This method
allowed us to apply the stress to the sample under study in
the vacuum chamber of the closed-cycle cryostat we used.
The micropress with the sample was attached to a cold finger
in the cryostat and cooled to a temperature T = 12 K. The
magnitude of applied stress was obtained from the spectral
positions of dominant spectral features for the heavy-hole
and light-hole excitons using Eq. (7) for Kz = 0 and defor-
mation potentials from Ref. [60].

Examples of measured spectra are shown in Fig. 2a. The
dominant feature at the photon energy of about 1.516 eV
at zero pressure is related to the interference of polari-
tonic waves in the range of anti-crossing of exciton-like and
photon-like polaritonic modes at K = q [15, 16]. In the spec-
trum of the stressed heterostructure, the dominant feature is

split into exciton resonances corresponding to the ground
states of the heavy-hole and light-hole excitons.

Besides the dominant features, quasiperiodical oscilla-
tions are observed in Fig. 2a. The oscillations are caused by
the interference of the photon-like modes and the exciton-like
modes with large K-vector [1, 2, 11, 43, 12, 10]. We should
note here that the observation of such spectral oscillations is
possible only in high-quality QW structures.

To simulate the reflectivity spectra, it is necessary to
consider the interference of light waves reflected from the
sample surface and three polariton modes propagating in the
QW. The amplitudes of these modes can be determined if
one considers the Maxwell’s boundary conditions as well as
the Pekar’s additional boundary conditions [16]. The bound-
ary conditions give rise to a system of linear equations with
respect to amplitudes of the electric field of light and po-
laritonic waves in the structure. The solution of this system
allows one to obtain the ratio of amplitudes of the incident
(Ei) and reflected (Er) light waves (see, e.g., Refs. [43, 10]).
The reflectivity coefficient is the squared modulus of this
ratio: R(ω) = |Er/Ei|2.

The reflectivity spectra calculated for a QW of the same
width as in the experiment are presented in Fig. 2b for sev-
eral magnitudes of applied pressure. In the calculations, we

Figure 2 (a) Experimentally measured reflectivity spectra for the
GaAs/AlGaAs QW of width LQW = 240 nm. Red and blue curves
show the spectra measured for pressure P = 0 and P = 0.23 GPa,
respectively. (b) Reflectivity spectra calculated for pressure P = 0,
0.1, 0.2, and 0.3 GPa (black, red, green, and blue curves, respec-
tively). The vertical arrows indicate the spectral features related to
the split off light-hole exciton (LH).

www.pss-b.com © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 3 Experimentally measured (red curves) and theoretically
calculated (blue curves) reflectivity spectra for the GaAs/AlGaAs
QW of width LQW = 240 nm for pressures P = 0 (a) and P =
0.23 GPa (b). Numbers in both panels numerate the oscillations.
Vertical arrows in panel (b) indicate respective oscillations in the
experimental spectrum.

introduced the near-surface dead layers, LD = 19 nm, for ex-
citons in the QW according to Refs. [61, 62]. The material
parameters used are shown in Table 1. For these calculations,
we have chosen the damping parameters Γh = 0.27 meV and
Γl = 0.55 meV. As seen, the uniaxial stress shifts the light-
hole exciton higher in energy than the heavy-hole exciton.

In Fig. 3, the calculated and experimental reflectivity
spectra in the energy range above 1.516 eV are compared.
We used different damping parameters for strained and un-
strained QW to fit the experiment: Γh = 0.07 meV, Γl =
0.35 meV for P = 0 and Γh = 0.27 meV, Γl = 0.55 meV for
P = 0.23 GPa. A possible reason for an increase of the damp-
ing parameters with pressure is a strain inhomogeneity. We
should note that the damping parameters for the light-hole
exciton are larger than those for the heavy-hole one. Such
difference is typically observed in experiment (see, Fig. 2a
and Ref. [10]).

There is a noticeable difference in general behavior of
experimental and of simulated spectra. We attribute this dif-
ference to the complex layer structure of our sample, which
contains many technological layers. It is well known (see,
e.g., Ref. [16]) that the interference of light reflected from

several layers may result in slow modulation of a reflectivity
spectrum. We ignore technological layers in the simulation
for simplicity and focus on the spectral oscillations, contain-
ing valuable information on the polariton dispersion. The
calculations show that the observed spectral oscillations are
mainly caused by the contribution from the h-type modes.
The contribution of the l-type modes for K � q is negli-
gibly small due to its lower oscillator strength and larger
inhomogeneous broadening.

The calculated spectra reasonably reproduce the overall
behavior of the spectral oscillations observed experimentally
(see Fig. 3). In particular, the increase of the energy splitting
between the oscillations in the strained QW is reproduced.
This is a nontrivial result because deformation potentials b

and d describing the oscillation divergence [see Eq. (7)] are
obtained from the splitting of valence bands rather than from
the study of exciton dispersion [60]. Our results show that
the deformation potentials found here are also appropriate
for modeling of the strain-induced change of curvature of
the dispersion branches.

The quantitative comparison of experimental and simu-
lated spectra is limited by the accuracy of detection of the
energy positions of spectral oscillations in our experiments.
The accuracy is limited because of the relatively large broad-
enings of the observed resonances. We note also that only
a limited number of the oscillations have been observed. In
this sense, further progress in the preparation of high-quality
structures is very desirable that would allow one to verify the
deformation potentials.

The increase of the oscillation period shown in Fig. 3
manifests the reduction of the effective mass Mh of a heavy-
hole exciton. To obtain the exciton mass in a strained QW,
we approximate the exciton-like part of the polariton dis-
persion presented in Fig. 1 by the parabolic function: E =
�

2K2
z
/(2Mh) + B. Here, the parameter B describes the edge

of the exciton band in the strained structure. An approxi-
mation is performed in the range beyond the exciton–light
anti-crossing region, Kz > 1 × 106 cm−1. The uncertainty of
this approximation and, consequently, in the exciton mass
extraction is of about 1%.

The obtained exciton mass decrease at P = 0.23 GPa is
not small: �Mh = 0.026m0 which is 5 ± 1.5% of the ini-
tial exciton mass. The model described above allows us to
estimate variation of the exciton mass at the strongest possi-
ble pressure, Pmax = 0.8 GPa, acceptable for GaAs [36, 63]:
�Mh = 0.09 m0 that corresponds to the approximately 14 ±
2% decrease of the exciton effective mass. The theoretical
analysis of Ref. [43] shows that this effect may be even
larger when the stress is applied along the [100] crystallo-
graphic axis. In particular, the decrease of the heavy-hole ex-
citon mass of about 45% may be obtained at a pressure P =
0.7 GPa. It follows from Eqs. (6) and (7) that modification of
the exciton dispersion is sensitive to values of the deforma-
tion potentials b and d. Therefore, rigorous analysis of the
reflectivity spectra of the heterostructures with QWs under
uniaxial stress may allow one precise determination of these
constants. These material parameters are important from the

© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.pss-b.com
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fundamental point of view and for practical applications, e.g.,
for fabrication of laser diodes, HEMTs [38–40], etc.

5 Conclusions We have theoretically and experimen-
tally studied the impact of uniaxial pressure applied along
the second-order symmetry axis of a structure with a wide
GaAs/AlGaAs QW on the exciton-polariton resonances in
the reflectivity spectra. Thanks to the high quality of the in-
terfaces, we could observe in the reflectivity spectra nearly
periodical oscillations caused by the interference of photon-
like and exciton-like polariton modes in the QW. The uniaxial
stress is found to induce the increase of the spectral splitting
between oscillations. This effect is understood in terms of the
strain-induced coupling of heavy-hole and light-hole exciton
states. The coupling results in a modification of the exciton
dispersion, which can be treated as the decrease of the effec-
tive mass of the heavy-hole exciton. The observation of the
exciton mass decrease opens up one more way for the exper-
imental verification of the deformation potential parameters,
which are as important for fundamental studies as for prac-
tical applications.
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