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SPECTRAL DEPENDENCE OF THE LOCALIZATION DEGREE IN

THE ONE-DIMENSIONAL DISORDERED LLOYD MODEL

G. G. Kozlov∗

We calculate the Anderson criterion and the spectral dependence of the degree of localization in the first

nonvanishing approximation with respect to disorder for one-dimensional diagonally disordered models

with a site energy distribution function that has no finite even moments higher than the zeroth. For this

class of models (for which the usual perturbation theory is inapplicable), we show that the perturbation

theory can be consistently constructed for the joint statistics of advanced and retarded Green’s functions.

Calculations for the Lloyd model show that the Anderson criterion in this case is a linear (not quadratic

as usual) function of the disorder degree. We illustrate the calculations with computer experiments.
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1. Introduction, formulation of the problem, and basic results

One of the basic reasons for studying one-dimensional (1D) systems in solid state physics is the relative
simplicity of the corresponding mathematical models. This allows obtaining results for 1D models in
analytic form in many cases and using these results as guides in studying more realistic two- and three-
dimensional models. But there is currently reason to suppose that the value of 1D models is not exhausted
by this. Contemporary material production technologies and experimental methodologies allow creating
and studying low-dimensional systems (e.g., quantum lattices, 1D photon crystals, and optical fibers) that
may be analyzable using 1D mathematical models directly. Moreover, interest in known natural 1D systems
such as J-aggregates [1], [2], whose spectroscopic properties are described in terms of the 1D Frenkel exciton,
has recently increased.

Unavoidable variations in the technological processes for producing “synthetic” 1D systems and fluc-
tuations of the environment of natural 1D systems generate disorder, which must be taken into account
in their description. Mathematical models of disorder in 1D systems are an important part of disordered
system theory [3] and are currently being investigated [4]–[6]. We discuss one class of these models here.
The matrix of the Hamiltonian H for models of this class has the standard form1

Hrr′ = δrr′εr + δr,r′+1 + δr,r′−1, r, r′ = 1, 2, . . . , N, N → ∞, (1)

and the specific feature is that the distribution function P (ε) of random site energies εr can decrease so
slowly that all its even moments except the zeroth moment diverge. The Lloyd model can be an example of
such models [7], where P (ε) is the Cauchy distribution. As is known, the exact calculation of the averaged
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Green’s function is possible for the Lloyd model [3], [7], but although the localization of the eigenstate in
this model was intensively studied [6], [8]–[12], the results obtained in our work (concerning the spectral
dependence of the degree of localization in the sense of the Anderson criterion) have not been explored to
the best of our knowledge. We note that the study of such models is interesting methodologically because
applying the standard perturbation theory turns out to be impossible in this case.

For analyzing the localization in models of the class described above, we use the methodology in [13],
which is based on constructing the joint statistics of advanced and retarded Green’s functions. Our goal
here is to generalize this methodology to the case of diagonally disordered 1D models of the class described
above, for which the formulas obtained in [13] expressing the Anderson criterion and the spectral dependence
of the localization in terms of the second moment of the site energy distribution function

∫
P (ε)ε2 dε turn

out to be inapplicable. As an example, we present the calculations for the Lloyd model and show that the
dependence of the Anderson criterion on the width parameter of the site energy distribution is linear in
this case, not quadratic as in the case of rapidly decaying distributions [13].

The general formulation of the problem and quantitative definitions of the quantities calculated below
correspond exactly to those in [13]. We therefore restrict ourself to a brief review. We consider a long
disordered chain described by Hamiltonian (1) and assume that the excitation is concentrated at the edge
site N of this chain at the initial instant t = 0. We introduce the Anderson criterion D as a probability
that the excitation remains at the initial site N as t → ∞. As is known, D = 0 in the ordered system, and
the appearance of localized states (as a consequence of the disorder) in the spectrum of Hamiltonian (1)
corresponds to the condition D �= 0 [3], [13], [14].

If Ψλ and Eλ are the eigenvectors and eigenvalues of matrix (1), then the quantity D can be represented
as [13]

D =
∫

W (U) dU, where W (U) dU =
〈 ∑

Eλ∈[U,U+dU ]

|Ψλ
N |4

〉

. (2)

The brackets 〈 · 〉 indicate averaging over the random site energies εr. The distinction of the function W (U)
from zero at some energy U confirms that the eigenvectors of (1) with the energy U are localized in the
sense of the Anderson criterion, and this function can hence be called the spectral dependence of the degree

of localization.2

As in [13], we represent the site energy distribution function P (ε) as

P (ε) =
1
Δ

p

(
ε

Δ

)

, p(x) > 0,

∫
p(x) dx = 1, (3)

where Δ is the measure of system disorder because the system becomes ordered as Δ → 0. The following
expressions for D and W (U) were obtained in [13]: D = M2Δ2/2 and W (U) = M2Δ2

√
(4 − U2)/(4π),

|U | < 2, where M2 =
∫

p(x)x2 dx. For M2 < ∞, these expressions are applicable in the case of slightly
disordered systems where D � 1. Our basic results in this paper are the following expressions for the
function W (U) and quantity D, which are applicable for D � 1:

W (U) =
(4 − U2)3/2

4π

∫
dε P (ε) log

(

1 +
ε2

4 − U2

)

, |U | < 2, D =
∫ 2

−2

dU W (U). (4)

These expressions are in fact valid for any reasonable function P (ε). For M2 < ∞, formulas (4) convert
(for small Δ) to the formulas in [13]. At M2 = ∞, the dependence of D on Δ changes qualitatively. In
particular, for the Lloyd model, where p(x) = [π(1 + x2)]−1, D turns out to be proportional to the first
power of Δ, which is confirmed by the computer experiments described in the appendix.

2In [13], W (U) was called a participation function because W (U) has much in common with the inverse participation
ratio [4].
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2. Calculation

To solve the problem formulated in the preceding section, we use the method proposed in [13], which
we now briefly describe. The excitation probability |ΨN (t)|2 at the edge site N of the disordered chain is
expressed in terms of two edge Green’s functions γ(U1) and γ(U2) with different energies U1 and U2. These
edge Green’s functions are random quantities with their joint distribution function ρ(x1x2) satisfying the
equation [13]

x2
1x

2
2ρ(x1x2) =

∫
P (ε)ρ

(

U1 −
1
x1

− ε, U2 −
1
x2

− ε

)

dε. (5)

The sought excitation probability |ΨN (t)|2 at the edge site is related to the function ρ(x1x2) = ρU1U2(x1x2)
as [13]

|ΨN (t)|2 =
i

π2

∫
dU dω e−iωt〈y2x1〉, (6)

where
〈y2x1〉 = π lim

a→∞
a2

∫
xρU,U+ω(x, a) dx.

For small ω, the function ρU,U+ω(x1, x2) has a pole-type singularity, i.e., it is representable in the form

ρU,U+ω(x1x2) ≈ sing ρU,U+ω(x1x2) =
1
ω
FU (x1x2). (7)

Substituting representation (7) in (6) and taking the formula
∫

dω e−iωt/ω = −iπ into account, we find
that the limit (as t → ∞) of the excitation probability D given by (2) at the edge site is

D = |ΨN(t = ∞)|2 =
∫

W (U) dU, where W (U) = lim
a→∞

a2

∫
dxFU (x, a)x, (8)

and the function W (U) in this expression, as shown in [13], has the meaning of the spectral dependence of
the degree of localization (2). Therefore, to calculate D and W (U), we must find part (7) of the solution
of Eq. (5) that is singular with respect to the energy difference ω. This information from [13] is the
starting point for the present paper. Below, we describe the scheme for calculating D and W (U) in the
first nonvanishing approximation with respect to the disorder degree Δ given by (3), which is applicable
for virtually arbitrary reasonable functions p(x) in (3), in particular, in the case where all even moments
(except the zeroth moment) of p(x) diverge. As in [13], all calculations relate to the energy region |U | < 2,
where the density of states of the ordered model is nonzero and where the large majority of states are
located (which holds in the case of weak disorder that we consider).

We introduce the function R(x1x2) ≡ ρ(U1 − x1, U2 − x2) for our convenience. Using Eq. (5), we can
easily verify that R(x1x2) satisfies the equation

R(U1 − 1/x1, U2 − 1/x2)
x2

1x
2
2

≡ HU1(x1)HU2(x2)R(x1x2) =
∫

P (ε)R(x1 + ε, x2 + ε) dε. (9)

The functional operator HU (x) in the left-hand side of this equation acts on an arbitrary function f(x)
as HU (x)f(x) ≡ f(U − 1/x)/x2. We use the system of eigenfunctions of HU (x) described in [15] to write
Eq. (9) in matrix form. We represent the explicit expressions obtained in [15] for the eigenfunctions σn

U (x)
and eigenvalues λn of this operator for |U | < 2:

σn
U (x) = LU (x)

[
R∗

U − x

RU − x

]n

≡ LU (x)Gn
U (x), λn =

(
U + i

√
4 − U2

U − i
√

4 − U2

)n

, |λn| = 1, (10)
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where

GU (x) ≡ R∗
U − x

RU − x
, RU ≡ U + i

√
4 − U2

2
, LU (x) ≡ 1

2πi

[
1

x − RU
− 1

x − R∗
U

]

. (11)

We also need the rule for projecting on the system of functions (10) obtained in [15]: an arbitrary function
f(x) can be represented in the series form

f(x) =
+∞∑

n=−∞
Anσn

U (x), where An =
∫

f(x)
Gn

U (x)
dx. (12)

Using rule (12), we expand both sides of (9) with respect to the system of functions (10):

R(x1x2) =
∑

nm

Cnmσn
U1

(x1)σm
U2

(x2),

∫
P (ε)R(x1 + ε, x2 + ε) dε =

∑

qp

∑

nm

σq
U1

(x1)σ
p
U2

(x2)Jnm
qp Cnm,

(13)

where

Jnm
qp ≡

∫
P (ε)

σn
U1

(ε + x1)σm
U2

(ε + x2)
Gq

U1
(x1)G

p
U2

(x2)
dx1 dx2 dε.

Equating the coefficients of σn
U1

(x1)σm
U2

(x2) in the two sides of (9), we obtain

Cqpλq(U1)λp(U2) =
∑

n,m

Jnm
qp Cnm. (14)

We label the pairs of indices with a single index qp → α, where the index pair q = p = 0 is associated with
α = 1. Setting λq(U1)λp(U2) ≡ Λα, we can then write (14) for all α as

∑

β

MαβCβ = 0, Mαβ = Jβ
α − Λαδαβ . (15)

Equation (15) is the sought matrix equivalent of Eq. (9).
The solution of Eq. (5) has the meaning of a distribution function and must therefore have a fixed

sign. The arguments confirming that any solution of (5) has a fixed sign are given in the appendix. We
show that the proportionality of all solutions (5) to each other (i.e., the one-dimensionality of the solution
manifold of (5)) hence follows. Indeed, we suppose that there are two linearly independent solutions of
Eq. (5), ρ1 and ρ2. They can be considered positive functions without loss of generality. An arbitrary linear
combination ρ = ρ1c1 + ρ2c2 is then a solution, the coefficients c1 and c2 can be taken with different signs,
and the function ρ then changes its sign at some values of the arguments x1 and x2. This contradicts the
property that the solutions of (5) have a fixed sign, which is established in the appendix. Consequently,
there cannot be two (or more) linearly independent solutions of Eq. (5) (and of Eqs. (9) and (15), which are
related to it). For matrix equation (15), this means that all rows of a degenerate matrix M (i.e., detM = 0)
are linearly independent except a single row.

Let the row of matrix equation (15) corresponding to α = 1 be a linearly dependent row. Because
∫

σn
U (x) dx = δn0 [15], the normalization condition

∫
dx1 dx2 R(x1x2) = 1 corresponds to the requirement

that C00 = 1 → C1 = 1. If we now let L denote the size of the matrix M (of course, we should take L → ∞
in the calculations), then we can easily show that the normalized solution of Eq. (15) can be written as

Cα = K(Δ)eα,i2,i3,...,iLM2i2M3i3M4i4 . . .MLiL , L → ∞,

K(Δ) = [e1,i2,i3,...,iLM2i2M3i3M4i4 . . . MLiL ]−1, L → ∞,
(16)
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where summation from 1 to L is assumed for the repeated indices and eiklm...n is the Levi-Civita symbol (the
totally antisymmetric function of indices).3 We recall that, first, e123...L = 1 and, second, the transposition
of any two indices leads to a sign change (e.g., e21345...L = −1). Consequently, eiklm...n �= 0 only if there
are no coinciding indices among iklm . . . n (e.g., e11345...L = 0).

We assume that we are dealing with the ordered system, i.e., Δ = 0 and P (ε) = δ(ε). Then Jβ
α (Δ =

0) = δαβ and consequently Mαβ(Δ = 0) = δαβ(1 − Λα). From formula (16), we obtain Cα(Δ = 0) = δα1

(this result coincides with the result in [13]) and

K(0) =
L∏

α=1

(1 − Λα)−1, L → ∞. (17)

In the transition to the disordered system, nondiagonal elements appear in the matrix M . They are small
with respect to the disorder Δ in the sense that they vanish as Δ → 0. Therefore, to obtain the first
nonvanishing approximation of the coefficients Cα in the products of the matrix elements in formula (16),
we keep only one of the nondiagonal elements and regard the other (diagonal) elements as unperturbed.
The normalization coefficient K(Δ) must then be equal to K(0) in (17) in the calculation of the first
nonvanishing correction. In this approach, the type of smallness (integer degree, fractional degree, or any
other) of the nondiagonal elements of the matrix M as functions of Δ plays no role. Thus, for the coefficients
Cα in the first nonvanishing approximation (shown by the approximate equalities), we obtain

Cα ≈ K(0)[eα,i2,3,4,5,...,LJ i2
2 (1 − Λ3)(1 − Λ4) · · · (1 − ΛL) +

+ eα,2,i3,4,5,...,L(1 − Λ2)J i3
3 (1 − Λ4) · · · (1 − ΛL) +

+ eα,2,3,i4,5,...,L(1 − Λ2)(1 − Λ3)J i4
4 (1 − Λ5) · · · (1 − ΛL) + . . . ]. (18)

In the first term in the square brackets, the nondiagonal element is in the position M2i2 (see formula (16)).
Taking the explicit expression for K(0) given by (17) into account, we can easily see that this term can be
transformed as

K(0)eα,i2,3,4,5,...,LJ i2
2 (1 − Λ3)(1 − Λ4) · · · (1 − ΛL) = eα,i2,3,4,5,...,L

J i2
2

1 − Λ2
.

This expression is nonzero only if α = 1 or α = 2. The case α = 1 corresponds to calculating the correction
to the normalization constant and is uninteresting for us [13]. In the case α = 2 and i2 = 1, the considered
term yields the coefficient C2 because the other terms in expression (18) are zero at α = 2. Analogous
results can be obtained for all α �= 1:

Cα ≈ − J1
α

1 − Λα
, α �= 1. (19)

As previously noted, we are interested only in terms in expansion (13) that are singular with respect to
ω = U2 − U1. This singularity occurs only in coefficients (19) such that the index α corresponds to a pair
of indices with opposite signs, i.e., α → n,−n [13]. The singularity appears as a zero of the denominator
in (19) at ω = 0, and the energy arguments in all quantities (except the denominator in (19)) can therefore

3For example, if L = 3, then two linearly independent rows of the matrix M can be associated with two nonparallel vectors
a and b. Solving (15) then means finding a vector c that is orthogonal to those two vectors. This vector is parallel to the vector
product [a,b], whose components are known to be written using the three-dimensional Levi-Civita tensor: ci ∼ eijkajbk.
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be equalized by setting U1 = U2 ≡ U . Hence, the quantities J1
α are defined by the integrals

J1
α → J00

−nn =
∫

P (ε)
LU (ε + x1)LU (ε + x2)

Gn
U (x1)G−n

U (x2)
dx1 dx2 dε =

=
∫

dε P (ε)
(

ε2

ε2 + 4 − U2

)|n|
. (20)

The integrals over x1 and x2 in expression (20) were calculated in [13]. Therefore, for the singular part
of the first nonvanishing correction to the function R(x1x2) with respect to the disorder (denoted by
singR(x1x2)), we can write the expressions

singR(x1x2) =
∑

n�=0

C−nnσn
U (x1)σ−n

U (x2) =

= −
∑

n�=0

J00
−nn

1 − λn(U1)λ−n(U2)
σn

U (x1)σ−n
U (x2). (21)

The expansion (see Eq. (10))

1 − λn(U)λ−n(U + ω) = − 2inω√
4 − U2

+ O(ω2) (22)

holds for small ω, and therefore

sing R(x1x2) =
√

4 − U2

2iω

∑

n�=0

J00
−nn

σn
U (x1)σ−n

U (x2)
n

, (23)

whence, using the properties of functions (10), σn
U (U − x) = σ−n

U (x), we obtain the expression for the
function FU (x1x2) in Eq. (7):

FU (x1x2) =
√

4 − U2

2i

∑

n�=0

J00
−nn

σ−n
U (x1)σn

U (x2)
n

. (24)

Using Eqs. (8), (20), and (24), we can easily obtain

W (U) = − i

2

√
4 − U2

∑

n�=0

∫
dε

P (ε)
n

(
ε2

ε2 + 4 − U2

)|n|
×

×
∫

σn
U (x)xdx lim

a→∞
σ−n

U (a)a2. (25)

Using the properties of functions (10) (proved in [13])

∫
σn

U (x)xdx =
i

2
n

|n|
√

4 − U2, lim
a→∞

σ−n
U (a)a2 =

√
4 − U2

2π
, (26)

and the fact that the series in expression (25) can be readily summed using the formula
∑∞

n=1 qn/n =
− log(1 − q), we obtain expressions (4) for the function W (U) and quantity D.
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As an example, we consider the Lloyd model [7] with p(x) = [π(1 + x2)]−1. Calculating the integral
in (4) using the residues, we can show that for this model,

W (U) =
[4 − U2]3/2

2π
log

(

1 +
Δ√

4 − U2

)

.

In the case of small Δ that is important for us, we obtain W (U) ≈ (4−U2)Δ/(2π) and D ≈ 16Δ/(3π).
We recall that these quantities are always proportional to Δ2 for the models with a finite second moment
M2 considered in [13]. The dependence of the Anderson criterion D on the disorder Δ and the spectral
dependence of the degree of localization W (U) dU |Δ=0.007 obtained for the Lloyd model in the computer
experiment are shown in Fig. 1.4 The theoretical dependences shown there were obtained using formulas (4)
without any adjustment. They allow estimating the validity of the calculations in the present paper. It can
be seen in Fig. 1a that for small disorder, the Anderson criterion D for the Lloyd model depends linearly
on the disorder parameter Δ.

3. Conclusion

We have calculated the value of the Anderson criterion and the spectral dependence of the degree
of localization for the disordered 1D models whose distribution function P (ε) of the site energy does not
have finite even moments other than the zeroth moment. For calculations, we generalized the method for
constructing the joint statistics of the advanced and retarded Green’s functions (proposed in [13]) to the
case of random systems with divergent even moments of the function P (ε). The suggested calculation
scheme is based on the system of special functions [15] and seems more compact and universal than that
described in [13]. It allows calculating the Anderson criterion and the spectral dependence of the degree
of localization in cases where the usual perturbation theory is inapplicable. As an example, we considered
the Lloyd model [7] and obtained a nontrivial linear dependence of the Anderson criterion on the degree of
disorder.

Appendix

We argue that any solution of Eq. (5) with |U1,2| < 2, at least in the case of weak disorder, is a
function of fixed sign. It immediately follows from (5) that as x1, x2 → ±∞, the function ρ(x1x2) ≈
x−2

1 x−2
2

∫
dε P (ε)ρ(U1 − ε, U2 − ε) and consequently the function ρ(x1x2) has a fixed sign at large absolute

values of x1 and x2. We ensure that the function ρ(x1x2) has a fixed sign in the absence of disorder.
Equation (5) in this case has the form

x2
1x

2
2ρ(x1x2) = ρ

(

U1 −
1
x1

, U2 −
1
x2

)

. (27)

It hence follows that the function ρ(x1,n, x2,n) preserves its sign in the manifold of points with coordinates
(x1,n, x2,n) such that xi,n+1 = Ui − 1/xi,n, i = 1, 2 (we choose the starting point (x1,1, x2,1) in the region
of large absolute values of x1 and x2, where the sign is preserved in accordance with the above remarks).
The process of constructing the set of points xn for each variable can be clearly represented in the standard
manner using graphs of the functions y = U − 1/x and y = x. The first few steps of this process are shown
in Fig. 2. As is known, the points xn obtained by the successive application of the map xn+1 = U − 1/xn

for |U | < 2 (where the equation x = U − 1/x does not have a real roots) fill the number axis with the
density defined by the Cauchy distribution [15], which is nonzero everywhere. Therefore, as n → ∞, the

4The methodology of the computer experiment is described in [13].
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a

b

Fig. 1. (a) Dependence of the Anderson criterion D on the disorder parameter Δ for the Lloyd

model: the smooth line corresponds to calculating by formulas (4), and the noisy line corresponds to

the computer experiment. (b) Distribution of the degree of localization W (U)dU for the 1D Lloyd

model for Δ = 0.007 and dU = 7/300: the smooth curve corresponds to calculating by formula (4),

and the noisy curve corresponds to the computer experiment with averaging over 2000 realizations of

random matrices (1) of size N = 2000.

points (x1,n, x2,n) (where the function ρ(x1x2) has the same sign) “cover” the whole plane (x1, x2), and
the function ρ(x1x2) consequently has a fixed sign in the absence of disorder. The arbitrary choice of the
starting point gives an additional reason for such a conclusion.

Analogous reasoning can be used in the case of small disorder. If the distribution function P (ε) of the
site energy is nonzero only over some finite interval [−a, a] (i.e.,

∫ a

−a
P (ε) dε = 1), then the relation

∫
P (ε)f(x − ε) dε = f(x − ε̄(x)) (28)

holds for an arbitrary function f(x), where the function ε̄(x) satisfies the condition ε̄(x) ∈ [−a, a] for any
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Fig. 2. Constructing the sequence of points xn.

x. If the function P (ε) is nonzero everywhere, then relation (28) also holds, but we can only say that the
function ε̄(x) is bounded and tends to zero as the disorder decreases ((i.e., as Δ → 0 in (3)). Keeping this
in mind, we rewrite Eq. (5) as

x2
1x

2
2ρ(x1x2) = ρ

(

U1 −
1
x1

− ε̄, U2 −
1
x2

− ε̄

)

≡ ρ

(

Ũ1 −
1
x1

, Ũ2 −
1
x2

)

, (29)

where ε̄(x1x2) is a bounded function, εmin < ε̄(x1x2) < εmax, which tends to zero as Δ → 0. As can be seen,
Eq. (29) differs from Eq. (27) only by replacing U1,2 with Ũ1,2 ≡ U1,2−ε̄(x1x2), where the function ε̄(x1x2) is
small for small disorder. We now propose a graphic construction of the system of points (x1,n, x2,n) (where
the function ρ(x1x2) preserves the sign) analogous to that described above for the case of zero disorder.
The hyperbolic function U − 1/x must then be replaced with U − ε̄(x, z) − 1/x, and constructing x1,n+1,
we must set x = x1,n, z = x2,n, while constructing x2,n+1, we set x = x2,n, z = x1,n. This substitution
is schematically shown in Fig. 2 by the dashed line. For small disorder, the above substitution may not
qualitatively change the picture of constructing the manifold of points where the function ρ has the same
sign because for the limit functions U1,2 − εmin − 1/x and U1,2 − εmax − 1/x (which are shown in Fig. 2
by the dashed lines in the second quadrant), the construction does not differ from that described above for
Δ = 0. A qualitative change might be possible, for instance, if there are intersection points of the graphs
y = Ũ(x) − 1/x and y = x. But for small disorder (and consequently for a small function ε̄(x1x2)), this
possibility can occur only if the energy parameters |U1,2| are in the small region in the vicinity of 2, whose
size vanishes as Δ → 0. This is inessential for the calculations of the first nonvanishing approximation to
the spectral dependence of the localization W (U), which are performed in this paper.
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