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CALCULATION OF THE SPECTRAL DEPENDENCE OF THE

ANDERSON LOCALIZATION CRITERION IN A ONE-DIMENSIONAL

SYSTEM WITH CORRELATED DIAGONAL DISORDER

G. G. Kozlov∗

We consider the problem of calculating the Anderson criterion for a one-dimensional disordered chain

with correlated disorder. We solve this problem by the perturbation method with the inverse correlation

length as the small parameter. We show that in a correlated system, the degree of localization not only

naturally decreases but its spectral dependence also differs significantly from the spectral dependence in

uncorrelated chains. The calculations are based on the method for constructing joint statistics of Green’s

functions, which was previously used to analyze uncorrelated one-dimensional systems. We illustrate the

theoretical calculations with a numerical experiment.
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1. Introduction, statement of the problem, and the main results

The most popular mathematical models of spatially homogeneous disordered systems are models where
the disorder is represented by a delta-correlated random field. These are the simplest models, and one
possible step increasing their complexity is to introduce correlations. The problem of determining the
influence of correlations is very relevant because it is natural to expect the appearance of a correlated
disorder in real systems. Moreover, as shown in [1]–[3], the most important property of random systems
(localization of eigenstates) can significantly depend on the presence of correlations.

To describe the localization in uncorrelated low-dimensional random systems, it is expedient to use
the widely known notion of localization length [4]. The same can be said about correlated systems [5]–[8].
Despite a high informational potential of the notion of localization length, using such notions does not always
permit obtaining a comprehensive conclusion about the character (localized–delocalized) of eigenstates of
a random system [9], [10] (also see [5]). An additional study of localization in random systems (both
correlated and uncorrelated) using the basic Anderson criterion [4], [11] therefore seems necessary.

Here, we analyze the localization of eigenstates in a one-dimensional correlated chain using the method
proposed by Dyson [12]. The development of this method allowed obtaining several results about the
spectral [13], [14] and localization [15]–[18] properties of one-dimensional disordered systems. The cited
papers deal with uncorrelated random chains; the only known exception is [16], where a random chain with
a complicated structure unit was analyzed. This chain can be considered a correlated chain (but rather
artificially).

We calculate the spectral dependence of the degree of localization in the sense of the Anderson criterion
for the simplest diagonally disordered correlated one-dimensional chain and demonstrate that there is a
significant difference between this dependence and the dependence in the case of an uncorrelated chain.
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We use the method proposed in [15]–[17] for our calculations. The method is based on constructing joint
statistics of advanced and retarded Green’s functions. The small parameter in the calculations given below
is the inverse correlation length, and the obtained formulas work for a significant disorder value (with respect
to the unperturbed Hamiltonian) in cases where the usual quantum mechanical perturbation theory cannot
be applied. Therefore, the obtained results once again demonstrate the effectiveness and universality of
the method of joint statistics of Green’s functions proposed in [15]–[17], which permits analyzing a class of
problems of which some (e.g., the Lloyd problem [17]) are quantum mechanically nonperturbative.

We now pose the problem. The matrix of the Hamiltonian of a disordered chain of length N considered
in this paper has the standard form [4] in the site representation (the case of diagonal disorder)

Hn,n′ = δn,n′εn + δn,n′+1 + δn,n′−1, n, n′ = 1, . . . , N, (1)

but in contrast to the traditional statement of the problem, the random site energies εn now form a correlated
sequence with the following simplest correlation mechanism, similar to that described, for example, in [5].
We associate an auxiliary random variable ξn with each site n of our chain and assume that the variables
ξn, n = 1, . . . , N , are mutually independent with a prescribed distribution density P (x). We use these
variables to construct the site energies εn as

εn = (1 − e−α)
∑

m≤n

eα(m−n)ξm, α > 0.

The constructed variables εn, n = 1, . . . , N , are correlated, and the correlation function 〈εnεn′〉 has the
exponential form

〈εnεn′〉 = 〈ξ2〉
(

1 − e−α

1 + e−α

)
e−α|n−n′| = 〈ξ2〉

(
1 − β

1 + β

)
β|n−n′|, β ≡ e−α, β ∈ [0, 1],

with the characteristic correlation length R = 1/α. We note that the sequence εn, n = 1, . . . , N , is causally
correlated, i.e., the random variable εn depends only on ξm for m ≤ n. The key point in our further
considerations is the relation

εn+1 = βεn + (1 − β)ξn+1, (2)

which can be verified by straightforward calculations.
In what follows, we assume that the distribution density of the auxiliary variables ξn is Gaussian,

P (x) =
1
Δ

1√
π

e−(x/Δ)2. (3)

We can easily see that the distribution density P(z) of the site energies εn is then also Gaussian,

P(z) =
1√
π

1
Δ̄

e−(z/Δ̄)2 , where Δ̄ ≡ Δ

√
1 − β

1 + β
. (4)

For such a chain with a correlated diagonal disorder, we consider the standard problems of calculating the
Anderson criterion D [4], [15]–[17], i.e., of calculating the residual density of excitation at the edge site of
the chain (see [18] for the relation between the parameter D and the localization region), and determining
the spectral dependence of the localization degree W (U) [15]. These quantities can be expressed in terms
of the eigenvalues Eλ and the boundary components of the eigenvectors Ψλ of matrix (1) as

W (U) dU =
〈 ∑

Eλ∈[U,U+dU ]

|Ψλ
N |4

〉
, D =

∫
W (U) dU. (5)
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It follows from the methods proposed in [15]–[17] that to solve the above problem, we must know the
joint statistic of the two edge Green’s functions (EGF) gN(Ω1) and gN(Ω2) for different (complex) energies
Ω1 = U1+iV1 and Ω2 = U2−iV2, where V1,2 > 0. The rules for calculating the Anderson criterion D and the
function W (U) using this statistic are described in [15]–[17]. In what follows, we obtain the corresponding
formulas with the correlated character of the site energies taken into account. We immediately note that
in contrast to the problems analyzed in [15]–[17], we can obtain a closed equation in the considered case
of correlated disorder only for the joint statistic of two edge Green’s functions gN(Ω1,2) and the edge site
energy εN . This statistic is a function ρ(z1, z2, ε) of two complex arguments and one real argument and is
defined such that the quantity ρ(x1 + iy1, x2 + iy2, ε) dx1 dy1 dx2 dy2 dε is equal to the probability of the
joint occurrence of the events

Re gN (Ω1) ∈ [x1, x1 + dx1], Im gN(Ω1) ∈ [y1, y1 + dy1],

Re gN (Ω2) ∈ [x2, x2 + dx2], Im gN(Ω2) ∈ [y2, y2 + dy2],
εN ∈ [ε, ε + dε].

Our first problem is to derive a closed equation for the function ρ(z1, z2, ε). For this, just as in [15]–[17],
we use a known relation (see, e.g., [4]) that permits expressing the EGF gN+1(Ω) of a chain with one added
site in terms of the EGF gN(Ω) of the initial chain as

gN+1(Ω) =
1

Ω − εN+1 − gN (Ω)
. (6)

To make the calculations more compact, it is convenient to use the following definition of the delta
function in which the argument is an analytic function F (z) = u(x, y) + iv(x, y) of the complex variable
z = x + iy:

δ[F (z)] ≡ δ[u(x, y)]δ[v(x, y)]. (7)

Such a delta function is always real and can be transformed as follows. Let z0 = x0 + iy0 be a root of
the function F (z). Straightforward calculations with the Cauchy–Riemann relations for the function F (z)
taken into account then show that

δ[F (z)] =
δ[z − z0]
|F ′(z0)|2

, F (z0) = 0, (8)

where the delta function in the numerator of the complex function of z − z0 is understood in the sense
of (7).

For brevity, we also let
∫

R dz to denote the integrals of the (not necessarily analytic) functions f(z) =
ũ(x, y) + iṽ(x, y) of the complex variable z = x + iy:

∫

R

f(z) dz ≡
∫∫ +∞

−∞
[ũ(x, y) + iṽ(x, y)] dx dy.

We now return to deriving the equation for the joint statistic ρ(z1, z2, ε) and add one more site to our
chain that already contains N sites: N → N + 1. If we let ρ̃(z1, z2, ε) denote a function that is similar to
ρ but only describes the joint statistic of the EGF of the chain with the added site, then we can write the
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expression for it with the above definitions and relations (2) and (6) taken into account:

ρ̃(z1, z2, ε) =
〈

δ

(
z1 −

1
Ω1 − εN+1 − gN (Ω1)

)
δ

(
z2 −

1
Ω2 − εN+1 − gN(Ω2)

)
δ(ε − εN+1)

〉
=

=
〈

δ

(
z1 −

1
Ω1 − ε − gN(Ω1)

)
δ

(
z2 −

1
Ω2 − ε − gN(Ω2)

)
δ(ε − βεN − (1 − β)ξN+1)

〉
=

=
∫

R

dz′1 dz′2

∫
P (x)ρ(z′1z

′
2, ε

′) ×

× δ

(
z1 −

1
Ω1 − ε − z′1

)
δ

(
z2 −

1
Ω2 − ε − z′2

)
δ(ε − βε′ − (1 − β)x) dε′ dx.

As usual, the relation ρ = ρ̃ (the condition that the statistic is stationary) must hold as N → ∞ (the
thermodynamic limit). We use formula (8) to integrate with delta functions and obtain a closed equation
for the stationary joint distribution function ρ(z1, z2, ε):

β|z1|4|z2|4ρ(z1, z2, ε) =
∫

P (x)ρ
(

Ω1 − ε − 1
z1

, Ω2 − ε − 1
z2

,
ε − (1 − β)x

β

)
dx.

To calculate the residual density D and the function W (U), we need Green’s functions such that the
imaginary parts of their energy arguments are as small as possible and have opposite signs. By analogy
with [15]–[17], this fact can be used to reduce the problem to the analysis the equation for the joint statistic
of the real EGF and the edge-site energy:

βx2
1x

2
2σ(x1, x2, ε) =

∫
P (x)σ

(
U1 − ε − 1

x1
, U2 − ε − 1

x2
,
ε − (1 − β)x

β

)
dx. (9)

The further calculations are also based on a direct generalization of the results and formulas in [15]–[17],
where it was shown that to calculate the function W (U), it is necessary to know only the part of the
function σ(x1, x2, ε) that is singular in the difference U2 − U1 ≡ ω between the energy arguments and that
this singularity has the form of a pole. We thus obtain σ(x1, x2, ε) ≈ sing σ(x1, x2, ε) for small ω, where
sing σ(x1, x2, ε) can be written as

sing σ(x1, x2, ε) =
1
ω
FU (x1, x2, ε). (10)

We here change the notation as U1 → U . If the function FU (x1, x2, ε) is known, then the function W (U)
and the Anderson criterion D can be calculated by the formulas

W (U) = lim
a→∞

a2

∫
FU (x, a, ε) dx dε, D =

∫
W (U) dU. (11)

The derivation of formulas (9)–(11) is completely similar to that of the corresponding formulas in [15]–[17].
The problem thus reduces to the determination of the singular part F(x1, x2, ε)/ω of the solution of

Eq. (9). In the next section, to solve this problem, we develop a perturbation theory in which the small
parameter is the inverse correlation length 1/R = − log β and obtain expressions for the spectral dependence
of the localization degree W (U) and the Anderson criterion D:

W (U) =
Δ̄2

4πR
Re

∫ P(ε)√
4 − (U − ε)2

dε + O

(
1

R2

)
,

D =
∫

W (U) dU =
Δ̄2

4R
+ O

(
1

R2

)
.

(12)

These expressions can be applied to the correlated diagonally disordered chain with large correlation lengths
R � 1. We note that these formulas can also work in the case Δ̄ > 1, i.e., for significant values of disorder.
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2. Approximation of large correlation lengths

Let the correlation length satisfy the condition R � 1, and hence let β ≈ 1. To obtain an approximate
solution of Eq. (9), we construct a perturbation theory in a small parameter y ≡ 1 − β > 0 (y ≈ 1/R).
We assume that the distribution density of site energies has form (4) and Δ̄ is fixed and not necessarily
small. This means that the width Δ of distribution (3) of the auxiliary variables ξn increases as β → 1.
The distribution density P (x) of the auxiliary variables ξn thus depends on β and has form (3), where

Δ = Δ̄

√
1 + β

1 − β
. (13)

For the further reasoning, it is convenient to pass to a new function R(x1, x2, ε) in Eq. (9) using the
formula

R(U1 − ε − x1, U2 − ε − x2, βε) ≡ σ(x1, x2, ε). (14)

Equation (9) for the function R(x1, x2, ε) then implies

β
R(U1 − ε − 1/x1, U2 − ε − 1/x2, βε)

x2
1x

2
2

=
∫

P (x)R(x1 , x2, ε − yx) dx. (15)

We consider the integral in the right-hand side of this equation. The function P (x) is significantly different
from zero for x ∈ [−Δ, Δ], and the dimension of the corresponding range of the variable yx in (15) can be
estimated as

Δy = Δ̄
√

1 − β2 ≈ Δ̄
√

2y → 0 as β → 1.

For small y, the function R(x1, x2, ε − yx) in the right-hand side of (15) can therefore be expanded in a
power series up to the second term (the first term is absent because the first moment of the function P (x)
is zero):

β
R(U1 − ε − 1/x1, U2 − ε − 1/x2, βε)

x2
1x

2
2

= R(x1, x2, ε) +
∂2R(x1, x2, ε)

∂ε2

y2Δ2

4
.

We here used the fact that
∫

x2P (x) dx = Δ2/2 for function (3). We substitute Δ given by (13), take the
relation β ≈ 1 into account, and obtain

β
R(U1 − ε − 1/x1, U2 − ε − 1/x2, βε)

x2
1x

2
2

= R(x1, x2, ε) +
∂2R(x1, x2, ε)

∂ε2

yΔ̄2

2
. (16)

We now recall that the function R directly depends on y. In the linear approximation, this dependence
has the form

R(x1, x2, ε) = R0(x1, x2, ε) + yR1(x1, x2, ε) + . . . .

We substitute this expression in (16) and equate the coefficients of like powers of y. We equate the coefficients
of y0 and obtain

R0(U1 − ε − 1/x1, U2 − ε − 1/x2, ε)
x2

1x
2
2

= R0(x1, x2, ε). (17)

Taking this equation into account and equating the coefficients of y, we obtain

[HU1−ε(x1)HU2−ε(x2) − 1]R1(x1, x2, ε) = A, (18)

where

A ≡ Δ̄2

2
∂2R0(x1, x2, ε)

∂ε2
+

ε

x2
1x

2
2

∂R0(U1 − ε − 1/x1, U2 − ε − 1/x2, θ)
∂θ

∣∣∣∣
θ=ε

+ R0(x1, x2, ε). (19)
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In Eq. (18), we let A denote the right-hand side of the equation for R1 and introduce the functional
operator HU (x) [15], [19] acting on an arbitrary function f(x) by the rule HU (x)f(x) ≡ f(U − 1/x)/x2.
It is known [15], [19] that the eigenfunction of this operator corresponding to the unit eigenvalue is the
Lorentzian LU (x), whose explicit expression is given below (see formulas (24)). With this in mind, it is
easy to see that the solution R0 of Eq. (17) has the form

R0(x1, x2, ε) = LU1−ε(x1)LU2−ε(x2)P(ε), (20)

where P(ε) is the distribution density of site energies in form (4).
To solve functional equation (18) for the first nonvanishing correction R1, we expand the right- and

left-hand sides of this equation in the eigenfunctions σn
U1−ε(x1)σm

U2−ε(x2) of HU1−ε(x1)HU2−ε(x2), as was
done in [15]–[17], and equate the corresponding coefficients. The expansion for R1 is

R1(x1, x2, ε) =
∑

m,n

Cnmσn
U1−ε(x1)σm

U2−ε(x2). (21)

To obtain the coefficients Cnm, we must expand the known right-hand side of Eq. (18) in the functions
σn

U1−ε(x1)σm
U2−ε(x2) and equate the corresponding coefficients. For this, we recall the explicit expressions

for the eigenfunctions σn
U (x) and the eigenvalues λn of HU (x) for |U | < 2, which were obtained in [19]:

σn
U (x) = LU (x)

(
R∗

U − x

RU − x

)n

≡ LU (x)Gn
U (x), (22)

λn =
(

U + i
√

4 − U2

U − i
√

4 − U2

)n

, |λn| = 1, (23)

where

GU (x) ≡ R∗
U − x

RU − x
, RU ≡ U + i

√
4 − U2

2
,

LU (x) ≡ 1
2πi

(
1

x − RU
− 1

x − R∗
U

)
.

(24)

We also recall the rule for projecting on the system of functions (22), which states that an arbitrary function
f(x) can be represented as a series

f(x) =
+∞∑

n=−∞
Anσn

U (x), where An =
∫

f(x)
Gn

U (x)
dx.

It follows from Eq. (18) that
∫
A dx1 dx2 = 0. This implies that the function P(ε) given by (4) must

satisfy the equation
Δ̄2

2
d2P
dε2

+ ε
dP
dε

+ P(ε) = 0, (25)

which we obtain from the right-hand side of Eq. (18) after substituting R0 in form (20) and integrating
over x1 and x2. A straightforward verification shows that Eq. (25) is indeed satisfied.

With the foregoing in mind, we obtain the expressions for the coefficients Cnm (except for the coefficient
C00, which is determined by normalization and is not singular) in formula (21):

Cnm =
Anm

λn(U1 − ε)λm(U2 − ε) − 1
, Anm =

∫ A(x1, x2)
Gn

U1−ε(x1)Gm
U2−ε(x2)

dx1 dx2. (26)
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We now recall that we need only the part of the operator R1 that is singular in ω = U2 − U1 and
is associated with the terms of the expansion with n = −m [15], namely, the denominator vanishes for
U1 = U2 precisely in coefficients (26) of these terms. For small ω, we have the expansion

1 − λn(U1 − ε)λ−n(U1 + ω − ε) = − 2inω√
4 − (U1 − ε)2

+ O(ω2).

Only the first term in expression (19) for A contributes to the singular part of interest to us, and we
calculate for only this term.1 We introduce the notation an ≡ An,−n for the corresponding coefficients of
the expansion. At this stage of the calculations, we can already equate the energy arguments, U1 = U2 ≡ U ,
because the singularity is determined only by the denominator of coefficients (26) with n = −m. We have

an =
Δ̄2

2
d2

dθ2

(∫ R0(x1, x2, θ)
Gn

U−ε(x1)G−n
U−ε(x2)

dx1 dx2

)∣∣∣∣
θ=ε

.

As in [15]–[17], we determine the quantities Jn(θ) as

Jn(θ) ≡
∫ LU−θ(x)

Gn
U−ε(x)

dx, J−n(θ) = J∗
n(θ), Jn(ε) = 0 for n �= 0.

Applying expression (23) and integrating with the residue theorem, we can show that

Jn(θ) =
(

RU−ε − RU−θ

R∗
U−ε − RU−θ

)n

, n > 0. (27)

We then have

an =
Δ̄2

2
d2

(
|Jn(θ)|2P(θ)

)

dθ2

∣∣∣∣
θ=ε

, (28)

and we obtain an expression of form (10) for the singular part2 of the function σ(x1, x2, ε) (denoted by
“sing”)

sing σ(x1, x2, ε) =
1
ω
FU (x1, x2, ε), (29)

where
FU (x1, x2, ε) = − iy

2

√
4 − (U − ε)2

∑

n�=0

an

n
σn

U−ε(U − ε − x1)σ−n
U−ε(U − ε − x2) (30)

and the quantities an are determined by formula (28). We can neglect the difference between β and unity in
the functions σ and in the coefficients An,−n = an (they depend on ε, and it is necessary hence to take their
values at the point βε in the transition from R(x1, x2, ε) to σ(x1, x2, ε) by formula (14)). Straightforward
calculations show that only the terms with n = ±1 in sum (30) are nonzero. We use relations (28) and (29)
to obtain the expression for a1 = a−1:

a1 = P(ε)
Δ̄2

[4 − (U − ε)2]2
.

We use the properties of functions (22) proved in [15],

∫
σn

U (x)xdx =
i

2
n

|n|
√

4 − U2, lim
a→∞

σ−n
U (a)a2 =

√
4 − U2

2π
,

1Following the calculation scheme given below, we can see that the other terms in (19) do not contribute.
2This part is related to the singular part of the function R by change of variables (14).
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a

b

Fig. 1. Spectral dependence of the degree of localization in one-dimensional correlated chains for

different values of the degree of disorder and the correlation lengths: (a) for Δ̄ = 0.5 and R = 5 with

3000 realizations and (b) for Δ̄ = 5 and R = 50 with 200 realizations. The random matrix dimension

was 2000 in all cases. The noisy graphs correspond to the computer experiment, and the smooth

graphs were obtained by formula (12) without any fitting. As the correlation length increases, the

consistency between the theory and experiments improves although the degree of disorder increases.

recall that y = 1/R (where R is the correlation length, which we assume to be rather large), apply formu-
las (11), and obtain expressions (12) for W (U) and the residual density D.

A numerical verification of formulas (12) using relations (5) is somewhat hindered by the fact that for
large correlation lengths R, the dimensions of random matrices (1) must be taken approximately R times
greater than those required to verify similar formulas in [15], [17]. The results of the numerical verification
are shown in Fig. 1. Figure 1a was obtained for the parameter values Δ̄ = 0.5 and R = 5. Because the
value of the correlation length is small, Fig. 1a demonstrates only the qualitative correspondence between
the theory and the numerical experiment. Figure 1b, which was obtained for Δ̄ = 5 and R = 50, shows
that an increase in the correlation length improves the consistency between the theoretical and numerical
dependences because formulas (12) were obtained in the approximation of large correlation lengths.
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3. Conclusion

We have demonstrated that the method for analyzing the localization in one-dimensional systems,
proposed in [15]–[17] and based on constructing the joint statistics of advanced and retarded Green’s
functions, can be generalized to the case of correlated low-dimensional disordered systems. In the framework
of this method, it is possible to construct a simple perturbation theory for the statistics of Green’s functions,
where the small parameter is the inverse correlation length 1/R, and to show that the residual density D

at the edge site (the Anderson criterion) becomes R times lower compared with its value obtained for an
uncorrelated chain [15]. This result seems to be natural, i.e., the initially created excitation at the edge site
necessarily spreads over a region whose dimension is of the order of the correlation length.

The second result obtained here seems more unexpected. This result means that the spectral de-
pendence W (U) of the localization degree given by (12) differs significantly from the spectral dependence
obtained for uncorrelated chains [15] and is a smoothed density of states of an ordered chain.
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