
Theoretical and Mathematical Physics, 181(2): 1396–1404 (2014)

CORRELATED LLOYD MODEL: EXACT SOLUTION

G. G. Kozlov∗

We describe an exactly solvable model of a disordered system that is a generalized Lloyd model; it differs

from the classical model because the random potential is not a δ-correlated random process. We show

that the exact average Green’s function in this case is independent of the correlation radius of the random

potential and, as in the classical Lloyd model, is a crystal Green’s function whose energy argument acquires

an imaginary part dependent on the disorder degree.
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1. Introduction

The number of published papers dedicated to models of disordered systems has noticeably increased
recently; the study of systems with correlated disorder [1]–[11] becomes more and more popular. In the
historically first models of random systems, a δ-correlated random potential was typically studied, and
relatively little attention was focused on the problem of the influence of correlations. Recent studies showed
that correlations can lead to significant (sometimes qualitative) changes in the energy structure and the
localization properties of disordered systems.

Exactly solvable models, whose number is usually small, play an extremely important role in any field of
theoretical physics. An exactly solvable model can allow accumulating qualitative information on the class
of models to which it belongs with a high degree of reliability and permits verifying applied approximations
and indicating the direction for further studies. In the physics of disordered systems, the exactly solvable
Dyson [12] and Lloyd [13] models related to noncorrelated disordered systems are the best known and
most important. Here, we present an exact calculation of the average Green’s function for a generalized
one-dimensional Lloyd model in which site energies are not independent random quantities and show that
it is independent of the model parameter playing the role of the correlation radius.

This paper is organized as follows. In Sec. 2, we consider the classical Lloyd model and give needed
results and definitions. In Sec. 3, we describe correlated disorder, for which we give the exact calculation
of the average Green’s function in Sec. 4.

2. Lloyd model

The matrix of the Hamiltonian H of the classical one-dimensional Lloyd model has the elements

Hrr′ = δrr′εr + w(r − r′), r, r′ = 1, 2, . . . , N. (1)
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Fig. 1. Examples of diagrams.

In this case, the function w(r) is assumed to be given and such that w(0) = 0, the diagonal elements (site
energies) εr are independent and equally distributed random quantities, and their distribution density has
the form (Cauchy distribution)

P (ε) =
1
π

Δ
Δ2 + ε2

. (2)

The parameter Δ characterizes the degree of system disorder: as Δ → 0, Hamiltonian (1) corresponds to
the ordered (crystal) system and is diagonalized in the plane-wave representation. The set of numbered site
energies is often called a random potential.

Lloyd [13] managed to exactly calculate the matrix of the average Green’s function 〈G(Ω)〉 = 〈[Ω −
H]−1〉, Ω ≡ E+iδ, δ → +0, for model system (1), (2). It determines the spectrum of the linear susceptibility
and the density of system states. In this section, we reproduce the Lloyd result using the diagram technique
presented in detail in [14] (also see [15]) and described as follows. We introduce the matrix W with the
elements Wrr′ ≡ w(r − r′). The matrix of the Green’s function G can then be represented in the form of
the series [16]

Grr′(Ω) =
δrr′

Ω − εr
+

1
Ω − εr

Wrr′
1

Ω − εr′
+

∑

r′′

1
Ω − εr

Wrr′′
1

Ω − εr′′
Wr′′r′

1
Ω − εr′

+ . . . . (3)

We set the quantities Wrr′ into correspondence with the arrow connecting the sites r and r′ and set each
multiplier [Ω−εr]−1 into correspondence with the bold point at the corresponding site r, which we represent
by a circle. We give examples in Fig. 1.

For the matrix element Grr′(Ω) of the Green’s function, we can then write the expression

Grr′(Ω) = the sum of all diagrams connecting the sites r and r′. (4)

To calculate the sought average Green’s function, we should integrate (4) with the joint distribution function
of the site energies ε1, . . . , εN , which is given by the product

ρnc(z1, z2, . . . , zN) =
N∏

j=1

P (zj) (5)

in the case of noncorrelated disorder; in this case, the function P (z) for the considered Lloyd model has
form (2). Averaging the arbitrary diagram D in expansion (4) involves averaging the factor fD defined as

fD ≡
(

1
Ω − εn1

)g1( 1
Ω − εn2

)g2

· · ·
(

1
Ω − εnq

)gq

, (6)
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where n1, n2, . . . , nq are the numbers of sites through which the diagram D passes and g1, g2, . . . , gq are the
numbers of passages of the diagram through the respective sites n1, n2, . . . , nq (gi is the number of bold
points at the site ni). For example, for the upper diagram in Fig. 1, n1 = 1, n2 = 2, n3 = 3 and g1 = 1,
g2 = 2, g3 = 1. The expression

∫
P (z)

(
1

E + i0 − z

)n

dz =
1
π

∫
Δ dz

Δ2 + z2

(
1

E + i0 − z

)n

=
(

1
E + iΔ

)n

(7)

is key in the Lloyd solution. Taking this relation into account and using the mutual independence of the
random site energies εnj , j = 1, 2, . . . , q, we obtain the expression for the average factor fD:

〈fD〉 =
∫ N∏

j=1

dzjP (zj)
(

1
Ω − zn1

)g1( 1
Ω − zn2

)g2

· · ·
(

1
Ω − znq

)gq

=

=
(

1
Ω + iΔ

)g1( 1
Ω + iΔ

)g2

· · ·
(

1
Ω + iΔ

)gq

. (8)

This expression corresponds to the diagram D of the Green’s function of the ordered system all of whose site
energies are zero and for which the energy argument is replaced as Ω → Ω + iΔ. Because this calculation
holds for any diagram in expression (4), we obtain Lloyd’s result: the average Green’s function of the

disordered system with Hamiltonian (1) and uncorrelated disorder of the Cauchy type (2) is equal to the

Green’s function God of the ordered system with the Hamiltonian of form (1) for εr = 0, r = 1, 2, . . . , N ,

in which the energy argument must be replaced as Ω → Ω + iΔ:

〈G(Ω)〉 = God(Ω + iΔ). (9)

The explicit form of the matrix of the Green’s function God of the ordered (and cyclic) system can be
written [16] using the fact that eigenvectors of (1) for εr = 0, r = 1, 2, . . . , N , are plane waves. For the
one-dimensional system, this matrix has the form

God
rr′(Ω) =

1
2π

∫ π

−π

ei(r−r′)q

Ω − Jq
dq, Jq =

∑

r

w(r)e−iqr . (10)

In the next section, we describe the correlated discrete random process ε1, . . . , εi, . . . , εN , whose total
joint distribution function ρ(z1, z2, . . . , zN) is not represented by a product of form (5). In Sec. 4, we show
that result (9) is retained for the disordered system with Hamiltonian (1) in which the site energies εr are
an implementation of such a random process.

3. Correlated disorder

We obtain the correlated sequence of site energies εr, r = 1, 2, . . . , N , using the following smoothing

procedure1 [17], [18]. We introduce a set of independent random quantities ξi, i = −∞, . . . ,−1, 0, 1, . . . , +∞.
Let each of the introduced random quantities ξi have the distribution function P (ξ), which we assume to be
given and to be independent of i. We obtain the site energies εn from these quantities as the implementation
of the discrete random process

εn = (1 − e−α)
∑

m≤n

eα(m−n)ξm, α > 0, n = 1, 2, . . . , N. (11)

1A similar correlation mechanism was considered in [10] when calculating the degree of state localization in a correlated
system.
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For such a construction, the εn are correlated with the characteristic correlation radius R = 1/α. In this
case, for the correlation function 〈εnεn′〉, we have the expression

〈εnεn′〉 = 〈ξ2〉
(

1 − e−α

1 + e−α

)
e−α|n−n′| = 〈ξ2〉

(
1 − β

1 + β

)
e−α|n−n′|, (12)

where β ≡ e−α, β ∈ [0, 1].
From definition (11), it is easy to obtain the relation

εn+1 = βεn + (1 − β)ξn+1, (13)

which is important for the further study. Correlation function (12) is meaningful only for the finite second
moment 〈ξ2〉 of the function P (ξ) and does not exist in the case where P (ξ) is Cauchy function (2).
Nevertheless, in that case, sequence (11) also cannot be regarded as uncorrelated because its distribution
function has no form (5), as is seen below. Finally, we note that sequence (11) is causally correlated, i.e.,
εn only depends on ξm for which m ≤ n.

3.1. Distribution function of the site energy in the correlated chain. The distribution func-
tion of any site energy εn of random process (11) is independent of its number n. We let σ(ε) denote the
indicated function and calculate it for n = 0 using the standard method [17], [18]. We initially use the
following general expressions for the sought function σ(ε) and the corresponding characteristic function
σ̃(t):

σ(ε) =
〈

δ

(
ε − [1 − β]

∞∑

m=0

βmξm

)〉
≡

∫
eiεtσ̃(t), (14)

σ̃(t) =
1
2π

〈
exp

[
−it

(
[1 − β]

∞∑

m=0

βmξm

)]〉
=

1
2π

∞∏

m=0

∫
P (ξ)e−it[1−β]βmξ dξ. (15)

Here, the angle brackets correspond to averaging over the independent random quantities ξm. Letting P̃ (t)
denote the Fourier transform of P (ξ),

P̃ (t) =
∫

P (ξ)e−itξ dξ,

we obtain the formula for σ̃(t):

σ̃(t) =
1
2π

∞∏

m=0

P̃ (t[1 − β]βm). (16)

If P (ξ) is Cauchy distribution (2), then

P̃ (t) = e−|tΔ| ⇒ σ̃(t) =
1
2π

exp
(
−|t|[1 − β]Δ

∞∑

m=0

βm

)
=

1
2π

e−|t|Δ, (17)

and we conclude that the distribution function of site energies in the form of random process (11) also has
the form of Cauchy function (2) in this case:

σ(ε) = P (ε) =
1
π

Δ
Δ2 + ε2

. (18)
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3.2. Distribution function of random process (11). Discrete correlated random process εn (11)
is completely determined by the joint distribution function of all site energies ρ(z1, z2, . . . , zN ), which can
be calculated analytically. For this, we introduce functions of the joint probability density of the first M

(0 < M ≤ N) site energies ρM (z1, z2, . . . , zM ), and ρM (z1, z2, . . . , zM ) dz1 · · · dzM is hence the probability
that εi ∈ [zi, zi + dzi], i = 1, 2, . . . , M . If relation (13) is used, then we can obtain a recurrence relation
expressing ρM+1 in terms of ρM :

ρM+1(z1, z2, . . . , zM+1) = 〈δ(z1 − ε1) · · · δ(zM − εM )δ(zM+1 − εM+1)〉 =

= 〈δ(z1 − ε1) · · · δ(zM − εM )δ(zM+1 − βεM − [1 − β]ξM+1)〉 =

=
∫

dξ dy1 · · ·dyM ρM (y1, . . . , yM ) ×

× P (ξ)δ(z1 − y1) · · · δ(zM − yM )δ(zM+1 − βyM − [1 − β]ξ) =

=
1

1 − β
ρM (z1, . . . , zM )P

(
zM+1 − βzM

1 − β

)
. (19)

Successively using this relation and taking ρ1(z) = σ(z) into account, we obtain the expression for the
function ρM (z1, . . . , zM ):

ρM (z1, z2, . . . , zM ) =
1

[1 − β]M−1

M−1︷ ︸︸ ︷

P

(
zM − βzM−1

1 − β

)
P

(
zM−1 − βzM−2

1 − β

)
· · ·P

(
z2 − βz1

1 − β

)
σ(z1). (20)

In the case under consideration, σ(z) = P (z), where P (z) is defined by formula (2). Assuming that M = N ,
we obtain the final expression for the complete joint distribution function of random process (11):

ρ(z1, z2, . . . , zN ) =

N−1︷ ︸︸ ︷
P

(
zN − βzN−1

1 − β

)
P

(
zN−1 − βzN−2

1 − β

)
· · ·P

(
z2 − βz1

1 − β

)
P (z1)

[1 − β]N−1
,

P (z) =
1
π

Δ
Δ2 + z2

.

(21)

4. Correlated Lloyd model

We now calculate the average Green’s function of the disordered chain with Hamiltonian (1), where
the site energies are the implementation of correlated random process (11). As in Sec. 2, without loss of
generality, we consider an arbitrary diagram D passing through sites whose numbers can be assumed to be
arranged in ascending order: 1 ≤ n1 < n2 < · · · < nq ≤ N . The average value 〈fD〉 of factor (6) of the
considered diagram is now defined by a formula differing from (8):

〈fD〉 =
∫

dz1 dz2 · · ·dzN

(
1

E + iδ − zn1

)g1

×

×
(

1
E + iδ − zn2

)g2

· · ·
(

1
E + iδ − znq

)gq

ρ(z1, z2, . . . , zN), (22)
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where δ → +0 and the function ρ(z1, z2, . . . , zN) for the considered correlated Lloyd model has form (21).
Because δ > 0, the factors in brackets in relation (22) represented as the functions of complex zn1 , . . . , znq ,
have no singularities in the lower half-plane of complex zn1 , . . . , znq . This allows using formula (7) to
calculate the integrals in (22) as follows.

We integrate in relation (22) over all zj , nq < j ≤ N . Then, the first N−nq factors of the type
P ((zN − βzN−1)/(1 − β)), P ((zN−1 − βzN−2)/(1 − β)), . . . of function (21) in this relation vanish, and
the denominator [1− β]N−1 is replaced with [1− β]nq−1. Integrating over znq involves only the Lorentzian
P ((znq −βznq−1)/(1−β)) contained in (21) and can be done using formula (7). If this formula is used, then
we can verify that the indicated integration corresponds to multiplying by the factor 1−β and to replacing
znq → βznq−1 − iΔ(1− β) in the factor (1/(E + iδ − znq))gq in the integrand in (22). In this case, the pole
of this function (with respect to the argument znq−1) is located in the upper half-plane as before, which
allows the next similar integration over znq−1. The factor P ((znq−1 − βznq−2)/(1 − β)) depends on this
variable in the function of joint probability density (21). As in the preceding case, integration over znq−1

corresponds to multiplying by the factor 1 − β and to replacing znq−1 → βznq−2 − iΔ(1 − β) in the factor
(1/(E+iδ−βznq−1+iΔ(1−β)))gq arising as a result of the preceding integration, and so on. Consequently,
each new integration over zj with a lower number j corresponds to multiplying by 1 − β (i.e., to the
cancellation of such a factor in the denominator of expression (21)) and to replacing zj → βzj−1− iΔ(1−β)
of the argument in the last factor. When the number i of the integration variable decreases such that
j = nq−1, further integrations can be performed similarly (i.e., simply replacing arguments), only the
replacements indicated above must now also be done in the factor (1/(E + iδ − znq−1))gq−1 .

We therefore conclude that the integration over all variables in (22) corresponds to successively re-
placing the symbols znq , . . . , zn2 , zn1 in (22) in accordance with the rules given above. The indicated
replacements for the symbol znq are done as follows:2

znq = βznq−1 − iΔ(1 − β), where

znq−1 = βznq−2 − iΔ(1 − β), where

znq−2 = βznq−3 − iΔ(1 − β), where

...

z3 = βz2 − iΔ(1 − β), where

z2 = βz1 − iΔ(1 − β).

(23)

The last integration over z1 corresponds to replacing z1 → −iΔ because this integration is done with the
function P (z1) (see (21)). It is easy to see that chain of replacements (23) is simplified for z1 = −iΔ and
corresponds to replacing znj = −iΔ, j = 1, 2, . . . , nq. Average (22) hence simply corresponds to replacing
all the quantities znj , j = 1, 2, . . . , q, with −iΔ, as in the case of uncorrelated Lloyd model (8), and we
conclude that the averaged Green’s function of the correlated Lloyd model with site energies of form (11) is

independent of the correlation radius R = −1/ logβ and turns out to be the same as in the no-correlation

case, i.e., is defined by formula (9).

The fact that there is no dependence of the average Green’s function on the correlation radius R =
−1/ logβ shows the peculiar scale invariance of the considered correlated Lloyd model because the spatial

2Because nq is the greatest of the numbers nj of the sites of the considered diagram, the replacements of the other symbols
are also contained in this sequence.
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a b

c d

Fig. 2. Correlated Lloyd model for different correlation radii R and different forms of the function

w(r) describing nondiagonal Hamiltonian elements (1). The density of states of Hamiltonian (1) for

(a) w(r) = δ1,r + δ−1,r and (b) w(r) = v0e
−|r/R1| (R1 = 1, v0 = e1/R1): the noise dependences were

obtained by numerical diagonalization of Hamiltonian (1), the smooth curves were calculated using

the respective formulas (24) and (26), and the densities of states were obtained for the correlation radii

(a) R = 0.1 and (b) R = 30. The realization of random potentials for the correlation radii (c) R = 0.1

and (d) R = 30: the abscissa represents the site number n, the ordinate represents εn in (11), Δ = 1

in all the cases, and the size of the random matrices in the numerical calculations is N = 4000.

dependence (the dependence on the site number) of the random potential εn given by (11) turns out to be
significantly different for different R (see Figs. 2c and 2d).

We illustrate the obtained result by examples in which the Green’s function God(Ω) given by (10) can
be calculated analytically. The first (well-known) example of such kind is the case where the Hamiltonian
has the form of the banded matrix Htb

rr′ = δr,r′+1 + δr,r′−1 and the diagonal elements of the Green’s
function are God

nn(Ω) = [Ω2 − 4]−1/2. In accordance with the obtained results, the average density of
states ρtb

Δ (E) = −π−1 Im Sp〈G〉 of random matrix (1) with the site energies εr of form (11) and for
w(r) = δr,1 + δr,−1 is independent of the correlation radius R = −1/ logβ and equal to

ρtb
Δ (E) = −N

π
Im

1√
(E + iΔ)2 − 4

. (24)

The second (less-known) example is the case where the matrix of the ordered Hamiltonian has the form
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Hex
r,r′ = v0e

−|r−r′|/R0 . In this case, the matrix of the Green’s function becomes3

Γr,r′(Ω) = Ae−|r−r′|η +
δr,r′

Ω
, (25)

where

A ≡ V

(Ω − V )Ω
√

1 − T 2
, V ≡ v0 tanh

1
R0

,
1
T

≡ V − Ω
Ω

cosh
1

R0
, cosh η ≡

∣∣∣∣
1
T

∣∣∣∣,

and the density of states of random matrix (1) for w(r) = v0e
−|r−r′|/R0 and εr given by (11) is determined

by the expression4

ρex
Δ (E) = −N

π
Im Γ00(E + iΔ + v0). (26)

In these two cases, the numerical diagonalization of random matrices of form (1) for different correlation
radii R showed that the density of states is described by formulas (24) and (26) (up to noise) and is really
independent of R, although the form of random potential (11) varies substantially (Fig. 2).

5. Conclusions

We have presented an exact calculation of the average Green’s function for the correlated Lloyd model.
We showed that for a random potential of the considered form, the average Green’s function is independent
of the parameter of the random potential playing the role of the correlation radius of the last. The obtained
result was illustrated with numerical calculations.
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