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A B S T R A C T

We calculate the dispersion of exciton-polariton modes in one-dimensional arrays of micro-
cavities. We consider a two-sublattice array and a one-sublattice array of unevenly spaced
spherical microcavities some of which contain embedded quantum dots. In both cases the dis-
persion of polariton eigen modes is shown to be efficiently controlled by a weak applied uniform
strain. The structures we consider sustain slow-light modes that are of a specific importance for
quantum optics applications. The high sensitivity of the optical response of microcavity arrays to
the applied strain may be used in classical and quantum optical switches and the polariton based
integrated photonics.

1. Introduction

The design of sources of coherent radiation based on new structures and materials is an extensive interdisciplinary research area
that combines the laser physics, condensed matter physics, nanotechnology, chemistry, and information science. One of the im-
portant challenges in this field is controlling the propagation of light in resulting composite structures by subjecting them to various
kinds of external actions such as e.g. elastic strains [1]. From this point of view, photonic superstructures based on optical micro-
cavities with embedded non-linear elements (e.g. semiconductor quantum dots) represent one of the most promising systems for
integration in future optical circuits [2,3]. Arrays of coupled optical cavities as well as periodic arrays of coupled exciton/cavities
have been considered in Refs. [4,5].

In this context, a rapidly developing research sub-area is the photonics of imperfect structures. Some of our previous works have
been devoted to the design of multi-microcavity structures [6] where the dispersion of photon modes may be altered by introduction
of a defect in the photonic supercrystal [7,8]. For applications, the structural defects in supercrystals are less practical than temporary
defects introduced by application of external fields or strain.

In the present work we consider the effect of a uniform elastic strain (which is assumed to be much weaker than any breaking
deformation) on one-dimensional arrays of microcavities with embedded quantum dots. This system combines advantages of an
extreme optical non-linearity provided by the coupling of quantum dots to photonic modes and the high sensitivity of the optical
eigen-modes to the applied strain. We focus on two particular realizations of a topologically ordered microcavity system composed by
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tunnel-coupled optical microcavities: a two-sublattice array and a one-sublattice array of unevenly spaced spherical microcavities.
We show that both systems have a high potentiality for applications in optical integrated circuits.

2. Theoretical background

Basing on the approach developed in Refs. [7–10], let us first consider the dispersion of optical eigen modes in the most general
case of a microcavity supercrystal composed of s sublattices. Each of the tunnel-coupled microcavities is assumed to confine a single
optical mode. In the considered cases of elastic deformations in chains of microcavities with embedded quantum dots and otherwise,
Hamiltonian H εˆ (ˆ) depends on the deformation tensor ε̂ , which is a function of the applied strain. Under the assumption that the
density of excited states of structural elements in the resonator and atomic subsystems is a small quantity, the quadratic part H εˆ (ˆ)ex

(responsible for the elementary excitations) of Hamiltonian H εˆ (ˆ) within the Heitler-London approximation and a one-level model can
be written as (see e.g. Ref. [11]):

∑ ∑= =+ +H ε D ε Φ Φ D ε Φ Φk k kˆ (ˆ) (ˆ) ˆ ˆ ( , ˆ) ˆ ( ) ˆ ( ),ex
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In Eqs. (1) and (2) ω α
ph

n is the frequency of the photonic mode localized in the αn -th lattice site (microcavity), +Ψ Ψˆ , ˆα αn n are bosonic
creation and annihilation operators for this mode written in the node representation, ωℏ α

at
n is excitation energy of the quantum dot in

the αn -th lattice site, +B Bˆ , ˆα αn n are bosonic creation and annihilation operators of quantum dot excitons, A ε(ˆ)α βn m is the matrix of
resonance interaction, which describes an overlap between optical fields of resonators in the αn -th and βm -th lattice sites and hence
defines the jump probability of the corresponding electromagnetic excitation, V ε(ˆ)α βn m is the matrix of resonance interaction between
quantum dots embedded in the αn -th and βm -th lattice sites, g ε(ˆ)αn is the matrix of resonance interaction between quantum dot in
the αn -th lattice site and electromagnetic field localized at the same site. Values 1 and 2 of indices λ σ, indicate, respectively, the
presence or absence of quantum dots in corresponding cavities.

In the right-hand side expression of Eq. (1) (summation over k) matrices D εk( , ˆ)αβ
λσ and Φ k( )αλ have the forms

= ∑ ⋅ −D ε D ε ik k r r( , ˆ) (ˆ)exp[ ( )]αβ
λσ

α β
λσ

α βm n m n m and = ∑ − ⋅Φ Φ ik k rˆ ( ) ˆ exp( )αλ N αλ αn n n
1 (N is the number of elementary cells in the lat-

tice). Such representation of matrices is possible due to preservation of the translation invariance of the system under the uniform
strain. Let us note that the wave vector k, which characterizes eigenstates of electromagnetic excitations, ranges within the first
supercrystal Brillouin zone, whose boundaries are in their turn functions of strain through the dielectric tensor ε̂.

Eigenvalues of the Hamiltonian (1) are found by its diagonalization through the Bogolyubov-Tyablikov transformation [11]. This
yields the following equation for elementary excitation spectrum Ω εk( , ˆ):

− =D ε Ω ε δ δk kdet ( , ˆ) ℏ ( , ˆ) 0αβ
λσ

αβ λσ (3)

On the basis of this equation below we investigate in detail the spectrum of exciton-polariton modes in a two-sublattice chain of
microcavities and in a one-sublattice chain of unevenly spaced cavities with embedded quantum dots.

3. Results and discussion

3.1. Exciton-like excitations in a one-dimensional two-sublattice microcavity array under a uniform elastic strain

Let us consider a one-dimensional microcavity chain subjected to the elastic strain (extension or compression) directed along the
chain. Under a uniform strain described by the dielectric tensor ε̂ each cavity changes its position so that the lattice constant d ε( )
varies as:

= +d ε ε d( ) (1 ) ,0 (4)

where d0 is the lattice constant of a strain-free structure, and ε is the corresponding component of tensor ε̂ . The reciprocal lattice
constant b ε( ) can be obtained from the simple relation:

⋅ =b ε d ε π( ) ( ) 2 , (5)

In what follows we shall assume that the microcavity array is constituted by two sublattices. Positions of microcavities are defined
by the equality = +r ε r ε r ε( ) ( ) ( )nα n α . For example, the positions in the zeroth cell of the first and second sublattices ( ==r 0n 0 ) are
given by: =r 001 and =r ε a ε( ) ( )02 , respectively. The spectrum of exciton-like excitations Ω k ε( , ) is found from the relation (3) as:

−
−

=
Ω k ε ω ε A k ε

A k ε Ω k ε ω ε
ℏ ( , ) ℏ ( ) ( , )

( , ) ℏ ( , ) ℏ ( )
0

ph

ph
1 12

21 2 (6)

The quantities A k ε( , )αβ in Eq. (6) are the Fourier-transforms of matrix A ε( )nαmβ of resonance interaction:
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= ∑ −A k ε A ε ik r ε r ε( , ) ( )exp{ [ ( ) ( )]}αβ m nαmβ nα mβ . In the framework of our model and within the nearest-neighbor approximation the
matrix elements A k ε( , )αβ can be represented as follows:

≅ − ⋅ + − − ⋅ −
= ⋅ + − ⋅ −

A k ε A a ε ik a ε A d ε a ε ik d ε a ε
A k ε A a ε ik a ε A d ε a ε ik d ε a ε

( , ) [ ( )]exp[ ( )] [ ( ) ( )]exp{ [ ( ) ( )]},
( , ˆ) [ ( )]exp[ ( )] [ ( ) ( )]exp{ [ ( ) ( )]} ,

12 12 12

21 21 21 (7)

According to Ref. [12], quantities A a ε[ ( )]12(21) , which are components of matrix A ε( )nαmβ of resonance interaction, corresponding
to nearest neighbors, equal to = −A a ε A a ε[ ( )] ( )exp( )12(21) 12(21) , − = − −A d ε a ε A d a exp ε[ ( ) ( )] ( ) ( )12(21) 12(21) . In our case we put

≃A a A a( ) ( )12 21 , − ≃ −A d a A d a( ) ( )12 21 . The relation (6) shows that the dispersion Ω k ε( , ) of elementary electromagnetic excita-
tions is governed both by frequency characteristics of the microcavity array and by the explicit form of A k ε( , ), as well as by the sign
of strain (i.e. if a uniaxial extension >ε 0 or contraction <ε 0 is applied).

Further calculations were performed for the case of a uniaxial strain of a uniform isotropic one-dimensional medium. The fol-
lowing modeling parameters were adopted: frequencies of resonance photonic modes in cavities (independent of deformation ε) were
taken as = ×ω π THz2 211ph

1 and = ×ω π THz2 310ph
2 . The other parameters of our calculation are as follows: = ⋅A a Hz( )/2ℏ 0.9 1012

14 ,
− = ⋅A d a Hz( )/2ℏ 1.2 1012

14 , = ⋅ −a m1 10 7 , = ⋅ −d m9 10 7 . Fig. 1 shows surfaces =Ω k ε ν( , ), ( 1,2)ν calculated for the strained one-
dimensional lattice for various values of ε. The shaded region in the (k ε, )-plane corresponds to the first Brillouin zone.

An important property of band gap photonic structures is their ability to sustain the so-called “slow light”. It has important
application in designing quantum optical information processing devices. The effective decrease of quasiparticle group velocity was
shown to occur in coupled wave-guide optical cavities [13] and in various types of multilayer semiconductor structures [14]. The
reduction of the group velocity is caused by relatively heavy effective masses of photons and exciton-polaritons in the considered

Fig. 1. Dispersion surfaces Ω k ε( , )1(2) of the two-sublattice microcavity array subjected to a uniform elastic strain.

Fig. 2. Dependences of the effective masses of the propagating photonic modes in on the applied strain in a two-sublattice microcavity array.
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microcavity supercrystals, =m ν( 1; 2)eff ν( ) Fig. 2 shows the dependence of the effective mass = ⎡
⎣⎢

⎤
⎦⎥

∂
∂

=

−

m ℏeff ν
Ω k ε

k
k

( )
( , )

0

1
ν2

2 of the

considered exciton-like excitations on the applied strain. It follows from this graph that an changing ε one can efficiently control the
group velocity of the slow light mode.

It is often important to know how the peculiarities of the spectrum are manifested in the quasiparticles density of states ρ Ω ε( , )ν ,
which obviously should also depend on the strain. According to Ref. [15] in our case the functions ρ Ω ε( , )ν are given by:

∑=ρ Ω ε d ε
π

( , ˆ) ( )
2

1 ,ν
i

dΩ ε k
dk k

( , )ν

i (8)

where ki are the roots of equation =Ω k Ω( )ν . Calculation in (8) is carried out for the values of wave vector k falling within the first
Brillouin zone. Densities of states ρ Ω( )ν of quasiparticles in upper and lower dispersion branches are plotted in Fig. 3 for several
values of ε.

3.2. Polaritons in a one-sublattice quantum-dot-containing chain of unevenly spaced microcavities under a uniform elastic deformation

In this section we shall consider a more complex system of a one-sublattice array of identical cavities with randomly embedded
quantum dots of two types, whose concentrations are, correspondingly, CC

(1) and CC
(2). It is assumed, in addition, that microcavities are

unevenly spaced; namely that CT
(1) neighboring pairs of cavities are separated by distance a ε( )1 and the remaining CT

(2) pairs are
separated by distance a ε( )2 . Here we also adopt the virtual crystal approximation [16,17] based on the diagonalization of the
averaged Hamiltonian (1). The corresponding procedure yields a system of uniform linear equations, whose solvability condition is
given by:

+ −

− −
=

ω ε V k ε Ω k ε g ε

g ε ω ε A k ε Ω k ε

ℏ ( ) ( , ) ℏ ( , ) ( )
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n C
ph
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(9)

where = ∑ = +=ω ω C g g C g C,n
at

C ν ν
at

C
ν

n C C C1
2 (1) (1) (2) (2), (it is implied that + =C C 1C C

(1) (2) , and hence
= −C C1C C

(1) (2)≡ CC); = ∑ = ∑=V k V k C ε C C V k C ε V ε ikr C ε( ) ( , { }, ) , ( , { }, ) ( ) exp[ ({ }, )]C T ν μ
νμ

T C
v

C
μ ν μ

T m nm
νμ

T nm T, , 1
2 , . Similarly,

=A k C ε( , { }, )T ∑ A ε ikr C ε( ) exp[ ({ }, )]m nm T nm T ,where = −r C ε d C ε n m({ }, ) ({ }, )( )nm T T , ( + = = − ≡C C C C C1, 1T T T T T
(1) (2) (1) (2) ).

Angular brackets in (9) denote the procedure of configuration averaging of the microcavity array over all possible positions of
cavities (index “T”) and compositions of quantum dots (index “C”). d C ε({ }, )T is the period of the “virtual” one-dimensional mi-
crocavity lattice obtained by averaging = +d C ε C a ε C a ε({ }, ) ( ) ( )T T T

(1)
1

(2)
2 .

Within the nearest-neighbor approximation, the quantities V k C ε( , { }, )T , A k C ε( , { }, )T can be found as:

⎡
⎣⎢

⎤
⎦⎥

= ⎡
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⎤
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V k C ε
A k C ε

V d C ε ε
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2
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[ ({ }, ), ]
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νμ

T
νμ

T

νμ
T

νμ
T

T
(10)

It follows from (9) that the dispersion relation Ω k C C ε( , { , }, )C T of polariton modes is defined by frequency characteristics of the
cavities and the dots as well as by the explicit form of expressions A k C ε( , { }, )T and V k C ε( , { }, )ν μ

T
, . In the framework of our model,

the functions A d C ε ε[ ({ }, ), ]T and V d C ε ε[ ({ }, ), ]νμ
T of the strain degree and the defect concentrations are assumed (for >a ε a ε( ) ( )2 1 )

to be equal to:

Fig. 3. Strain-induced changes of the density of polaritonic states ±ρ Ω ε( , ) in the lower and upper dispersion bands in a two-sublattice microcavity
array. Dotted curves correspond to = −ε 0.25; dashed curves correspond to =ε 0; solid curves correspond to =ε 0.25.
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≡=a aε1 0 1, ≡=a aε2 0 2. Quantities A a V a( ), ( )νμ
1 1 characterize an overlap of optical fields of neighboring cavities and an in-

teraction between neighboring quantum dots in a one-dimensional lattice with period a1, respectively. Such a lattice is chosen to be a
reference one for the subsequent variation of distances between resonators.

Similarly to our previous works [6–8], the numerical calculations were carried out for the following modeling values of para-
meters corresponding to real resonator systems (see e.g. Refs. [9,18]) and leading to polariton effect. The frequency of cavity-
localized resonance photonic modes was put equal to = × ≈ ⋅ω π THz Hz2 203 1280 10ph 12 ; the two types of quantum dots were as-
sumed to be characterized by the exciton resonance frequencies = ⋅ ≈ ⋅ω π THz Hz2 191 1200 10at

1
12 and

= ⋅ ≈ ⋅ω π THz Hz2 202 1269 10at
2

12 , whereas = ⋅ Hz8 10A
2ℏ

13 , = ⋅ Hz1 10V
2ℏ

1311 , = ⋅V Hz/ℏ 3 1022 13 , ≈ = ⋅V V Hz6 1012 21 13 ,
= ⋅g Hz/ℏ 5 10(1) 12 , = ⋅g Hz/ℏ 1.5 10(2) 12 (within the adopted approximation the magnitude of resonance interaction of a quantum dot

with an electromagnetic field localized at the same cavity is independent of deformation ε). The lattice periods were set equal to
= ⋅ −a m3 101

6 and = ⋅ −a m7 102
6 . The two dispersion branches ±Ω k C C( , , )C T of the considered collective excitations in the microcavity

array are plotted in Figs. 4a–c for several values of CC and CT . It should be noted that the shape of the dispersion curve in Fig. 4a
indicates the existence of Bose-Einstein exciton condensate, where the energy minima occur for a number of states with non-zero k’s
(in addition to those with =k 0). Let us remind that k ranges between − ≤ ≤ ++ − + −kπ

a ε C a ε a ε
π

a ε C a ε a ε( ) [ ( ) ( )] ( ) [ ( ) ( )]T T2 1 2 2 1 2
, whereas CT

ranges between 0 and 1. The concentration dependence of the band gap width
≡ −+ −ΔΩ ε k C C Ω ε k C C Ω ε k C C( , , , ) min[ ( , , , ) ( , , , )]C T

k
C T C T is shown in Fig. 5. The non-monotonous character of concentration

dependence ±Ω ε k C C( , , , )C T reflects the specifics of disorderliness of the system and is manifested in the character of effective masses

of quasiparticles ⎜ ⎟≡ ⎛
⎝

⎞
⎠

± ∂
∂

=

−
±m ε C C( , , ) ℏeff C T

Ω ε k C C
k

k

( ) ( , , , )

0

1
C T2

2 (Figs. 6a–d, 7).

a) b)

c)
Fig. 4. Dispersions ±Ω k C C( , , )C T of polaritonic excitations in a one-sublattice quantum-dot-containing chain of unevenly spaced microcavities
plotted for different values of the dot concentrations CC , CT . Fig. 4c has been plotted for the values of concentrations corresponding to the black
asterisk in Fig. 7 and it demonstrates the case of both effective polaritonic masses ±meff

( ) being positive.
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Fig. 5. Polaritonic band gap in a one-sublattice quantum-dot-containing chain of unevenly spaced microcavities plotted as a function of con-
centrations of quantum dots CC , CT .

a) b)  

d)c)

Fig. 6. Effective masses of polaritons in a one-sublattice quantum-dot-containing chain of unevenly spaced microcavities as functions of the
quantum dot concentrations CC , CT . and the strain. Calculations in Fig. 6a–d have been performed along the lines in the CC–CT . -plane shown in
Fig. 7.
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These results are completed by calculations of the density of states of corresponding quasiparticles ρ Ω ε C C( , , , )C T . In the present
case, the function ρ Ω ε C C( , , , )C T has the form:

∑=ρ Ω ε C C d ε C
π

( , ˆ, , ) ( , )
2

1
ν C T

T

i
dΩ ε k C C

dk k
( , , , )ν C T

i (12)

Summation in (12) is carried out over various values of the wave vector k C C( , )C T falling within the first Brillouin zone. Fig. 8
shows the transformation of the density of states in the upper and lower polaritonic bands caused by the elastic strain.

Let us remind that due to dependence of the period of the “virtual” crystal lattice d C({ })T (and hence of the Brillouin zone) on CT
the domain of definition of the density of states ±ρ Ω ε C C( , ˆ, , )C T along Ω-axis is also a function of CT . It is obvious that the function
±ρ Ω ε C C( , ˆ, , )C T has singularities only at the edges of the frequency interval < <− +Ω k C C Ω Ω k C C[ ( , )] [ ( , )]C T C T , in a full analogy to
the phonon spectra of one-dimensional structures (Ref. [15]). It can be readily seen from Fig. 8 that peculiarities of the spectrum have
clear manifestations in the corresponding density of states.

Fig. 7. The sign of effective masses ±meff
( ) of polaritons in a one-sublattice quantum-dot-containing chain of unevenly spaced microcavities for

different concentrations of quantum dots in the photonic supercrystal. The edges of shaded areas correspond to singularities of effective masses ±meff
( )

(see Figs. a, b and d).

Fig. 8. The strain-induced change of the density of polaritonic states in a one-sublattice quantum-dot-containing chain of unevenly spaced mi-
crocavities. Dotted curves correspond to =ε 0.4; solid curves correspond to =ε 0. The values of dot concentrations is taken =C 0.1C . =C 0.5C
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4. Conclusion

The theoretical study of the photonic band structure of binary one-dimensional arrays of tunnel-coupled microcavities shows that
subjecting the system to the controllable elastic strain is an effective tool for altering its eigen mode structure and optical properties.
This applies both for the cases of microcavity arrays with embedded quantum dots and for quantum-dot-free lattices. The strain and
the photonic disorder lead to an increase of the effective mass of the propagating photon modes in the structure and hence to a
decrease of their group velocity. This results in formation of slow light modes that can be efficiently controlled by the externally
applied strain. These results pave the way to applications of irregular microcavity chains in optical integrated circuits and as classical
or quantum optical switches [19]. The considered arrays of coupled optical cavities open promising vistas for fabrication of optical
circuits, where the light propagation would be controlled by variable contents of structural “defects” (composition and positions of
microcavities) as well as by the alterable magnitude and character of applied strains.
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