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Abstract
We introduce a novel neuromorphic network architecture based on a lattice of exciton-polariton condensates,
intricately interconnected and energized through nonresonant optical pumping. The network employs a binary
framework, where each neuron, facilitated by the spatial coherence of pairwise coupled condensates, performs binary
operations. This coherence, emerging from the ballistic propagation of polaritons, ensures efficient, network-wide
communication. The binary neuron switching mechanism, driven by the nonlinear repulsion through the excitonic
component of polaritons, offers computational efficiency and scalability advantages over continuous weight neural
networks. Our network enables parallel processing, enhancing computational speed compared to sequential or pulse-
coded binary systems. The system’s performance was evaluated using diverse datasets, including the MNIST dataset
for image recognition and the Speech Commands dataset for voice recognition tasks. In both scenarios, the proposed
system demonstrates the potential to outperform existing polaritonic neuromorphic systems. For image recognition,
this is evidenced by an impressive predicted classification accuracy of up to 97.5%. In voice recognition, the system
achieved a classification accuracy of about 68% for the ten-class subset, surpassing the performance of conventional
benchmark, the Hidden Markov Model with Gaussian Mixture Model.

Introduction
The rapid development of artificial neural networks and

applied artificial intelligence is predominantly aimed at
the efficient processing of large data sets and pattern
recognition1. Traditional approaches, however, are
increasingly facing constraints in terms of computational
speed and energy efficiency, particularly in hardware
implementations of these networks2. These constraints
have spurred interest in neuromorphic systems, where
hardware mimics the structure and function of the human
brain. The exploration of novel materials and mechanisms
is crucial for the development of efficient neuromorphic
systems3.
A particularly promising direction in this research area

is the exploitation of exciton-polariton interactions within
specially designed semiconductor microcavities in the
strong light-matter coupling regime4,5. Exciton-polaritons

are quasiparticles emerging from the coupling of photons
and excitons6. They possess dual light and matter prop-
erties, enabling strong optical nonlinearity and picose-
cond scale reaction times. These characteristics enable the
development of polariton based high-speed neuromorphic
systems with high efficiency7. The term “polariton neu-
ron” was first introduced in ref.8, devoted to planar
waveguide structures that translate polariton coherence
over extended distances. This research laid the ground-
work for using polariton neurons to construct binary logic
gates in semiconductor microcavities, serving as a sort of
precursor for neuromorphic computing. Much later, the
reservoir computing scheme has emerged as a key
approach for the development of polariton-based neural
networks9,10. This technique employs a network with
fixed, random connections, simplifying the architecture as
compared to traditional neural networks. Historically,
quantum computing has been considered the “holy grail”
of polaritonics, particularly in terms of the applicability of
its outcomes. This is why the concept of reservoir com-
puting has been highly regarded, as it extends its utility
from classical to quantum computing domains11.
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Complementing this quantum focus, recent advances of
polaritonics might bring important applications in clas-
sical information processing, particularly in pattern
recognition.
Reflecting the latter statement, the authors of ref.4

leveraged the polariton properties to achieve a 93% level
in recognizing handwritten digits in the Mixed National
Institute of Standards and Technology dataset (MNIST
dataset)12,13, that is a benchmark in pattern recognition
tasks. Complementing this, ref.5 reported not only a 96.2%
classification accuracy on the same dataset in the
experiment but also demonstrated the efficiency of
backpropagation training in their exciton-polariton-based
neuromorphic hardware. This efficiency in processing
complex patterns, however, often comes with increased
computational and memory demands in traditional neu-
romorphic networks14, which necessitates either a
reduction in input resolution or more complex processing
architectures for feasible operation times.
In contrast, the introduction of binarized neural net-

works, which streamline the network by utilizing two-
level activations or weights and performing simple binary
operations, marks a significant advancement in the field.
These networks are distinguished by their enhanced speed
and energy efficiency, with only a minimal trade-off in
inference accuracy15. By efficiently using memory to store
binary rather than continuous data and simplifying
computational demands, binarized networks offer a
compelling alternative to conventional networks with
continuous activation functions. In the context of high-
speed neuromorphic systems, binary networks have
shown a significant progress. Recent advancements in the
area of neuromorphic binarized polariton networks have
showcased their remarkable capabilities. As shown in
ref.15, this approach, involving input encoding using
nonresonant picosecond laser pulses to excite localized
condensation sites, each representing binary inputs with
distinct pulse energies, has led to significant achievements
in pattern recognition. Notably, the system achieves
approximately 96% classification accuracy on the MNIST
dataset, even in a noisy experimental environment, using a
single-hidden-layer network. This level of accuracy,
attained through binary operations, is particularly
impressive given the challenges of the experimental setup.
In scenarios where information is encoded through

individual or paired pulses, there’s a marked tendency to
opt for a sequential processing approach, employing a
single transformation gate for each pulse set. However,
this approach presents challenges in terms of operational
speed within these binary systems. A tool for overcoming
the issue of parallelizing input uploading in neuromorphic
binarized polariton networks has been proposed in a
recent study16. Their method involves spatial encoding of
input information, with all input pulses designed to arrive

at the network simultaneously. By enabling parallel input
encoding, this method effectively addresses the opera-
tional speed limitations inherent in the sequential
approach.
The next natural step towards parallelizing neuronal

triggering, in conjunction with ensuring the interaction
among individual neurons, is the use of spatial lattices of
neurons. Lattices of mesoscopic coherent condensates of
exciton polariton have evolved as a sophisticated exten-
sion of the principles observed in chains and lattices of
ultracold atoms17–21 harnessing the unique properties
of light-matter interactions to delve into new frontiers of
quantum simulations and condensed matter physics22–25.
Advancing beyond their predecessors, they offer greater
control and versatility, operating at higher temperatures
and allowing for more dynamic configurations, thereby
enhancing their practicality in exploring complex quan-
tum phenomena23.
Various techniques have been employed to manipulate

the spatial potential for trapping and arranging polaritons
in a microcavity plane22. Among these techniques are
etching lattices of coupled micropillars from planar
microcavities26, variation of the thickness of the cavity
layer27, deposition of metallic films onto the surface of the
microcavity28.
An alternative approach to creating polariton lattices in

a microcavity plane is by using regular spatial patterns of
the pumping light. In this geometry, each condensate in a
lattice is created by a separate nonresonant optical pump
beam, while spatial coherence between the condensates
across the lattice is provided by the exchange of ballisti-
cally propagating polaritons29. Besides replenishing the
polariton condensate state, the pump also facilitates their
trapping, contributing to the formation of an effective
complex potential for the trap. Depending on the com-
bination of kinetic properties of the polaritons and the
gain-loss balance, either dissipative trapping can occur,
where the condensates are predominantly localized within
the pump spot24,29,30 (phase locking regime), or they are
localized in the minima of the real part of the effective
potential created by the pumping light31,32. The complex
effective potential is formed by the repulsive reservoir of
hot incoherent excitons, which are excited by the pump
light. Spatial light modulators (SLMs) offer an advantage
of high spatial resolution and the ability to control the
intensity and distribution of the reservoir with great
accuracy, enabling precise manipulation of the locations
of polariton condensates and their coupling strengths
within the lattice. Additionally, these optically induced
potentials can be effectively combined with stationary
potentials, offering even more versatility of control over
polariton condensates33–36.
In this manuscript, we present a neuromorphic network

architecture employing lattices of exciton-polariton
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condensates, interconnected and energized through
nonresonant optical pumping. This design capitalizes on
benefits of a binary framework, wherein each neuron,
aided by the spatial coherence of coupled condensates,
executes binary operations. The lattice structure facilitates
parallel uploading and processing of signals, enhancing
neuron-neuron interactions. The effectiveness of our
system was evaluated using the MNIST dataset. It
demonstrated promising results compared to current
neuromorphic systems. Additionally, we have developed a
technique for input signal densing that notably improves
the system performance, that achieves an accuracy rate of
97.5%, surpassing that of existing polariton-based neuro-
morphic systems. To further validate our model’s
robustness and versatility, we extended our testing to the
Speech Commands dataset37,38, which includes audio
clips for voice command recognition. Our system’s per-
formance, considerably exceeding that of both the linear
classifier and the advanced Hidden Markov Model with
Gaussian Mixture Model (HMM-GMM)39,40, confirms its
potential for effective application in complex speech
recognition tasks.

Results
The physical background of a polariton neuromorphic
network
We consider a lattice of pairwise coupled polariton

condensates—polariton dyads, the connections between
which can be manipulated through an external optical
impact. A schematic of such a lattice as well as its possible
implementations are depicted in Fig. 1a, b. In developing
our structure, we drew inspiration from a series of pub-
lications24,29,30 dedicated to establishing and controlling
spatial coherence in lattices of polariton condensates.
A polariton dyad represents a pair of polariton con-

densates excited by localized optical beams in a plane of a
microcavity, separated by a distance d from each other,
see Fig. 1c–e. Excitation is performed in the nonresonant
regime, where the energy of an excitation beam is con-
siderably (tens of meV) higher than the polariton
energy41,42. Such a pump creates a reservoir of incoherent
high-energy excitons (see Fig. 1c), which in turn feeds the
polariton condensate. This process is facilitated by the
stimulated scattering of quasiparticles, accompanied by a
reduction of their energy. In addition to its role as a
feeder, the exciton reservoir acts as a potential barrier for
the condensate due to a strong repulsive polariton-exciton
interaction.
Polaritons, whose lifetime may be reduced by tailoring

the quality factor of the microcavity, are primarily loca-
lized near the pump spot, engaging in the earlier men-
tioned dissipative trapping regime. However, in each
specific condensate, polaritons demonstrate the radial
ballistic expansion, driven by their repulsion from the

potential barrier created by the reservoir. The coupling
and coherence build up within the condensate dyad are
facilitated by fast ballistically propagating polaritons,
whose propagation distances exceed the condensates’
separation distance d.
The spatial coherence of the condensates manifests

itself through the emergence of interference patterns
within the space between the condensates. If both con-
densates are pumped with equal strengths, these patterns
are symmetrical and can possess an even or odd number
of interference fringes, with either a minimum or max-
imum intensity at the midpoint between them, cf.
Figure 1d, e. The coupling between the condensates can
be enhanced by adjusting the shape of the pump, as dis-
cussed in ref.43.
In a planar microcavity, the parity of the interference

pattern is controlled by the distance d and the optical
pumping power. The latter, in particular, defines the
height of the potential barrier induced by the reservoir. To
alter the parity, one can make an adjustment to the
potential landscape within the dyad. Namely, an addi-
tional exciton reservoir can be excited by a laser beam,
whose power and spatial profile can be arbitrarily chosen
within the bounds of the interference pattern, as sug-
gested in ref.30. The left panels of Fig. 1f, g illustrate two
adjacent polariton dyads, numerically simulated by sol-
ving the complex generalized Gross-Pitaevskii equation
(see the Methods section for details). This configuration
can be excited by nonresonant optical beams forming a
unit cell of a square lattice, as schematically shown in the
right panel of Fig. 1f. These figures demonstrate the
capability to simultaneously switch both dyads between
OFF and ON states using an additional single optical
beam centered in the cell, see the right panel of Fig. 1g. In
simulations, the pump power and the condensates’
separation distance are optimized to minimize the num-
ber of interference fringes between the condensates. Thus,
in the OFF state for both dyads, in the absence of the
additional control beam (Fig. 1f), the number of fringes is
reduced to zero, resulting in a minimum between the
condensates. Whilst the control beam is present (Fig. 1g),
both dyads switch to the ON state, characterized by a
single interference fringe that forms a maximum intensity
between the condensates. The photoluminescence signal
coming from the space between the condensates can be
experimentally detected, allowing for the unambiguous
distinction between the OFF and ON states.
As observed in the geometry presented in Fig. 1f, g, the

condensates are interconnected not only within each dyad
but also with other condensates belonging to an adjacent
dyad. In such a configuration, it is more appropriate to
refer to a tetrad, involving all condensates excited within
an elementary cell. Moreover, in the limit of a full-size
lattice, due to the macroscopic spatial coherence of
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polariton condensates, such connections may extend well
beyond a single cell, suggesting a complex network of
interactions across the lattice structure. To maintain the
paradigm of pairwise interactions, it is essential to isolate
the dyads from each other within the polariton lattice.
This can be achieved by introducing additional potential
barriers between condensates whose connections need to
be severed. Figure 1h and j illustrate pairs of polariton
dyads in OFF and ON states, respectively, with the dyads
separated by real potential barriers. In Fig. 1k and l,
imaginary absorbing barriers are used for the separation.
It is evident that independently of the barrier’s nature, the
controlling optical beam, in both scenarios, switches both
dyads from the OFF state to the ON state, while main-
taining the dyads as non-interacting entities, ensuring that
their interconnections remain unaffected.
While managing isolation for a single pair of dyads is

relatively straightforward, achieving the same for a full
lattice of dyads requires a more comprehensive approach.
This involves carefully selecting the appropriate nature
and configuration of the potentials to provide sufficient
isolation for each dyad on all sides without impeding their

interaction with control signals. Figure 2 presents the
results of numerical simulations for a lattice of dyads,
schematically depicted in Fig. 1a, b, both in the absence
(Fig. 2a) and in the presence (Fig. 2b) of signal pulses. The
shape of the potential that ensures the successful opera-
tion of each artificial neuron within the lattice is sche-
matically depicted in white in Fig. 2c. A more detailed
analysis of the resulting behaviour of artificial neurons
under various isolation conditions and interactions with
control pulses is provided in Sec. S3 of the Supplementary
Information. The possible experimental implementation
of the proposed system is discussed in Sec. S9 of the
Supplementary Information.

Network architecture and design
Hidden layer of the polariton dyad lattice
Typically, a neuromorphic network comprises in its

core an input layer where signals are initially received,
processed through a series of intermediate hidden layers.
The output layer then finalizes the processing sequence.
In this paper, we propose a binarized polariton network
with a single hidden layer based on a lattice of polariton
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Fig. 1 Conceptual illustration of a lattice of polariton dyads with optically controlled connections. a A diagram depicting the possible
experimental implementation of a lattice of pairwise coupled polariton condensates with optically controlled connections. Red cones symbolize
input signal beams, and red arrows indicate the connections influenced by these beams. The dyads are numbered with Roman numerals to
correspond with the numbering in Fig. 2c. b A streamlined illustration of the envisaged structure, with gray, red, and blue circles denoting
condensate lattice nodes, input, and output optical signals, respectively. Empty (filled) circles correspond to the absence (presence) of the signals.
c–e Illustration of polariton dyad excitation in a planar microcavity, showing (c) profiles of two nonresonant optical pump spots for dyad excitation,
(d, e) the condensates in the dyad with even (OFF) and odd (ON) number of interference fringes. f–l Depiction of the excitation of two adjacent
dyads in OFF (f, h, k) and ON (g, j, l) states. Each pair of panels shows polariton density distribution (left) and pump intensity profiles, including the
potential barrier (right). Switching between OFF and ON states is achieved using a signal optical pump beam equidistant from the four nodes.
f, g illustrate no separation between the dyads, h, j and k, l show the dyads separated by real (orange rectangle) and imaginary (green rectangle)
potential barriers, respectively
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condensates, see Fig. 1a. For the sake of simplicity, we
consider square lattices, characterized by an equal num-
ber of nodes nc along each side, although our results can
be generalized to lattices of an arbitrary shape. Within the
lattice, adjacent condensates are randomly paired into
dyads, that are mutually isolated, ensuring that the state of
each dyad remains independent and it does not affect
adjacent pairs. The dyads in the network function as
binary neurons. They switch between OFF and ON states,
corresponding to the output signal values of 0 and 1,
respectively, in response to the absence or presence of an
additional pumping control signal near each dyad, which
acts as an input signal. Each dyad at the centre of the
lattice can be subjected to two input signals, while dyads

at the edges are influenced by only one signal, cf. (x) and
other numbered dyads in Fig. 1a. The dyad unaffected by
the input signal (vii) remains in the OFF state, while the
dyads affected by one (v) or two (iv) input signals switch
to the ON state. Due to the randomness in pairing con-
densates within the lattice, some individual condensates
may not be part of any dyads, see (xiii) in Fig. 1a. In such
cases, these condensates do not contribute to the gen-
eration of the output signal.
The random arrangement of dyads within the lattice

also results in several options of how the input signal can
influence the neurons in the hidden layer. In the absence
of the signal, no neurons are activated, see (1) in Fig. 1a.
Depending on the number of dyads adjacent to the input
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Fig. 2 Illustration of the operation of a polariton dyad lattice under varying pump conditions. a, b Depiction of excitation of a lattice of dyads
of geometry, schematically shown in Fig. 1a, b, in the absence (a) and in the presence (b) of control signals. The panels show time-integrated spatial
distribution of the polariton density. Regions with densities higher than the range covered by the color scale are indicated in white. c The profiles of
the nonresonant pump spots (main color scheme), the trapping potential profile for isolating dyads (white) and the control beam profiles (blue) for

toggling dyads between ON and OFF states. The indices (i) to (xii) enumerate neurons in (a, b). d The dependence of distinguishability, ΔeI, of the OFF
and ON signals on the intensities of the pump pulses for condensates in dyads, P10, and intensities of signal pulses, P20. Values of ΔeI � 0 are colored

in black. Pulse durations are taken as wτ1 ¼ 5 ps and wτ2 ¼ 8 ps, respectively. Definition of the distinguishability, ΔeI, is given in the text. Star markers

enumerated from 1 to 17 indicate maximal ΔeI at given P10. The red star indicates the parameters used for a and b. e Variation of the relative intensity
of output signals, I, in each neuron from (i) to (xii) at the pump intensities ðP10; P20Þ corresponding to points j ¼ 1; 2; :::17 in (d). In (iv), the
dependence should be multiplied by 2.5. Each dot corresponds to a separate numerical experiment, in which positions of the pump pulses, that
excite condensates in dyads across the lattice, deviate randomly from their owing positions in the range of distances from �δ to þδ. Dots of different
colors correspond to different deviations δ. Gray lines used as references indicate the average of the minimal relative intensity of the neuron in the
ON state and the maximal relative intensity of the neuron in the OFF state in the absence of deviations of the pump pulses
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signal, it can activate either one (2) or two (3) neurons at
once, or none at all (4).
For simplicity, we restrict our analysis to the case of a

square lattice geometry. The square geometry dictates the
ratios of the numbers of elements and their mutual
arrangement within the interconnected sub-lattices. In
particular, to accommodate a nin ´ nin grid of input sig-
nals, a nin þ 1ð Þ ´ nin þ 1ð Þ grid of polariton condensates
is required. In such a lattice, the total number of dyads
would be Nd � nin þ 1ð Þ2=2.
In our proposal, the inherent randomness in the pairing

of adjacent condensates into dyads within the lattice
introduces a significant element of nonlinearity into the
network’s functioning. This randomness in dyad forma-
tion means that the impact of input signals on the neu-
rons varies, with some dyads being activated by one or
two signals, while others remain unaffected. This ran-
domness leads to a complex network response that can-
not be easily mapped or predicted linearly. Such
variability in dyad responses, triggered by input signals,
enhances the computational capabilities of the hidden
layer. The dyads, functioning as binary neurons, switch
between OFF and ON states in response to control sig-
nals, similar to a classical OR gate, where receiving at least
one ‘1’ input signal triggers a ‘1’ output signal. However,
the diverse arrangement of these dyads, some isolated and
some interconnected, ensures a dynamic and non-linear
processing environment within the network, crucial for
tackling intricate computational tasks. For a more detailed
discussion of the nonlinearity induced by the structure of
the neural network, see Sec. S1 of the Supplemental
Information.
Using the hidden layer configuration illustrated in

Fig. 1a, b as an example, we demonstrate the feasibility of
practical implementation of a hidden layer based on a
lattice of polariton condensates. Using a model based on
the generalized Gross-Pitaevskii equation for the polar-
iton wave function Ψðt; rÞ, as detailed in the Methods
section, we conduct a series of numerical experiments to
simulate the excitation of a lattice of polariton dyads
under control by laser pulses. The polariton condensates
are excited by nonresonant laser pulses with intensity
P1ðt; rÞ ¼ P10f 1 t; r; w1; wτ1ð Þ, arranged in a 5 ´ 5 lattice
configuration as shown in Fig. 1a, b. Here, P10 is the
intensity magnitude, and f 1 t; r; w1; wτ1ð Þ is a Gaussian
function of space and time with parameters of width w1

and duration wτ1 of pulses. The signal pulses with
intensity P2ðt; rÞ ¼ P20f 2 t; r; w2; wτ2ð Þ are applied to
specific nodes in the intervals between the condensate
pump pulses. The meaning of the parameters in P2ðt; rÞ is
analogous to that in P1ðt; rÞ. The positions of the pump
spots are indicated in Fig. 2c. Shapes of pulses as well as
values of the parameters used for simulations are detailed
in the Methods section.

For the mutual isolation of dyads, we employ an effec-
tive potential, schematically depicted in white in Fig. 2c. It
is important to note, that despite its sophisticated shape,
there is no need for a unique potential design for each
dyad. The shape of the potential within each dyad is
identical for all dyads, and the final lattice configuration is
assembled from these uniform building blocks. Approa-
ches to forming localization potentials for polaritons are
discussed in the Discussion section.
In Fig. 2, we show time-integrated spatial distribution of

the polariton density, I rð Þ ¼ R jΨ t; rð Þj2dt, at certain
pump intensities in the absence (a) and in the presence
(b) of the signal pulses. The parameters of the pulses are
chosen such that, in the absence of signal pulses, all
artificial neurons remain in the OFF state with a mini-
mum intensity at the centre of the dyads, as shown in
panel a. For the lattice period d taken as 12 μm, pulses
with a duration wτ1 of 5 ps and a width w1 of 2.2 μm
maintain these conditions over a broad range of pump
intensities. In the presence of signal pulses, the proximity
of such a pulse to a dyad switches it to the ON state, as
shown in panel b. When selecting the parameters for the
signal pulses, it is essential to ensure that they can
effectively influence the polariton dyad during its evolu-
tion. Our simulations show that pulses with a width w2 ¼
w1 and a duration wτ2 of 8 ps for Fig. 2a, b, are sufficient
to achieve this effect. Additionally, we assume that the
signal pulses and the pump pulses arrive synchronously,
with their peaks coinciding in time.
Since the pump intensity gradually increases in the

pulsed excitation regime, dyads switch to the ON state
gradually rather than instantaneously, and they may
change their parity during evolution. Consequently, even
in the OFF state, the time-integrated intensity at the
centre of the dyad can be non-zero. However, it must
always remain lower than the intensity of a dyad in the
ON state. To analyze whether the pump parameters meet
this condition, it is useful to introduce the parameter of
distinguishability of OFF and ON states, ΔeI . For a polar-
iton lattice with a given configuration, ΔeI represents the
difference between the minimum intensity of output sig-
nals from dyads expected to be in the ON state, MinðIONÞ,
and the maximum intensity of signals from dyads
expected to be in the OFF state, MaxðIOFFÞ, normalized by
the latter, ΔeI ¼ ½MinðIONÞ �MaxðIOFFÞ�=MaxðIOFFÞ. A
successful choice of pump parameters is characterized by
positive values of ΔeI . If ΔeI is zero or negative, the ON and
OFF signals become indistinguishable. The colour map in
Fig. 2d outlines the region in the plane of pump pulse
intensities ðP10; P20Þ where ON and OFF states of the
artificial neurons are distinguishable, with other para-
meters held constant. It is evident that, under the optimal
combination of parameters (indicated by the blue line in
the panel), the distinguishability ΔeI can reach a value of
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one, meaning that the difference in intensities is com-
parable to the intensity of the output signal of the neuron
in the OFF state. Such distinguishability is expected to
provide excellent robustness against noise. It significantly
exceeds the corresponding measure in15, which, according
to rough estimates, does not exceed 0.2 for a single
neuron.
The distribution of polariton density within each dyad

represents a time-averaged interference pattern, largely
determined by the relative positions of the condensates
within the dyad and the localization potential. We
investigated the sensitivity of the output signal of the
polariton lattice to deviations in the positions of the
condensates from their designated positions. For this
purpose, for several pairs of pump pulse intensities,
marked in Fig. 2d (numbered from j ¼ 1 to 17), we
calculated the output signal intensities of the neurons in
the treated example lattice configuration, in the presence
of input signals. In Fig. 2e, we present the normalized
output signal intensities for all neurons as a function of j.
The normalization is done with respect to the reference
intensity, which for each neuron is the output signal
intensity in the absence of the input signal. For each j, a
series of independent numerical experiments was con-
ducted, where the positions of the pump spots were
randomly deviated from their designated positions
within the range from �δ to þδ. Each point on the
individual panels in Fig. 2e corresponds to a separate
numerical experiment, with different colours repre-
senting different magnitudes of deviation δ. It can be
observed that random deviations within approximately
±0.5 μm do not undermine the distinguishability of the
neuron states.

Preparation of an input layer
As previously mentioned, the input signals in our system

are generated by nonresonant optical beams that modify
the potential landscape near the dyads. These beams excite
incoherent exciton reservoir spots, that influence both the
real and imaginary parts of the effective potential. The
beams are generated by a set of identical emitters, e.g.,
using SLM4,29, and are systematically arranged according to
a pattern derived from the initial signal, ensuring that the
input beams align accurately with the required configura-
tion for the neural network’s processing.
The process for preparing the input signal pattern is

outlined in a sequence of steps as follows, demonstrated
using the example of classifying handwritten digits from the
MNIST dataset, see Fig. 3. The initial image is transformed
into a matrix with dimensions n0 ´ n0, mirroring the image’s
size. Each element of the matrix corresponds to the grays-
cale level of its respective image pixel. In the MNIST dataset,
n0 ¼ 28, and the total number of pixels is N0 ¼ n20 ¼ 784.
Next, the matrix is binarized by rounding up its values. At
this step, the size of the matrix remains unchanged.
On the next step, the pattern preparation takes place,

which involves several operations simultaneously, see
Fig. 4a1. The first operation is randomization. The ele-
ments of the binarized matrix are transferred to the pat-
tern matrix not sequentially, but in a random manner,
using a randomization mask that is consistent for all
recognized images. This technique allows for a more
uniform distribution of the signal across the entire layer,
engaging both central and peripheral neurons to the same
extent. Such an approach ensures that the neural network
utilizes its entire structure more effectively, enhancing
overall performance and accuracy.

LC

Initial signal
Binarized signal

Preparation

Hidden layer Output

Classification
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Fig. 3 Conceptual diagram of a binarized neural network based on a lattice of pairwise coupled polariton condensates. The initial signal
originates from a grayscale image from the MNIST dataset, which is binarized and projected onto a nin ´ nin transformation lattice. This lattice serves
as a pattern for the input optical signal. This signal then activates neurons within the hidden layer, generating the resultant optical output signal.
Subsequently, the output is processed via a linear classifier (LC)
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The second operation involves expansion, which
entails increasing the number of neurons engaged in
processing. This step enhances the network’s capacity to
handle and interpret complex data by involving a larger
array of neurons, thereby improving its computational
power and efficiency. In the geometry of the square
lattice under consideration, the number of neurons in
the hidden layer increases superlinearly with the number
of elements in the input signal lattice, N in ¼ n2in, as
Nd � ðN in þ 2

ffiffiffiffiffiffiffi
N in

p þ 1Þ=2. To increase the lattice size

from n0 to nin, elements randomly selected from the
binarized lattice are repeatedly inserted into the input
pattern lattice, see (iii) and (iv) in Fig. 4a1. One should
note that both randomization and expansion are uni-
formly applied to all initial images, ensuring that each
element of the binarized matrix is allocated to specific,
unchanging positions within the input pattern lattice,
consistent across different images. This approach to
element placement standardizes the processing frame-
work for each image.
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Fig. 4 Evaluation of the MNIST handwritten digit recognition by the polariton neuromorphic network. a1, a2 Schematic depicting the
conversion of a binarized initial signal lattice of size n0 ´ n0 into an input signal lattice of size nin ´ nin, utilizing randomization and expansion, both
without (a1) and with (a2) signal densing. b The recognition accuracy in dependence on the size of the input signal lattice nin (lower scale) or the
number of neurons (dyads) in the hidden layer Nd (upper scale). Each data point represents an average from ten numerical experiments, each
utilizing different randomization masks. The shaded area reflects the variation in accuracy across these numerical experiments. Vertical lines, serving
as guides for the eye, indicate the conditions, where the size of the polariton lattice matches that of the initial images (dashed), and when the
number of neurons equals the number of pixels in the initial image (dash-dotted). c The recognition accuracy in dependence of the densing degree s
of the input signal for square polariton lattice systems of different size nin with different numbers of neurons in the interaction layer: nin ¼ 20 with
220 neurons (blue), nin ¼ 28 with 420 neurons (green), nin ¼ 39 with 800 neurons (red), nin ¼ 75 with 2890 neurons (violet), and nin ¼ 160 with
12960 neurons (brown). Red markers indicate the maxima of the dependencies. Horizontal dashed lines indicate the accuracy levels for alternative
established classification approaches (from bottom to top): the linear software classification of the grayscale (92.5%) and binarized (91.9%) MNIST data
set, the binarized polariton network based on a layer of XOR gates (experimental)15 and the nonlinear polariton network with the software
backpropagation training (experimental)5
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Network operation and accuracy evaluation
MNIST dataset analysis
The pattern resulting from the previous step serves as

the guide for the spatial light modulator, which then
generates the input signal for the hidden layer of the
binarized polariton network. In the hidden layer, the key
part of computational processes takes place, culminating
in the generation of the output signal, see Fig. 3. It is
important to emphasize that due to the multiple inter-
action possibilities between neurons of the input layer and
the neurons of the hidden layer, each element can
potentially activate a different number of neurons in the
hidden layer, depending on its position within the signal
lattice. This highlights the nonlinear nature of these
interactions. The output signal is composed of an array of
binary signals, either 0 or 1, which encode the OFF and
ON states of polariton dyads in the hidden layer. These
states are manifested as the presence or absence of pho-
toluminescence from the centre of the dyads. The output
signal then can be processed using a conventional linear
classifier, which can be implemented either electronically
or through purely optical means15,16.
To evaluate the effectiveness of the proposed polariton

neuromorphic network architecture, we simulated its
operation using numerical calculations. The assessment
was conducted on the MNIST dataset12,13, comprising a
set of 60,000 samples of handwritten digits for training the
network and a set of 10,000 samples for testing purposes.
Given that the MNIST dataset serves as a standard
benchmark for the goals of image classification, its use in
our study enables a rigorous comparison of our findings
with existing results in polariton-based neuromorphic
network research4,5,15,16. It is noteworthy that the binary
nature of both the input and output signals, as well as the
functioning of the neurons within the hidden layer,
facilitated a more efficient utilization of computational
resources. This efficiency, in turn, permitted the deploy-
ment of the entire spectrum of training and testing ima-
ges, eliminating the need for any artificial reduction in
image resolution. At the linear classifier stage of the
neural network, the linear regression algorithm was
employed for efficient data classification.
It is commonly observed in the neuromorphic network

research that the increase of the number of neurons in the
hidden layer can potentially improve the classification
accuracy. This is corroborated by our findings, as illu-
strated in Fig. 4b, where we demonstrate a monotonic
increase in the accuracy of classifying MNIST dataset
images with the increase in the size of the input signal
lattice nin, which implies an increase in the number of
neurons Nd in the hidden layer. In the figure, each data
point corresponds to the accuracy of the image recogni-
tion at a given number of neurons, averaged over ten
numerical experiments, carried out for different

randomisation masks used at the input layer preparation
step. The light blue shaded area indicates the range of
variation of accuracy obtained in the corresponding
numerical experiment series. It can be observed that
randomization has a finite effect on accuracy, altering it
within a margin of less than one percent. This dependence
exhibits a saturating character, converging towards about
95.4% accuracy with an increasing number of neurons.
Vertical lines indicate the observations, corresponding to
the size of the input layer equal to the size of the initial
image, nin ¼ n0 ¼ 28, with the number of neurons esti-
mated as about 420 (gray dashed), and to the size of the
input layer nin ¼ 39, with the number of neurons close to
the number of pixels in the initial image, Nd ¼ 760<n20
(black dot-dashed). It can be seen that in the second case,
with a comparable number of neurons involved, the
classification accuracy of the polariton neuromorphic
network, averaging over 93.6%, exceeds the accuracy of
the software linear classification of both grayscale (92.5%)
and binarized (91.9%) images, see also Sec. S2 in the
Supplementary Information.
In addition, reducing the input signal lattice dimension

to 20, and consequently the number of neurons in the
hidden layer to approximately 220, still ensures an accu-
racy above 90%.

Input signal densing
In the procedure previously described above, it was

assumed that the value of each element in the input layer
(0 or 1) is determined by the value of only one randomly
selected element from the binarized initial image. Here-
with, the average filling of the binarized initial matrix as
well as of the input matrix (number of nonzero elements
relative to the total number of elements) is about 0.19.
Thus, on average, more than 80% of the input neurons do
not trigger the activation of neurons in the hidden layer.
Meanwhile, the nonlinearity of the interaction is mani-
fested only in the case of activated neurons.
To further increase accuracy, we suggest to supplement

the preparation of the input layer with an additional
operation, termed by us input signal densing, which allows
to increase the filling of the input layer and thereby
enhance the nonlinearity. The operation involves using
more than one element of the binarized matrix layer for
determining the value of an element in the input layer. In
this scenario, when projecting the binarized image onto
the input signal layer, the selection process is randomized
not only for the element being transferred from the first
matrix but also for the element in the second matrix
where the transfer occurs.
In the approach not involving the image densing, all

elements can be filled consecutively. Once a particular
element in the input layer is assigned a value, this value
remains unchanged, and the element no longer
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participates in the further process of filling the input layer.
Each such element contains only one incoming connec-
tion from the projected binarized layer, see blue lines in
Fig. 4a1. In contrast, in the case of image densing, the
value of a filled element can be modified during the
subsequent process. This approach is illustrated in
Fig. 4a2. If two elements of the binarized image matrix are
used for determining an element of the input matrix, in
this case, the principle of assigning values is similar to the
operation of a logical OR gate. If both elements are 0, the
assigned element in the input layer also takes a value 0,
see (v) in Fig. 4a2. If either one of the elements (vii) or
both of them (vi) are 1, then the assigned element is also
1. This can be easily generalized to the case of three and
more elements.
In the proposed approach, the preparation of the input

layer involves partial overlapping of the initial image with
itself. To describe such overlapping, we introduce the
parameter of densing degree s, which can take both
integer and fractional values. For instance, a densing
degree of 2 means that each element in the input layer is
on average determined by two elements of the initial
binarized layer. Similarly, with s ¼ 1:5, approximately half
of the input layer elements are on average determined by
one element of the initial layer, while the other half by two
elements. Figure 4c illustrates how the classification
accuracy of the polaritonic network, with different num-
bers of neurons in the hidden layer, changes with the
densing degree s of the input layer. The figure reveals
pronounced peaks in the accuracy dependencies. This
phenomenon can be explained as follows. States both in
the input space and in the feature space are represented
by binary vectors consisting of various combinations of
‘0’s and ‘1’s. Increasing the densing degree s implies a
higher fraction of ‘1’s in the input space, which in turn
activates more neurons in the hidden layer. This activa-
tion facilitates structural nonlinearity through the net-
work’s architecture, thereby enhancing the distinct
features of elements belonging to specific data classes
(digits in our case). Consequently, this also increases the
number of ‘1’s in the feature space.
However, beyond a certain point, further increasing the

densing degree s results in diminishing returns. Addi-
tional ‘1’ in the feature space no longer contribute to
highlighting distinctive features. Instead, they may
obscure these features by overwhelming other state ele-
ments or adding redundant information. In the extreme
case where s approaches infinity, every input state would
be mapped to a feature space vector consisting entirely of
‘1’s, rendering state recognition impossible. For a given
number of involved neurons, the peak accuracy is
achieved when the number of ‘0’s and ‘1’s is comparable
with each other. The variability in the peak’s position and
the rate at which classification accuracy changes with

different numbers of neurons in the hidden layer can be
attributed to the structural nonlinearity introduced by the
random pairing of input signals with neurons. This non-
linearity varies with each configuration, significantly
impacting how effectively the network processes and
utilizes the increased density of ‘1’s to distinguish between
classes. Consequently, the network’s ability to manage this
increased input density depends on the specific config-
uration and number of neurons.
The key finding of our study is that with approximately

800 neurons (corresponding to nin ¼ 39) and a densing
degree of about 3, the accuracy reaches the previously
reported benchmark of 96%15,16 (see highlighted marker
on a red curve in Fig. 4c), and surpasses it with the further
increase of the number of neurons. Our predicted max-
imum average accuracy is 97.5%, obtained for the network
with the input matrix size of nin ¼ 160, corresponding to
the number of neurons less than 1:3 ´ 104, and the den-
sing degree s ¼ 3:5, see the red marker at the brown curve
in Fig. 4c. The accuracy can be further increased by at
least 0.1% through the appropriate choice of a randomi-
zation mask. It is evident that the dependencies exhibit a
pronounced maximum, and the value of s, at which this
maximum occurs, increases with the growing number of
neurons Nd. Moreover, the fewer the number of neurons,
the steeper the dependencies become. It can also be
observed that the impact of the randomization mask
notably decreases with an increase of the number of
neurons.

Speech Commands dataset analysis
To further evaluate the adaptability of our proposed

neuromorphic network and its ability to generalize across
different types of data beyond the MNIST dataset, we
tested it using the Speech Commands dataset37,38. This
dataset fundamentally differs from MNIST in structure,
consisting of one-second audio clips containing spoken
words rather than static images. The Speech Commands
dataset is designed for voice recognition tasks, featuring
audio recordings of spoken commands. Focusing on ten
classes—digits from zero to nine—we converted the audio
files into flattened one-dimensional arrays of Mel-
frequency cepstral coefficients (MFCCs), which are com-
mon features used in speech recognition44,45. Each MFCC
feature matrix comprises 12 coefficients that capture the
primary audio characteristics. For binary processing
compatibility, these matrices were binarized so that non-
positive elements were set to ‘0’ and positive elements to
‘1’. For detailed information on the preprocessing steps
and the composition of the MFCC feature matrix, refer to
the Methods section and Supplementary Section 5.
Expanding our evaluation to the Speech Commands

dataset, our results are detailed in Fig. 5, showcasing how
the network adapts to audio recognition tasks. As
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anticipated, the classification accuracy for spoken digits
increases with the number of neurons, peaking at about
68%, with results presented in Fig. 5a. Similar to our
findings with image-based datasets, the performance of
our neuromorphic network excels beyond that of tradi-
tional linear classifiers both in the binarized (by about
19%) and non-binarized (by about 7%) MFCC feature
arrays.
In examining the performance of our proposed neuro-

morphic network on the Speech Commands dataset, it is
beneficial to compare it against a well-established
benchmark in speech recognition: the Hidden Markov
Model with Gaussian Mixture Model (HMM-GMM)39,40.
This approach utilizes Hidden Markov Models to
sequence audio data, where each state is characterized by
a mixture of Gaussian distributions. Traditionally used for
modelling audio sequences in speech recognition tasks,
HMM-GMM operates on input data without undergoing
binarization, providing a robust baseline with a reported
accuracy of 40.9% across the full Speech Commands
dataset46 and 65.8% for the ten-class subset. Impressively,
our binary neuromorphic network surpasses this result,
achieving even greater accuracy on binarized data.
A notable observation from our study pertains to the

application of the input signal densing technique. As
depicted in Fig. 5b, unlike with the MNIST dataset,
adjusting the densing degree s for the Speech Commands
does not yield improvements in classification accuracy,
regardless of the neuron count. The ineffectiveness of

densing in this context can be attributed to the intrinsic
data structure of Speech Commands, where the average
filling of the initial binarized matrix is approximately 0.51,
closely balancing the ‘0’ and ‘1’ signals. This balance is
critical because the linear classifier used for post-
processing in the network treats imbalances towards
more 0’s or more 1’s with similar effectiveness.
For datasets characterized by a denser filling, where the

majority of the input vector elements are active, achieving
a balanced input suitable for optimal classifier perfor-
mance can often be managed at the binarization stage by
adjusting the threshold. Here, the threshold is the value at
which pixels in the initial data vector are converted to
binary values: pixels with intensities above this threshold
are set to ‘1’, and those below or equal to the threshold are
set to ‘0’. In the case of MNIST, where the average natural
filling is significantly lower (around 0.19), achieving such
balance using threshold adjustments alone is not feasible,
thus highlighting the utility of the input signal densing
technique.
It is somewhat presumptuous to specify an exact opti-

mal filling degree for the input vector because in fact the
parity should be achieved in the output signal entering the
linear classifier, following its traversal through the hidden
layer. Nevertheless, the balance of 0’s and 1’s in the input
signal can serve as a rough guideline for approximating
this parity.
Further details on the applicability of both threshold

management and the input signal densing technique,
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Fig. 5 Evaluation of the Speech Commands recognition (ten commands) by the polariton neuromorphic network. a The recognition
accuracy in dependence on the size of the input signal lattice nin (lower scale) or the number of neurons (dyads) in the hidden layer Nd (upper scale).
b The recognition accuracy in dependence of the densing degree s of the input signal for square polariton lattice systems of different size nin with
different numbers of neurons in the interaction layer: nin ¼ 20 with 220 neurons (blue), nin ¼ 28 with 420 neurons (green), nin ¼ 39 with 800 neurons
(red), and nin ¼ 160 with 12960 neurons (brown). Red markers indicate the maxima of the dependencies. Horizontal dashed lines indicate the
accuracy levels for alternative classification approaches (from bottom to top): the linear software classification of the binarized (49.2%) and non-
binarized (61%) MFCC feature matrices, and the HMM-GMM-based classification of the MFCC feature matrices (65.8%)
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particularly with the MNIST dataset, are discussed in
Supplementary Section S6. Supplementary Section S4
provides accuracy estimates for the Fashion-MNIST
dataset, where a zero threshold in binarization (assign-
ing a ‘1’ to any non-zero pixel) naturally leads to a filling
that approaches parity. These insights underscore the
boundaries and effectiveness of the input signal densing
technique across different datasets.

Discussion
Polaritonic neural networks, both previously proposed

and presented in this work, are constructed based on a
single hidden neuronal layer. In this context, the nature of
neuronal connections plays a crucial role in determining
the accuracy of such a network. In ref.15, optical XOR
gates function as neurons in the hidden layer. Input to
each gate consists of a pair of optical pulses encoding two
random pixels from a binarized initial image, and the
output is the result of nonlinear interaction of these
pulses. Thus, in this architecture of the neural network,
nonlinearity is achieved at the level of interaction of the
input layer neurons, while the triggering of neurons in the
hidden layer merely reflects the outcome of these
interactions.
In the architecture without input signal densing, pro-

posed by us, input neurons do not interact with each
other. Nonlinearity is achieved at the level of interaction
between the input neurons and the neurons in the hidden
layer. Thus, the neurons in the hidden layer not only
transmit the result of the interaction but are themselves
the subjects of this interaction.
Our proposed neural network architecture is highly

advantageous as it allows for the integration of both
approaches to facilitate nonlinear interactions among
neurons of different layers. The integration was realized
through the introduction of an input signal densing pro-
cedure, leading to record-breaking level of predicted
accuracy in polaritonic neural networks, substantially
surpassing those of previously proposed architectures.
The path towards further enhancing the accuracy of our

system remains open. Due to the flexible geometry of the
lattice and the genuinely nonlinear nature of the inter-
actions among the lattice-forming polariton condensates,
there is potential to increase accuracy by involving a lar-
ger number of neurons from the hidden layer in contact
with input signals. Additionally, a modification of the
nature of neuronal interactions, such as by replacing the
OR operation with a XOR operation in the hidden layer,
could also contribute to the improvement of accuracy.
To address the challenge of scaling polariton neural

networks beyond current limitations, we propose several
strategies. These strategies, detailed in Sec. S7 of the
Supplementary Information, include tiling multiple SLMs,
utilizing optical waveguides, implementing advanced

micro-optics, and employing dynamic reconfiguration
techniques. By using multiple SLMs placed adjacent to
each other, one can create a larger composite grid that
significantly increases the addressable area for the pump
beams. This modular approach allows for the expansion
of the network by simply adding more SLMs, with careful
alignment and synchronization ensuring seamless opera-
tion across the entire grid. Optical waveguides can be
integrated into the sample to direct light precisely to
designated spots, overcoming the spatial limitations of
free-space optics. These waveguides can be fabricated
using advanced lithography techniques to create efficient
light paths with minimal loss, enabling the creation of
larger networks without increasing the physical footprint.
Incorporating advanced micro-optics, such as microlens

arrays, allows for precise focusing and directing of pump
beams. This enhances the density of pump spots within
the available area, enabling more neurons to be addressed
simultaneously. Techniques like diffractive optical ele-
ments can further optimize the beam distribution and
intensity profile. Dynamic reconfiguration techniques
enable a single SLM to sequentially address different
regions of the sample at high speeds or to reproduce
different configurations of the neural network on the
same region. This time-multiplexing approach effectively
increases the number of controllable neurons without
increasing the physical size of the SLM or the sample, by
dynamically reconfiguring the pump spots or the neural
network fragments. Each of these approaches is designed
to overcome spatial constraints and enhance the efficiency
of pump beam delivery, thereby enabling the creation of
larger and more complex polariton neural networks. For
more detailed descriptions and technical aspects of these
strategies, refer to the Supplementary Information.
The main advantage of the polaritonic part of the neural

network is its unprecedented speed, with processing times
of only a few tens of picoseconds required for the gen-
eration and evolution of polariton condensates in
response to laser pump pulses. Delays caused by elec-
tronic components are inevitable for neural networks of
any nature during data loading and result reading stages.
However, all other stages in a polaritonic network can be
realized without electronic components.
In each specific experiment, the input signal transfor-

mation masks, once set initially, remain unchanged
throughout the experiment. This means that while the
input signals change, the optical paths of individual sig-
nals remain constant. Among the operations mentioned,
randomization and expansion are linear operations that
can be described as matrix-vector multiplications. These
operations can be optically implemented, as mentioned
in4,5 and detailed in47,48. An input light field representing
the vector of input signals passes through an optical ele-
ment that applies a spatially varying phase or amplitude
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modulation, effectively performing a matrix-vector mul-
tiplication at the speed of light.
The signal densing operation is more complex, but

solutions exist for its optical implementation as well. Our
studies on the dependence of neuron performance on
signal pulse intensity show that, with other parameters
fixed, the intensity of signals can vary within several folds
while ensuring correct neuron switching and not com-
promising the isolation of dyads. In this mode, signal
densing can be achieved by simply combining multiple
pulses at a single point on the sample, resulting in a
proportional increase in the intensity of the resulting
pulse. Such a combination can be realized using optical
components like beam splitters and combiners.
Another approach involves temporal multiplexing,

where the steps of the signal densing process are spread
out over time. This technique is similar to the dynamic
reconfiguration strategy discussed for network scaling,
where different steps of the process occur sequentially in
time but within the same spatial region. By carefully
timing these steps, we can ensure that the combined effect
of the pulses is achieved without significant delay. Even
with an increase in the resulting operation time to hun-
dreds of picoseconds, this approach still maintains a
substantial speed advantage over electronic neural
networks.
Transitioning to the aspects of practical realization of

the proposed architecture, it becomes essential to con-
sider the possible experimental realization of polariton
condensate lattices designed above. Spatially-distributed
systems comprising chains and lattices of interconnected
quantum entities have gained recognition as platforms for
information storage, transmission and processing, as well
as simulators of complex phenomena20,22,49–51. Polariton
lattices, a recent breakthrough in spatially-distributed
quantum systems, are notable for their exceptional spatial
coherence24,25,29,30. This coherence significantly exceeds
that of individual condensates and it facilitates phase
locking of nodes across the entire lattice. This widespread
phase synchronization could potentially enhance the
nonlinearity of interactions essential for neuromorphic
network operation, see, e.g.,4. However, this scenario leads
to the loss of a key advantage emphasized in our work: the
feasibility of neuron response binarization would be sig-
nificantly compromised, impacting computational speed
and resource efficiency. To address this issue while
retaining the advantage of polariton lattices, which is the
optical controllability of connections between con-
densates, we propose ensuring pairwise interactions of
condensates within the lattice by selectively severing non-
contributing links. For this purpose, a variety of approa-
ches exists.
The first possible approach involves optical induction of

potential barriers for ballistic polaritons within a planar

microcavity, similar to the excitation of the polariton
lattice itself as well as the input signals. For this purpose,
the nonresonant excitation of the exciton reservoir can be
used52. We propose to employ it for both the polariton
lattice and the input signals generation. However, it
should be noted that in this scenario, the pump will
contribute not only to the separation of the condensates
but also to the changes in their occupation numbers. This
factor can be mitigated by using a reservoir of dark
excitons as a barrier53,54. Dark excitons do not participate
in optical interactions and do not directly influence the
population of polariton condensates. Meanwhile, the
strong repulsive nature of polariton-exciton interactions
is equally characteristic of bright and dark excitons. A
recent paper54 demonstrates the feasibility of excitation of
a dark exciton reservoir through the two-photon
absorption. Given that this approach results in record-
long exciton lifetimes, over 20 ns, it suggests that such a
reservoir would not contribute to replenishing the
polariton condensate.
An alternative approach, described in ref.55, consists in

the separation of condensates within the lattice through
the creation of spatially varying dissipation profiles by
controlling the decay rates of polaritons at different lattice
sites. Among the experimental methods mentioned in55,
one is proton implanting into quantum wells, which
enables independent control of exciton and cavity photon
energies, influencing polariton decay rates56. Additionally,
controlled stress applied to the substrate can create spatial
traps, affecting the coupling of exciton and photon states,
thus varying polariton lifetimes57. For dynamic dissipation
control, electrical carrier injection can be used, causing
localized losses through the absorption by excited states58.
One can also exploit the biexciton formation regime to
alter polariton interactions59. As numerical simulations
illustrated in Fig. 1h, l show, both potential landscape
profiling and dissipation control are comparably effective
tools of the condensate-condensate coupling control. The
choice of the appropriate method then would depend
primarily on the experimental capabilities available and
the specific goals set for the experiment.
The previously described approaches for the pairwise

coupling of condensates in a lattice primarily involved
operations within a planar microcavity. However, tradi-
tional methods of structuring cavities, such as deep
etching techniques, offer alternative avenues for explora-
tion, allowing, e.g., for the creation of clusters60 and
chains61 of micropillars. Structures, crafted through pre-
cise etching processes, may form a distinct spatial
arrangement within the microcavity plane. Another
approach for clustering polariton condensates within a
lattice, detailed in ref.33, involves creating controllable
Josephson junctions of the condensates. This is achieved
through nanostructuring of cavity mirror surfaces via
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direct laser writing62, creating local potential minima, and
dynamically tuning the potential landscape using a
thermo-responsive polymer affected by a heating laser to
vary the optical medium’s refractive index. This method
allows for controlled polariton tunnelling between con-
densates, facilitated by finite height potential barriers,
leading to the formation of condensates in a thermo-
optically adjustable potential landscape.
Our investigation into binary polariton neural networks

has demonstrated their fundamental operational princi-
ples and potential for energy-efficient computing, suitable
for certain applications where high-speed and low power
consumption are critical. Energy consumption and effi-
ciency analysis of the proposed system are discussed in
Sec. S8 of the Supplementary Information. While binary
networks inherently trade off precision for efficiency, our
results with a basic logistic regression model on the
MNIST dataset have shown promising accuracy levels.
Moreover, the proposed network architecture, while
simple, suggests several avenues for enhancement that
could address tasks requiring higher precision.
We propose that extending the network’s complexity

through additional hidden layers could amplify its com-
putational power. To address the challenge of integrating
multiple hidden layers in a polaritonic neural network, the
output signals from one hidden layer can be utilized as a
template for generating input signals for the next layer.
This approach may involve electronic components for
signal regeneration or amplification, which, while
enhancing accuracy, compromises the system’s compu-
tations speed advantage.
Alternatively, integrated optical waveguides for polar-

itons can link neurons across hidden layers. These
waveguides utilize the bistability effect, where a polariton
condensate in a low-intensity state is switched to a high-
intensity state by an input trigger8. The hidden layer
photoluminescence signals can serve as these triggers,
effectively generating signals in neurons at the opposite
ends of the waveguides in subsequent layers. This
approach maintains the speed advantage by avoiding
electronic mediation and capitalizes on the intrinsic
properties of polaritons for rapid signal transmission. This
approach, although requiring adjustments to the hidden
layer geometry, offers a feasible and efficient solution for
multi-layer integration in polaritonic neural networks.
Adjusting the network’s geometric layout from a square

to a hexagonal lattice could further improve its perfor-
mance by increasing the number of neurons each input
signal can potentially activate, thus enhancing the struc-
tural nonlinearity of the network. Moreover, replacing the
OR gate response with other types of logical operations,
such as XOR gates, could add another layer of non-
linearity. An XOR gate could toggle the state of each
neuron in response to paired inputs without changing the

overall parity, introducing a dynamic component to the
neuron’s response.
We also propose the idea of accommodating continuous

input signals alongside binary outputs. This approach
would utilize the varying intensities of signals, such as
those from grayscale images, to modulate input signals,
enabling a more nuanced response based on pixel
brightness. By doing so, we could significantly enrich the
input feature space without compromising the inherent
advantages of binary systems, such as low memory usage
and high processing speeds.
Finally, exploring controlled interactions between neu-

rons—what is often considered a parasitic effect of
crosstalk—could be harnessed to advantageous effect. By
fine-tuning the isolation and interaction among neuron
pairs, we could potentially enhance the network’s
robustness and precision.
In summary, we have developed a neuromorphic network

architecture leveraging lattices of exciton polariton con-
densates. The design takes advantage of a binary frame-
work, where each neuron, facilitated by the spatial
coherence of pairwise coupled condensates, performs bin-
ary operations. This coherence ensures efficient network-
wide communication, with the binary neuron switching
driven by nonlinear repulsion through the excitonic com-
ponent of polaritons. The binary nature of a network offers
computational efficiency and scalability advantages, setting
this system apart from conventional continuous weight
models and sequential binary neuromorphic systems.
The network’s effectiveness was demonstrated using the

MNIST dataset for handwritten digit recognition. Our
network has not only shown competitive performance
against existing systems, but also surpassed them when
taking advantage of the original signal densing technique.
The developed approach allowed the network to achieve a
remarkable 97.5% classification accuracy, theoretically.
Further validation was conducted on the Speech Com-
mands dataset, which contains diverse and complex one-
second audio clips of spoken words. This additional
testing phase highlighted the adaptability and robustness
of our architecture in processing intricate audio data and
handling a variety of speech recognition tasks.
By employing a binary operational framework and

exploring various lattice structuring techniques, this study
opens new pathways for developing efficient, scalable, and
high-speed neuromorphic systems. We are confident that
polaritonic systems have high potentiality as creating
powerful tools for complex pattern recognition and data
processing tasks.

Materials and methods
Numerical simulation of polariton dyads
For simulating macroscopic coherent states of polariton

dyads, we use the model proposed in ref.30. We solve the
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generalized Gross-Pitaevskii equation for the polariton
wave function Ψðt; rÞ:

i_∂tΨ t; rð Þ ¼ � _2

2m� ∇
2 þ U t; rð Þ � i_γ

2

� �
Ψ t; rð Þ

ð1Þ

where m� is the effective polariton mass, γ is the polariton
decay rate. Uðt; rÞ is an effective potential for polaritons
that can be written as

U t; rð Þ ¼ α Ψ t; rð Þj j2 þ Ud t; rð Þ þ U in t; rð Þ þ V rð Þ
ð2Þ

The first term in the right-hand side of Eq. (2) is
responsible for polariton-polariton interactions with the
interaction constant α. The second term given as

Ud t; rð Þ ¼ g1 þ iR1

2 γR þ R1 Ψ t; rð Þj j2� �þ G1

 !
P1 t; rð Þ ð3Þ

characterizes the complex effective potential arising from
the excitation of polariton condensates in a dyad through
nonresonant pulsed optical pumping with intensity
P1ðt; rÞ. g1 is the constant of interaction of polaritons
with reservoir excitons, R1 is the stimulated scattering rate
from the reservoir to the condensate, γR is the exciton
decay rate. The parameter G1 characterizes repulsion
from the dark exciton reservoir, which also inevitably
emerges within the pump spot.

The third term in Eq. (2) is responsible for the potential,
arising from the signal pulse of intensity P2ðt; rÞ:

U in t; rð Þ ¼ g2 þ iR2

2 γR þ R2 Ψ t; rð Þj j2� �þ G2

 !
P2 t; rð Þ

ð4Þ

In ref.30, it is suggested to use cross-circularly polarized
pump P2ðt; rÞ in relation to P1ðt; rÞ. This approach aims
to reduce gain of the condensates in the dyad due to their
overlapping with the signal. The parameters in Eq. (4) for
U in t; rð Þ have the same meaning as those in Eq. (3) for
Ud t; rð Þ. We take the pumps in a Gaussian form as

P1 t; rð Þ ¼ P10 exp � t2

w2
τ1

� �X
j;k

exp � xþ jdð Þ2
w2
1

� yþ kdð Þ2
w2
1

" #
ð5aÞ

P2 t; rð Þ ¼ exp � t2

w2
τ2

� �X
j;k

P j;kð Þ
20

exp � xþ jþ 1=2ð Þd½ �2
w2
2

� yþ k þ 1=2ð Þd½ �2
w2
2

( ) ð5bÞ

where wτ1;τ2 and w1;2 are durations and spatial widths of
the pump pulses, d is the distance between the centers of
the pump spots. The amplitude P10 is taken equal for all
pulses across the lattice unless otherwise indicated. The
amplitudes P j;kð Þ

20 ¼ P20 for ‘1’ elements of the signal lattice
and P j;kð Þ

20 ¼ 0 for ‘0’ elements.

The last term in Eq. (2), which differs our model from
one in ref.30, characterizes the stationary barrier. The
barrier V ðrÞ ¼ Fðr; V 0;u; aÞ, schematically shown in
Fig. 2c, is a function of a spatial coordinate, with the
following parameters: V 0 is the height of the potential, u
is the width of the walls, and a is the width of the gap in
the wall, responsible for entrance of the input signal.
Remarkably, the magnitude V 0 can be both real and
imaginary, depending on the nature of the barrier.

Settings for simulation parameters
For simulation, we take the following parameters sug-

gested in ref.30. The effective polariton mass is m� ¼
0:49meV ps2 μm�2, the decay rates are γ ¼ 1=6 ps�1 and
γR ¼ 0:05 ps�1, the interaction constants are α ¼
2:4 μeV μm2, g1 ¼ 0:8α and g2 ¼ 1:8α, repulsion con-
stants from dark reservoirs are G1;2 ¼ 4g1;2=γR, the
durations and spatial widths of the pump pulses are wτ1 ¼
5 ps, wτ2 ¼ 8 ps and w1;2 ¼ 2:2 μm, the distance between
the pump spots is d ¼ 12 μm. We also take the scattering
rates as R1 ¼ 7α and R2 ¼ 0:7R1.

Preprocessing of Speech Command audio data
The Speech Commands dataset37,38 comprises WAV

audio files that are pre-processed through a defined
sequence to make them suitable for the neuromorphic
network analysis:

● Audio Length Adjustment: While each audio file in
the Speech Commands dataset is intended to be
approximately one second long, some are shorter
due to truncated recordings, often cutting off the
very words they are meant to capture. We remove
these incomplete files from our dataset to maintain
consistency and quality, only using full-length
recordings for our analysis.

● MFCC Extraction: We compute MFCCs from each
audio file, extracting 12 coefficients per frame across
24 frames. This configuration balances detailed
audio analysis with computational efficiency,
ensuring we capture essential speech characteristics
effectively for each one-second clip. See
Supplementary Section 5 for more details about
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MFCC feature matrix.
● Binarization: The MFCC feature arrays are

binarized. Non-positive values are set to 0 and
positive values are set to 1.

● Dataset Splitting: The processed data is split into
training and testing sets using a 90:10 ratio, ensuring
both effective training and thorough performance
evaluation.

Acknowledgements
The support of Saint-Petersburg State University (research grant No.
1024022800259-7), the state assignment in the field of scientific activity of the
Ministry of Science and Higher Education of the Russian Federation (theme
FZUN-2024-0019, state assignment of VlSU) and the Innovation Program for
Quantum Science and Technology 2023ZD0300300 are acknowledged.

Author details
1Spin-Optics laboratory, St. Petersburg State University, St. Petersburg 198504,
Russia. 2Stoletov Vladimir State University, Vladimir 600000, Russia. 3School of
Science, Westlake University, Hangzhou3 10030 Zhejiang Province, China.
4Abrikosov Center for Theoretical Physics, Moscow Institute of Physics and
Technology, Dolgoprudny 141701 Moscow Region, Russia

Author contributions
E.S. devised the concept, designed and implemented the methodology,
performed simulations and analyzed the results. A.K. initiated the study,
provided critical guidance throughout the work, and contributed to refining
the manuscript. Both authors wrote the manuscript, discussed the results, and
approved the final version.

Data availability
All data generated and analyzed during the current study are available from
the corresponding author on reasonable request.

Conflict of interest
The authors declare no competing interests.

Supplementary information The online version contains supplementary
material available at https://doi.org/10.1038/s41377-024-01719-4.

Received: 10 January 2024 Revised: 8 December 2024 Accepted: 13
December 2024

References
1. Zhu, J. D. et al. A comprehensive review on emerging artificial neuromorphic

devices. Appl. Phys. Rev. 7, 011312 (2020).
2. Ostrau, C. et al. Benchmarking neuromorphic hardware and its energy

expenditure. Front. Neurosci. 16, 873935 (2022).
3. Sangwan, V. K. & Hersam, M. C. Neuromorphic nanoelectronic materials. Nat.

Nanotechnol. 15, 517–528 (2020).
4. Ballarini, D. et al. Polaritonic neuromorphic computing outperforms linear

classifiers. Nano Lett. 20, 3506–3512 (2020).
5. Opala, A. et al. Training a neural network with exciton-polariton optical

nonlinearity. Phys. Rev. Appl. 18, 024028 (2022).
6. Kavokin, A. et al. Microcavities. 2nd edn. (Oxford: Oxford University Press, 2017).
7. Carusotto, I. & Ciuti, C. Quantum fluids of light. Rev. Mod. Phys. 85, 299–366

(2013).
8. Liew, T. C. H., Kavokin, A. V. & Shelykh, I. A. Optical circuits based on polariton

neurons in semiconductor microcavities. Phys. Rev. Lett. 101, 016402 (2008).
9. Opala, A. et al. Neuromorphic computing in Ginzburg-Landau polariton-lattice

systems. Phys. Rev. Appl. 11, 064029 (2019).
10. Xu, H. W. et al. Universal self-correcting computing with disordered exciton-

polariton neural networks. Phys. Rev. Appl. 13, 064074 (2020).

11. Ghosh, S., Paterek, T. & Liew, T. C. H. Quantum neuromorphic platform for
quantum state preparation. Phys. Rev. Lett. 123, 260404 (2019).

12. LeCun, Y. et al. Gradient-based learning applied to document recognition.
Proc. IEEE 86, 2278–2324 (1998).

13. LeCun, Y., Cortes, C. & Burges, C. J. C. ATT Labs (2010). at https://yann.lecun.
com/exdb/mnist URL.

14. Mehonic, A. & Kenyon, A. J. Brain-inspired computing needs a master plan.
Nature 604, 255–260 (2022).

15. Mirek, R. et al. Neuromorphic binarized polariton networks. Nano Lett. 21,
3715–3720 (2021).

16. Matuszewski, M. et al. Energy-efficient neural network inference with micro-
cavity exciton polaritons. Phys. Rev. Appl. 16, 024045 (2021).

17. Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases.
Rev. Mod. Phys. 80, 885–964 (2008).

18. Greiner, M. et al. Quantum phase transition from a superfluid to a Mott
insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002).

19. Chen, I. H. et al. Solitons in cavity-QED arrays containing interacting qubits.
Phys. Rev. A 86, 023829 (2012).

20. Sedov, E. S. et al. Tunneling-assisted optical information storage with
lattice polariton solitons in cavity-QED arrays. Phys. Rev. A 89, 033828
(2014).

21. Kwon, J. et al. Formation of matter-wave polaritons in an optical lattice. Nat.
Phys. 18, 657–661 (2022).

22. Amo, A. & Bloch, J. Exciton-polaritons in lattices: a non-linear photonic
simulator. Comptes Rendus Phys. 17, 934–945 (2016).

23. Kavokin, A. et al. Polariton condensates for classical and quantum computing.
Nat. Rev. Phys. 4, 435–451 (2022).

24. Lagoudakis, P. G. & Berloff, N. G. A polariton graph simulator. N. J. Phys. 19,
125008 (2017).

25. Berloff, N. G. et al. Realizing the classical XY Hamiltonian in polariton simulators.
Nat. Mater. 16, 1120–1126 (2017).

26. Whittaker, C. E. et al. Exciton polaritons in a two-dimensional Lieb lattice with
spin-orbit coupling. Phys. Rev. Lett. 120, 097401 (2018).

27. Kaitouni, R. I. et al. Engineering the spatial confinement of exciton polaritons in
semiconductors. Phys. Rev. B 74, 155311 (2006).

28. Kim, N. Y. et al. Dynamical d-wave condensation of exciton–polaritons
in a two-dimensional square-lattice potential. Nat. Phys. 7, 681–686
(2011).

29. Töpfer, J. D. et al. Engineering spatial coherence in lattices of polariton con-
densates. Optica 8, 106–113 (2021).

30. Alyatkin, S. et al. Optical control of couplings in polariton condensate lattices.
Phys. Rev. Lett. 124, 207402 (2020).

31. Askitopoulos, A. et al. Robust platform for engineering pure-quantum-state
transitions in polariton condensates. Phys. Rev. B 92, 035305 (2015).

32. Askitopoulos, A. et al. All-optical quantum fluid spin beam splitter. Phys. Rev. B
97, 235303 (2018).

33. Vretenar, M. et al. Controllable Josephson junction for photon Bose-Einstein
condensates. Phys. Rev. Res. 3, 023167 (2021).

34. Lukoshkin, V. A. et al. Persistent circular currents of exciton-polaritons in
cylindrical pillar microcavities. Phys. Rev. B 97, 195149 (2018).

35. Lukoshkin, V. et al. Steady state oscillations of circular currents in concentric
polariton condensates. Sci. Rep. 13, 4607 (2023).

36. Toebes, C., Vretenar, M. & Klaers, J. Dispersive and dissipative coupling of
photon Bose-Einstein condensates. Commun. Phys. 5, 59 (2022).

37. Warden, P. Speech commands: a dataset for limited-vocabulary speech recog-
nition. Print at https://arxiv.org/abs/1804.03209 (2018).

38. Speech commands dataset version 2. at https://www.tensorflow.org/datasets/
catalog/speech_commands URL. Released under the Creative Commons by
4.0 license. https://creativecommons.org/licenses/by/4.0/.

39. Deng, L. et al. Phonemic hidden Markov models with continuous mixture
output densities for large vocabulary word recognition. IEEE Trans. Signal
Process 39, 1677–1681 (1991).

40. Gales, M. & Young, S. The application of hidden Markov models in speech
recognition. Found. Trends Signal Process 1, 195–304 (2008).

41. Kasprzak, J. et al. Bose–Einstein condensation of exciton polaritons. Nature 443,
409–414 (2006).

42. Sedov, E. et al. Persistent currents in half-moon polariton condensates. ACS
Photonics 7, 1163–1170 (2020).

43. Wang, Y., Lagoudakis, P. G. & Sigurdsson, H. Enhanced coupling between
ballistic exciton-polariton condensates through tailored pumping. Phys. Rev. B
106, 245304 (2022).

Sedov and Kavokin Light: Science & Applications           (2025) 14:52 Page 16 of 17

https://doi.org/10.1038/s41377-024-01719-4
https://yann.lecun.com/exdb/mnist
https://yann.lecun.com/exdb/mnist
https://arxiv.org/abs/1804.03209
https://www.tensorflow.org/datasets/catalog/speech_command
https://www.tensorflow.org/datasets/catalog/speech_command
https://creativecommons.org/licenses/by/4.0/


44. Davis, S. & Mermelstein, P. Comparison of parametric representations for
monosyllabic word recognition in continuously spoken sentences. IEEE Trans.
Acoust. Speech Signal Process 28, 357–366 (1980).

45. Sahidullah, M. & Saha, G. Design, analysis and experimental evaluation of block
based transformation in MFCC computation for speaker recognition. Speech
Commun. 54, 543–565 (2012).

46. Rai, S., Li T. & Lyu, B. Keyword spotting - detecting commands in speech using
deep learning. Print at https://arxiv.org/abs/2312.05640 (2023).

47. Chang, J. L. et al. Hybrid optical-electronic convolutional neural networks with
optimized diffractive optics for image classification. Sci. Rep. 8, 12324 (2018).

48. Spall, J. et al. Fully reconfigurable coherent optical vector–matrix multi-
plication. Opt. Lett. 45, 5752–5755 (2020).

49. Ma, X. K. & Schumacher, S. Vortex-vortex control in exciton-polariton con-
densates. Phys. Rev. B 95, 235301 (2017).

50. Struck, J. et al. Quantum simulation of frustrated classical magnetism in tri-
angular optical lattices. Science 333, 996–999 (2011).

51. Bloch, I., Dalibard, J. & Nascimbène, S. Quantum simulations with ultracold
quantum gases. Nat. Phys. 8, 267–276 (2012).

52. Gao, T. et al. Polariton condensate transistor switch. Phys. Rev. B 85, 235102
(2012).

53. Schmidt, D. et al. Tracking dark excitons with exciton polaritons in semi-
conductor microcavities. Phys. Rev. Lett. 122, 047403 (2019).

54. Rozas, E. et al. Polariton–dark exciton interactions in bistable semiconductor
microcavities. Phys. Rev. B 108, 165411 (2023).

55. Kalinin, K. P. & Berloff, N. G. Toward arbitrary control of lattice interactions in
nonequilibrium condensates. Adv. Quantum Technol. 3, 1900065 (2020).

56. Schneider, C. et al. Exciton-polariton trapping and potential landscape engi-
neering. Rep. Prog. Phys. 80, 016503 (2017).

57. Balili, R. et al. Bose-Einstein condensation of microcavity polaritons in a trap.
Science 316, 1007–1010 (2007).

58. Sanvitto, D. & Kéna-Cohen, S. The road towards polaritonic devices. Nat. Mater.
15, 1061–1073 (2016).

59. Borri, P. et al. Biexcitons or bipolaritons in a semiconductor microcavity. Phys.
Rev. B 62, R7763(R) (2000).

60. Galbiati, M. et al. Polariton condensation in photonic molecules. Phys. Rev. Lett.
108, 126403 (2012).

61. Baboux, F. et al. Bosonic condensation and disorder-induced localization in a
flat band. Phys. Rev. Lett. 116, 066402 (2016).

62. Kurtscheid, C. et al. Realizing arbitrary trapping potentials for light via direct
laser writing of mirror surface profiles. Europhys. Lett. 130, 54001 (2020).

Sedov and Kavokin Light: Science & Applications           (2025) 14:52 Page 17 of 17

https://arxiv.org/abs/2312.05640

	Polariton lattices as binarized neuromorphic networks
	Introduction
	Results
	The physical background of a polariton neuromorphic network
	Network architecture and design
	Hidden layer of the polariton dyad lattice
	Preparation of an input layer

	Network operation and accuracy evaluation
	MNIST dataset analysis
	Input signal densing
	Speech Commands dataset analysis


	Discussion
	Materials and methods
	Numerical simulation of polariton dyads
	Settings for simulation parameters
	Preprocessing of Speech Command audio data

	Acknowledgements




