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Steady state oscillations of circular 
currents in concentric polariton 
condensates
Vladimir Lukoshkin 1,2, Evgeny Sedov 2,3,4*, Vladimir Kalevich 1,2, Z. Hatzopoulos 5, 
P. G. Savvidis 5,6,7,8 & Alexey Kavokin 2,6,7,9

Concentric ring exciton polariton condensates emerging under non-resonant laser pump in an annular 
trapping potential support persistent circular currents of polaritons. The trapping potential is formed 
by a cylindrical micropillar etched in a semiconductor microcavity with embedded quantum wells and 
a repulsive cloud of optically excited excitons under the pump spot. The symmetry of the potential is 
subject to external control via manipulation by its pump-induced component. In the manuscript, we 
demonstrate excitation of concentric ring polariton current states with predetermined vorticity which 
we trace using interferometry measurements with a spherical reference wave. We also observe the 
polariton condensate dynamically changing its vorticity during observation, which results in pairs of 
fork-like dislocations on the time-averaged interferogram coexisting with azimuthally homogeneous 
photoluminescence distribution in the micropillar.

The most successful approach to the fine control of light is by coupling it with matter. The brightest representa-
tives of such coupled matter-light systems are exciton-polariton condensates. They are usually formed in spe-
cially designed layered semiconductor heterostructures, optical microcavities, containing embedded quantum 
wells (QWs)1. Quantized microcavity photons strongly couple with excitons in QWs and form quasiparticles 
exciton-polaritons. The latter, being bosons, are able to form mesoscopic coherent states of exciton-polariton 
 condensates2,3.

Due to the finite lifetime of polaritons, polariton condensates possess a non-equilibrium nature. They can 
exist for a long time only at the balance of gain and losses in the presence of external pumping. Engineering the 
gain-loss landscape along with the shape of the confining potential in the microcavity plane enables to design the 
vector field of internal fluxes of exciton polaritons within the condensate  cloud4–8. The most advantageous shape 
of the potential landscape for disclosing internal flux behavior of polariton condensate is annulus. In the annular 
geometry, the polariton condensate demonstrate properties of a superfluid  liquid9,10 supporting persistent circular 
polariton currents and  votrices11–13, including those in the presence of external and effective magnetic  fields14,15. 
Ring polariton condensates are characterized by discrete winding numbers which allow to consider them as 
macroscopic quantum objects, potentially opening ground for applications in quantum information  processing16.

In this context, an interesting and important object of study in annular potentials is concentric ring conden-
sates, which so far have been deprived of attention in comparison with single ring condensates. The concentric 
ring geometry is of a significant interest as compared to single ring condensates. It enables one study experimen-
tally correlations between superfluid currents of exciton polaritons in a geometry that preserves the azimuthal 
symmetry. Such correlations are necessarily present if both rings are located in the same trap, however, their 
origin is far from obvious. One can speculate that the direction of propagation of currents in both rings must 
coincide in a stationary case. Our experiments show that the real picture is much more rich and complex. These 
studies pave the way towards the realization of double-qubit gates based on exciton-polariton condensates as 
discussed in Ref.16. In Ref.17 the polariton condensates in concentric ring trapping potentials have been studied 
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theoretically. The coflowing currents of polaritons (cowinding vortices) in the condensates linked with each other 
by a Josephson junction have been predicted. The authors of Ref.18 claim that rotation of polariton ring conden-
sates may be characterized by different winding numbers, and it must be accompanied by formation of a Joseph-
son vortex in the annular junction. The introduction of a long Josephson junction is an elegant way to describe 
splitting of the condensate into two concentric rings. This, however, introduces undesirable perturbations into 
the internal kinetics of polaritons, making important the transversal (radial) kinetics of polariton  flows18.

In our manuscript, we present an experimental study of concentric ring polariton condensates in a single 
ring trapping potential. Such potentials can be created in a microcavity sample at the stage of its manufacturing 
by etching of  pillars19,20 or by non-resonant optical  pumping21,22. The optically induced potential is formed by 
a cloud of incoherent excitons emerging in a sample under the laser pump beam of a given shape. Due to the 
repulsive interaction, the cloud acts as a barrier for polaritons. The reservoir replenished by optical pumping, in 
addition, acts as a continuous source of polaritons for the condensate state. The obvious advantage of the optical 
potentials is the controllability of their shape during the experiments. In addition, due to the optical gain, the 
optical potentials contribute to the stable occupation of the excited  states23. Polaritons occupy the mode charac-
terized by the fastest-growing rate under the competition of losses and  gain23. Herewith the gain of the mode is 
strongly governed by its overlap with the exciton reservoir, which is subject to control by the pump power as well 
as by the shape and position of the pump  spot24. In the pot-like geometry, the radius of the trap for polaritons 
is an effective control parameter for the condensate-reservoir overlapping. The excitation of the higher excited 
radial and azimuthal condensate modes in the trap with the increasing radius has been discussed in Refs.23,25. 
In the ring geometry, the key parameter is the width of the trap ring. In Ref.26 one has demonstrated that with 
an increase in the width of the ring (the diameter of the outer wall of the trap), the lower in the radial quantum 
number n states become lossy, and the condensate has to occupy the higher in n states.

Here we combine the two approaches to the trapping of polaritons. We consider formation of the condensates 
in a cylindrical micropillar cavity under the non-resonant optical pump beam focused close to the center of 
the pillar. The localizing potential is formed by the edges of the pillar and by the repulsive reservoir of optically 
induced excitons under the pump spot. The diameter of the pillar (30 μm) was chosen such that the condensate 
occupied the first excited radial mode with n = 1.

Formation of petal double concentric ring condensates in a fully optical trap has been reported in Ref.21. In 
the experiment of geometry similar to one considered in this manuscript, some of us have observed two and 
multiple concentric ring condensates in cylindrical micropillars of different  diameters27. However, the azimuthal 
dynamics of polaritons was not studied. In this manuscript, we report on the experimental observation of double 
concentric ring polariton condensates with persistent azimuthal polariton currents. We want to emphasize that 
despite the double concentric ring shape, the considered polariton state represents a single polariton condensate 
described by a single wave function which is a first excited radial mode of the ring-shaped potential trap. This dif-
fers it from two adjacent concentric ring condensates separated by an annular Josephson junction, see, e. g. Ref.18. 
We get access to the phase properties of the condensate via measurements of interference of photoluminescence 
(PL) of the condensates with the reference spherical wave. We demonstrate the control over the PL helisity of 
the concentric ring condensates. We also show the regime of oscillations of the polariton condensate helisity. In 
measurements, it is manifested in a homogeneous in azimuthal direction distribution of the condensate density 
together with an even number of fork-like dislocations on interferometry images. We support our observations 
with analysis based on the generalized Gross-Pitaevskii equation.

Results
Concentric ring polariton condenastes are excited by a non-resonant pump beam from the continuous wave (cw) 
laser normal to the microcavity plane and focused close to the center of the pillar. In each experiment, we per-
form two types of measurements. We measure the near-field PL distribution of the polariton condensate and 
the interference of light emitted by the condensate with the reference spherical wave. For the interferometry 
measurements we use the Mach-Zehnder interferometer. We obtain the reference spherical wave by magnifying 
a small peripheral area of the condensate image with use of a convex lens. More details on the experimental setup 
and sample details can be found in Refs.11,12.

Concentric polariton vortices. At the pump power below the condensation threshold, P < Pth , occupa-
tion of high wave vector polariton states prevails due to the bottleneck  effect28–30. Luminescence from the sample 
in the below-threshold pumping regime is shown in Fig. 1a. It enables visualizing the shape of the effective 
trapping potential for polaritons. The central luminous peak corresponds to the potential hill of the reservoir of 
optoinduced excitons under the pump spot. The peripheral ring illuminates the edge of the pillar due to scat-
tering.

At the pump power above the polariton lasing threshold, polaritons condense to a macroscopic quantum 
state of the polariton condensate, occupying the bottom of the annular potential trap. The condensate is char-
acterized by a complex wave function �(r) =

√
ρ(r) exp[iϕ(r)] , where ρ(r) and ϕ(r) are the density and phase 

distribution of the condensate in the pillar plane. Photoluminescence of the condensate, containing information 
of the polariton density distribution, obtained at the pump power of P ≈ 1.5Pth is shown in Fig. 1b. Such double 
concentric ring shape is typical for all polariton condensates discussed below.

The vector f ield of  the polariton current density in a general  case is  given by 
J(r) = Im[�∗(r)∇�(r)] = ρ(r)∇ϕ(r) . If the azimuthal distribution of the polariton condensate density is 
homogeneous, the azimuthal component of the current density up to a constant is determined by Jθ ∝ ∂θϕ , so 
we can measure the azimuthal currents of polaritons in the condensate by measuring variation of the conden-
sate phase over the micropillar. To quantify the circulation of the polariton flux, it is convenient to introduce 
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the orbital angular momentum (OAM) per particle ℓ = N−1
∫∞
−∞[xJy(r)− yJx(r)]dr and the winding number 

m = (2π)−1
∮
P

dϕ , which is the azimuthal quantum number, a topological charge of the circulating state char-
acterizing the variation of the phase along the closed path P13,18. N =

∫∞
−∞ |�(r)|2dr is the occupancy of the 

condensate state. The orbital angular momentum ℓ , being the indicator of internal azimuthal currents in the 
polariton condensate, is the continuous variable that takes into account peculiarities of both the density and 
phase distribution of the condensate. At the same time, the winding number m, being a measure of vorticity (the 
velocity of the phase variation around the vortex core), is an  integer13. For azimuthally homogeneous polariton 
condensates, values of OAM ℓ and the winding number m coincide.

To reveal the condensate phase distribution, ϕ(r) , we measure the interference of the condensate with the 
coherent reference spherical wave. The upper panels in Fig. 2 show the interferometry images of several polariton 
condesates with different winding numbers, m = 0, ±1 and ±3 . The interference fringes on the images corre-
sponding to current states (with m  = 0 ) represent spirals with the direction of twist determined by the sign of 
m and with the number of arms determined by |m|. For the no-current state (Fig. 2g–i), the interference fringes 
represent a set of concentric rings. In all panels, two annular regions are clearly distinguishable (by higher bright-
ness), corresponding to the position of the spatial components of the condensates. To excite polariton current 
states with different winding numbers m we weakly (by a submicrometer distance) displaced the pump spot 
from the center of the pillar, reducing the symmetry of the problem and perturbing the condensate. The double 
ring shape of the condensates, however, had not been destroyed by such subtle displacement. The obtained con-
densates with persistent azimuthal currents were highly stable and were observed until the pumping was turned 
off. After turning off and then turning on the pumping, the phase of the condensate retained the direction of 
its swirling. This indicates that the perturbations introduced by displacing the pump spot can make the system 
chiral and allow one to choose both the absolute value and the sign of OAM of the condensate in an arbitrary way.

Using the Fourier-transform method adapted for closed-fringe  patterns11, from each interferogram in Fig. 2 
we extract the phase of the condensate relative to the phase of the reference spherical wave, see middle row 
panels in Fig. 2. The phase distribution repeats the spiral shape of the interference fringes. For convenience of 
interpretation, in the lower panels of Fig. 2 we show the variation of the phase along the dashed circles, ϕ(θ) , in 
the middle panels corresponding to the position of the ridges of the condensate rings. The black and magenta 
dots correspond to the inner and outer rings, respectively. One can see that for all observed condensates, the 
azimuthal phase variation is similar for the inner and outer polariton condensate rings, and both rings are char-
acterized by equal winding numbers m.

Concentric ring polariton condensates with oscillating vorticity. For a polariton condensate with 
the homogeneous density distribution in the azimuthal direction, in view of the continuity of the condensate 
wave function and its derivative, we can reasonably expect that its phase monotonically changes along the con-
densate rings. Figure 3 shows an example of the experimental observations, that contradicts these expectations. 
Smooth concentric condensate density rings (a) coexist with the concentric ring interferometry fringes with two 
breaks each (b) at around 8 and 9:30 o’clock positions. One should mention that in different experiments with 
similar interferometer settings, the position of the breaks remained approximately the same. On the restored 
phase distribution in Fig.  3c, the phase jumps take place at the position of the breaks. The phase jumps on 
the ridges of the condensate rings by ±π are more clearly seen in Fig. 3d. In our previous  studies12,13, we have 
demonstrated that in a steady state polariton condensate the phase jump accompanies the density dip to ensure 
single-valuedness of the condensate wave function. Since no any noticeable density perturbations are observed 
in Fig. 3a, we assume that we observe not a stationary polariton condensate state, but the time-averaged density 
and interferometry images of the condensate, whose winding number changes in time. In the “Discussion” Sec-
tion below we give our arguments for this assumption.

10 μm

)b()a(

0

1

Figure 1.  Real-space images of PL of the sample under the non-resonant optical pump below (a) and above 
(b) the polariton condensation threshold. In (a) the central peak and the outer ring are the luminescence from 
the laser-induced exciton reservoir and from the edge of the pillar due to scattering, respectively. In (b) the 
double ring intensity pattern corresponds to PL from the mesoscopically occupied state of the exciton polariton 
condensate.
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Discussion
The localization of a polariton condensate in an annular trap implies its spatial quantization in the radial direc-
tion. In narrow ring traps, the radial modes are separated from each other by large distances in energy scale, and, 
as a rule, condensates occupy single ring modes characterized by the radial quantum number n = 011,13,23 (with 
no nodes in the radial direction). Increasing the width of the annulus of the trap results in exciting higher-order 
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Figure 2.  Observation of concentric ring polariton condensates that either contain (a–f, j–o) or do not contain 
(g–i) azimuthal currents. Top panels show interferometry images obtained from the interference of PL of the 
condensates in the pillar microcavity and the spherical reference wave in the Mach-Zehnder interferometer. 
Middle panels show the phase of the condensates relative to the phase of the reference wave extracted from 
the corresponding interferometry images. Bottom panels show the phase variation along the maxima of the 
condensate rings (indicated by black and magenta dashed curves in middle panels). In bottom panels, the 
dashed lines are guides for the eye corresponding to the linear variation of the phase ϕ with the azimuthal 
angle θ , ϕ = mθ + const. with |m| = 0, 1 and 3. The coordinate origin 0◦ was chosen arbitrary to minimise the 
number of breaks of the dependence ϕ(θ).
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Figure 3.  Observation of the concentric ring polariton condensate with oscillating vorticity. (a) Real-space 
image of time-averaged PL of the condensate, (b) the interferometry image obtained from the interference of 
PL of the condensate and the spherical reference wave, (c) the phase of the condensate relative to the phase of 
the reference wave extracted from panel (b), and (d) the phase variation around the condensate ring ridges 
indicated by black and magenta dashed circles in panel (c). Dashed lines are guides for the eye indicating 
constant phases ±π/2.
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ring states with n > 021,26,27. The role of the radius of the (complex) trapping potential as the control parameter 
for selective excitation of different vortex states has been emphasized in Ref.31 and discussed by us in the Intro-
duction. Theoretical reasoning regarding the hierarchy of the states in the trap based on estimations of their 
condensation threshold pump powers is reported in Ref.23. Here we discuss the fait accompli observations of 
persistent azimuthal polariton current states in a polariton condensate having a form of two concentric rings.

To support our experimental observations, we resort to numerical simulations. For the simulations we use 
the generalized Gross-Pitaevskii equation for the polariton condensate wave function �(t, r) , coupled to the rate 
equation for the density of the reservoir of incoherent excitons, see “Methods” for details of the model. Figure 4 
shows the interferometry images and the phase distributions of the simulated double concentric ring polariton 
condensates with the winding numbers of m = 1 and m = 3 . The double ring shape of the condensates in the 
simulations was achieved by adjusting the parameters responsible for the gain-loss balance in the micropillar 
plane, among which the most essential ones are the polariton losses, the stimulated scattering rate from the 
exciton reservoir to the condensate state and the width of the trap. For inducing polariton azimuthal currents, 
we broke the rotational symmetry of the system by shifting the pump spot from the center of the pillar and sup-
plementing the stationary potential with weak pertirbations. This and other approaches for making the system 
chiral have been discussed by us in earlier  papers11–13 for single ring condensates.

Of the greatest interest among our observations is the experiment illustrated in Fig. 3. A double break of the 
circular interference fringes indicating a pair of compensating each other phase jumps could be inherent in a 
two-lobe (“dipole”) mode of a  trap32–34. However, the fact that the jumps coexist with the azimuthally homogene-
ous density distribution, make us reject this assumption as an option. A similar coexistence has been observed 
in a recent  paper35. The authors observe two phase jumps by ±π in two nearly diametrically opposed points of 
the phase ditribution extracted from the double-split interference fringes. They interpret this as the result of 
ensemble averaging over multiple condensates stochastically changing their winding direction. The stochastic 
nature of the change of m in Ref.35 is possible due to the pulse-periodic regime of the non-resonant optical pump-
ing, when each emerging condensate does not inherit vorticity of the condensate excited by the previous pulse.

In our experiments, in contrast, the condensates are excited by the cw pump, which eliminates the stochastic 
switching caused by stochastic initial conditions. We assume that we deal with the steady state regime of vorti-
city oscillating in time. Averaging over the periodically replacing each other during oscillations vortex states of 
the condensate with oppositely directed currents could give the desired interference image with doubly broken 
fringes.

Among the options that could lead to oscillations of vorticity in time are excitation of limit cycles in the 
polariton  system36,37 and beats of two close in energy eigenmodes of the  trap38. The former represent oscillating 
in time solutions that are the only stable solutions of a nonlinear problem in a considered range of parameters. 
They are typically characterized by frequency combs in their photoluminescence  spectrum36,37. This allows us 
to rule out the limit cycles as a possible interpretation of the observed oscillations.

As one has mentioned in Ref.38,39, oscillating solutions are fingerprints of superposition states, in particular, 
spatial modes of the trap. Eigenmodes of the annular trap resemble eigenmodes of a pot-like trap in their shape 
except those with the density maximum in the center of the trap. Let us focus on a couple of 3p-like excited states, 
(�02,�20) , which differ from the dipole (2p) modes by an additional circular node in the radial direction, see 
color maps in Fig. 5b, c. In the rotationally symmetric potential, the orthogonal modes are degenerate in energy. 
Their linear superposition, �02 ± i�20 , gives the double concentric ring condensate with the counterclockwise 
( m = 1 ) or clockwise ( m = −1 ) polariton currents. Bringing the eigenmodes out from the degeneracy enables 
oscillations between them with frequency defined by their energy splitting, E20 − E02 . Such splitting can be 
achieved by reducing the rotational symmetry of the trap to the reflection symmetry. The authors of Ref.40, e. g., 
gave a small ellipticity to the optical trap. The origin of such symmetry reduction is not clear in our experiment. 
Nevertheless, in the annular geometry, the shift of the pump spot or deformation of its shape may lead to the 
desired outcome. In Fig. 5a we schematically show how the degeneracy of eigenmodes can be lifted by introduc-
ing the ellipticity of the central peak of the trapping potential.

-π π
(a) (b)

0 1
(c) (d)

Figure 4.  Simulated concentric ring polariton condensates with azimuthal currents. Panels (a, c) show 
interferometry images obtained by simulating interference of the polariton condensates with the spherical 
reference wave. Panels (b, d) show the corresponding spatial distribution of phases of the simulated condensates. 
Topological charge is m = 1 for (a, b) and m = 3 for (c, d). Details of the model and values of the parameters 
used for simulations are given in “Methods”.
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The simulations of evolution of the polariton condensate in the regime of oscillating vorticity are shown 
in Fig. 6. Panels 6a and 6b show evolution in time of OAM ℓ(t) , winding number m(t) and occupancy of the 
condensate state N(t). For reducing the symmetry of the trap, we introduced ellipticity of the Gaussian pump 
spot s = 0.87 (see “Methods” for details of the pump). For the initial conditions, the density distribution was 
taken in the form of random distribution, while the phase contained a seed in the form of a vortex with the wind-
ing number m = 1 . In the considered numerical experiment, both OAM ℓ and the winding number m exhibits 
oscillations in the range from +1 to +1 with period estimated as about 0.44 ns, accompanied by oscillations of 
occupancy N. The period of oscillations can be varied in a considerable range, e. g., by changing ellipticity of the 
pump spot s or the pump power, and it typically ranges from tenths to units of nanoseconds, which matches the 
estimations made in Ref.8. Panels 6c–f show the distribution in real space of the density and phase of the polariton 
condensate at different time moments (indicated in panel 6a), corresponding to the winding number m = ±1 
and 0. One can clearly see that at m = ±1 both the density and phase of the condensate meet the characteristics 
given above for the observed stationary states shown in Figs. 2d–f, j–l. The intermediate states with m = 0 are 
the 3p-like states representing superpositions of the current states.

In Fig. 7 we numerically qualitatively reproduce the interferometry images emerging in the regime of oscil-
lating vorticity, cf. Fig. 3. We superimpose the interferometry images obtained for the m = +1 and m = −1 
states (Fig. 7b) and extract the phase from the resulting image (Fig. 7c, d). The position of the fringe breaks is 
governed by two factors. The first factor is the difference of the phases of the condensate modes contributing to 
the formation of the interference pattern, which determines the azimuthal position of the breaks. The change in 
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shows cross section of the trapping potential along the long (short) axis of the ellipse of the central peak. Light 
green (red) curve in (a) shows cross section of the polariton condensate eigenmode �20 ( �02 ) quantized along 
the direction coinciding with the long (short) axis of the ellipse. The corresponding cross sections are indicated 
by red and green dashed lines in panels (b) and (c).
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the phase difference would result in the shift of the breaks in the azimuthal direction. In the experiment, the phase 
difference remains constant, and it is determined by geometry of the trap and symmetry properties of the sample.

The second factor is the difference of the phases of the condensate PL and of the reference wave, which deter-
mines the relative position of the two fringe breaks. The phase of the reference wave depends on the area of the 
condensate used for producing the reference beam. If the own phase distribution of the reference wave didn’t 
change during observation of the oscillating steady state of the condensate, we would observe the breaks of the 
interference fringes in two diametrically opposed points. However, the phase variation within the chosen area 
may affect the wavefront of the reference wave.

In brief, the wavefront of PL of the polariton condensate in the vortex state is helical. In a small area of the 
condensate, the phase variation of the wavefront is weak, so the front of the wave from this area is nearly flat but 
slightly tilted depending on the direction of vorticity. The convex lens effectively converts the tilted flat wavefront 
to a spherical wavefront. The center of the latter, however, turns out to be shifted from the optical axis of the lens. 
This means that the position of the reference wave also oscillates simultaneously with steady state oscillations 
of the condensate vorticity. Our simulations illustrated in Fig. 7 confirm that giving a small shift in the image 
plane between the spherical reference beams for the vortex states with m = +1 and −1 results in the convergence 
of the positions of the breaks on the interference fringes. Herewith the real space PL distribution remains not 
anyhow affected by this procedure keeping the double concentric ring shape. More details on the effect of the 
initial wavefront tilt on the reference wavefront see in “Methods”.

In conclusion, we have demonstrated the excitation of vortices in double concentric ring condensates of 
exciton polaritons in an effective annular trapping potential. The concentric ring shape is subject to competition 
of gain and loss of the condensate in the radial direction, and it effectively depends on the width of the annulus. 
In the considered geometry, the polariton condensates are characterized by similar vorticity in each condensate 
ring. The interference of such states with the reference spherical wave gives interferometry images in the form 
of spirals. We have also observed the polariton condensate with the steady state oscillations of vorticity in both 
rings. On the averaged in time interferometry images, the oscillations result in even number of breaks of fringes, 
which position is determined by peculiarities of the reference wave.

Methods
Sample and setup details. The sample under our study represents a high quality (with Q-factor of about 
1.6 · 104 ) planar 5�/2 distributed Bragg reflector microcavity with an embedded set of quantum wells. The width 
of the cavity layer varies along the microcavity plane providing the exciton-cavity photon detuning in the range 
of − (0.5÷ 3.5) meV. A set of cylindrical micropillars of different diameters is etched in the cavity plane. In this 
manuscript, we study a micropillar of a diameter of 30 μm with the exciton-photon detuning of −0.5 meV. In the 
experiment, the sample was kept in the helium-flow cryostat at a temperature of 4 K.

For exciting polariton condensates we use a cw Ti:sapphire laser. The energy of the pump is tuned to the 
local minimum at the edge of the upper stop-band of the top Bragg mirror (about 110 meV above the bottom of 
the low polariton dispersion curve). Full width at half maximum of the pump spot on the sample is about 2 μm.
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Figure 7.  Simulation of the interferometry of the concentric ring polariton condensate with oscillating vorticity. 
Meaning of panels is the same as in Fig. 3. The density distribution (a) and the interferometry image (b) were 
obtained by superimposing density distributions and interferometry images of two polariton condensates with 
m = +1 and −1 . The relative phase distribution (c) was extracted from the interferometry image (b) using the 
Fourier-transform method adapted for closed-fringe patterns.
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Numerical model. For simulating persistent azimuthal polariton currents in concentric ring condensates 
we use the generalized Gross-Pitaevskii equation for the polariton wave function �(t, r)35,41,42:

where M is the effective mass of microcavity polaritons, Veff(t, r) = V(r)+ α|�(t, r)|2 + αRnR(t, r) is the effec-
tive trapping potential composed of the stationary potential of the micropillar, V(r), and the quasiparticle-
interaction-induced potential. α and αR are the polariton-polariton interaction constant and the interaction 
constant of polaritons with the reservoir of incoherent excitons, respectively, nR(t, r) is the density of the exciton 
reservoir. The stationary potential is taken in the complex form, V(r) = VRe(r)+ iVIm(r) . The real part is taken 
as VRe(r) = V0{tanh[a(r − d/2)] + 1}/2 with V0 and d being the height of the potential and the diameter of the 
pillar, a is the fitting parameter. The imaginary part, VIm(r) , is responsible for additional damping due to etching 
of the  microcavity43,44. It can be obtained from VRe(r) by replacing V0 → V ′

0 , a → a′ and d → d′.
The rightmost imaginary term in Eq. (1) is responsible for the gain-loss balance in the polariton condensate. 

R is the stimulated scattering rate from the incoherent exciton reservoir to the condensate, γ is the decay rate of 
polaritons. The imaginary term in the kinetic energy in Eq. (1) is responsible for the energy relaxation of expand-
ing  polaritons41,42. �0 is the energy relaxation constant, which we take as a fitting parameter.

Equation (1) is coupled to the rate equation for the exciton reservoir density nR(t, r):

The reservoir is excited by the optical pump of the Gaussian shape

of width w, where the vector (xp, yp) characterizes shift of the pump spot from the center of the pillar, s is respon-
sible for the ellipticity of the pump spot. γR is the decay rate of the reservoir excitons.

For breaking the rotational symmetry of the problem, in our simulations we combine the slight shift and 
ellipticity of the pimp spot P(r) with arbitrary initial conditions.

Values of the parameters. The effective mass of polaritons is M = 3 · 10−5me , where me is the free 
electron mass. The polariton and exciton decay rates are taken as γ = 0.025 ps−1 and γR = 0.02 ps−1 , respec-
tively. The stimulated scattering rate is taken as �R = 0.1meV μm2. The nonlinearity coefficients are taken as 
α = αR/2 = 3 μeV μm2. The fitting parameter of the energy relaxation is �0 = 0.01 μm2. The pump width is 
w = 2.5 μm. The parameters of the stationary potential: V0 = −3V ′

0 = 3meV , a = a′ = 4 μm–1, d = 30 μm and 
d′ = 30.8 μm.

Details of obtaining a spherical reference wave. In the interferometry measurements, we used the 
following method for obtaining a coherent spherical reference wave of the same frequency as PL of the conden-
sate. At the periphery of the observation zone, we isolated a small area of the condensate. Then we passed the 
luminescence signal from this area through a converging lens, which is separated from the image plane by a dis-
tance much greater than its focal length. The converging lens converts a plain wavefront of the incident radiation 
to a spherical wavefront, which converges beyond the lens focal length, see schematic in Fig. 8a.

When the polariton condensate contains a vortex, its PL is characterized by a helical wavefront. When we cut a 
small area from the condensate, the wavefront within this area is close to plain, but it still keeps some deviations, 
in particular, inclination with respect to the optical axis of the lens, see Fig. 8b. The flatness of the wavefront 
is smaller, the larger the cut area. Remarkably, the inclination of the wavefronts of two opposite vortices in the 
same area of the condensate is opposite, compare blue and red images in Fig. 8b.

The inclined wavefront is still converted by the converging lens to a spherical wavefront, however the center of 
this wave is shifted in a focal plane from the lens principal focus by some distance depending on the  inclination45, 
cf. black (solid), blue (dotted) and red (dashed) curves in Fig. 8a. Obviously, for the oppositely inclined plane 
wavefronts, the centers of the spherical wavefronts are shifted in opposite directions.

Written above allows to conclude that for the oppositely winding polariton vortex states emerging in simi-
lar experimental conditions, the reference spherical waves obtained from the same area of the condensate are 
weakly shifted with respect to each other by some distance �s , which results in the corresponding shift of the 
interference fringe breaks. Figure 8c shows simulated examples of the averaged interferometry images obtained 
at different shifts �s between the centers of the reference spherical wavefronts. Rapprochement of the fringe 
breaks with increasing �s is clearly seen.

(1)i�∂t�(t, r) =
{

[i�0nR(t, r)− 1]
�
2

2M
∇2 + Veff(t, r)+

i�

2
[RnR(t, r)− γ ]

}

�(t, r),

(2)∂tnR(t, r) = P(r)−
[
γR + R|�(t, r)|2

]
nR(t, r).

(3)P(r) ∝ exp

[

−
(x − xp)

2

2w2
−

(y − yp)
2

2(sw)2

]
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Data availability
All data generated and analysed during the current study are available from the corresponding author on rea-
sonable request.
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