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When studying the spin-noise-induced fluctuations of Kerr rotation in a quantum-well microcavity,

we have found a dramatic increase of the noise signal (by more than two orders of magnitude)

in the vicinity of anti-crossing of the polariton branches. The effect is explained by nonlinear

optical instability of the microcavity giving rise to the light-power-controlled amplification of the

polarization noise signal. In the framework of the developed model of built-in amplifier, we also

interpret the nontrivial spectral and intensity-related properties of the observed noise signal below

the region of anti-crossing of polariton branches. The discovered effect of optically controllable

amplification of broadband polarization signals in microcavities in the regime of optical instability

may be of interest for detecting weak oscillations of optical anisotropy in fundamental research and

for other applications in optical information processing. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4922405]

I. INTRODUCTION

Studies of spin fluctuations by means of optical polarim-

etry, commonly referred to as spin noise spectroscopy, are

becoming increasingly popular during the recent years.1 Spin

fluctuations in a paramagnet, as has been first demonstrated

in Ref. 2, give rise to fluctuations of its gyrotropy, which can

be detected by means of the optical polarimetry as a noise of

probe beam polarization plane rotation. Spectrum of the

noise thus observed, in conformity with the fluctuation-

dissipation theorem, reflects frequency dependence of the

magnetic susceptibility of the medium and, in the simplest

case of magnetic field aligned across the light beam propaga-

tion, is represented by a Lorentzian centered at Larmor

frequency and having the width controlled by the spin

dephasing rate. Since the samples investigated in real experi-

ments are, as a rule, transparent for the probe beam, the spin

noise spectroscopy is considered to be a nonperturbative

method of measuring magnetic susceptibility and, thus,

studying spin dynamics.

The growing popularity of spin noise spectroscopy dur-

ing the last years is related, in particular, to appearance of

fast Fourier transform (FFT) spectrum analyzers, which

made it possible to successfully employ this technique, pre-

viously applicable mainly to atomic systems,2–4 for studying

semiconductor structures in the range of radiofrequencies.5,6

A number of recent refinements proposed in Refs. 7 and 8

made it possible to additionally increase sensitivity of the

measurements. Besides, methods of spin noise detection,

utilizing output emission of mode-locked lasers for probing

the medium, proposed and realized in Refs. 9–11 made it

possible to extend the frequency range of the spin noise spec-

troscopy up to terahertz frequencies. Specific feature of the

present-day spin noise spectroscopy is that it mainly deals

with low-dimensional semiconductor structures (quantum

wells (QWs), quantum wires, quantum dots), which are

considered to be most promising objects for applications in

the future information technologies. As examples of this

trend may serve the recent publications.12–15 By placing

such objects into a inter-mirror gap of a high-Q Bragg micro-

cavity and observing polarization noise of a probe beam

reflected from (or transmitted through) such a compound

system, one can strongly (by several orders of magnitude)

enhance the noise signal.15 This gives promise that the spin

noise spectroscopy of semiconductor nanostructures in

microcavities will become an important self-contained part

of the modern experimental physics.16

In this paper, we study properties of the Kerr rotation

noise of a light beam reflected from a semiconductor

AlGaAs Bragg k-microcavity with a GaAs QW in its inter-

mirror gap (the cavity). The structure under study was graded

to make possible detection of the noise signal of Kerr rota-

tion at different detunings between photon mode of the cav-

ity and the QW excitons. For the region of the sample where

the frequency of the microcavity photon mode is substan-

tially lower than that of the QW exciton (the region of

negative detuning), the Kerr rotation noise spectrum, as was

found in Ref. 15, exhibits a nontrivial bimodal shape. When

passing to regions of the sample, where the photon mode fre-

quency approaches to that of the QW excitons (the region of

anti-crossing), we observed enhancement of the noise signal

by several hundred times (the giant noise). In this paper, we

show that these specific properties of the noise signal can be

explained by the nonlinear instability of the microcavity

accompanied by a critical increase of sensitivity of the

microcavity reflectivity to fluctuations of the intracavity re-

fractive index. The discovered effect can be used to detect

weak signals of oscillating optical anisotropy in fundamental

and applied research.

The paper is organized as follows. In Section II, we

describe the experimental set-up, the sample under study,

and results of the measurements. In Sec. III, we formulate

hypothesis of the built-in amplifier, which allows us to
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explain mechanism of the giant noise and to derive a formula

describing the bimodal noise spectrum at negative detuning.

In Sec. IV, we consider experimental study of response of

the microcavity to an external high-frequency electromag-

netic field, to confirm optical nonlinearity of the effect. In

Sec. V, we present a simple model of a nonlinear instable

cavity and provide qualitative explanation of all the noise

properties of the sample. In Conclusions, we briefly summa-

rize the results of this work.

II. EXPERIMENTAL

We studied the sample used in Refs. 15 and 17, repre-

senting a planar Bragg k-microcavity with a GaAs QW (102/

200/102 Å AlAs/GaAs/AlAs) in the center of the inter-mirror

gap. The experiment was performed using the set-up for ob-

servation of the Kerr-rotation noise, described in detail in

Ref. 15 (Fig. 1). As a probe, we used a linearly polarized

beam of a tunable Ti:sapphire laser, at normal incidence,

focused on the sample in a spot �20 lm in diameter. For

spin density ne � 1010 sm�2 mentioned in Ref. 15, we esti-

mate the number of spins contributing to our noise signal to

be �5� 104. The sample placed into a magneto-optical

module of a closed-cycle cryostat Montana was cooled

down to 3–8 K. The light beam reflected from the sample

was directed to the polarimetric receiver consisted of a polar-

izing beam splitter (Wollaston prism) and a broadband

(D�¼ 200 MHz) balanced photodetector. Magnetization

fluctuations in the inter-mirror gap of the microcavity

(related to the spin noise of free carriers or excitons in the

QW) caused polarization fluctuations in the reflected beam

giving rise the noise signal at the exit of the photodetector.

The wavelength of the probe beam was tuned to obtain the

greatest noise signal.

A standard spin noise experiment implies measuring

radiofrequency spectrum of this signal as a function of the

applied transverse magnetic field. Such a spectrum is

detected by a FFT spectrum analyzer and, as was mentioned

in Introduction, in the simplest case, has a Lorentzian shape

with its peak shifting in proportion with the applied magnetic

field.

From the reflectivity spectra presented in Ref. 17, one

can see that spectral position of the photon mode of the

microcavity strongly depends on spatial coordinate on the

sample. In this connection, it is expedient to specify three

regions of the sample. (i) The region of negative detuning,

where the photon mode frequency is lower than those of

excitons in the QW. Taking the edge of the sample for a

starting point, this region corresponds to the spatial interval

from 0 to 300 lm. (ii) The region of anti-crossing of the

polariton branches, where the photon mode frequency inter-

sects the QW exciton frequencies (300–900 lm). (iii) The

region of positive detuning, where the photon mode fre-

quency becomes higher than those of the QW excitons

(above 900 lm). In this region, the noise signal is strongly

suppressed, because the asymmetric microcavity used in

these experiments is operating, at this detuning, in the

post-critical regime.18 Note that the noise signal detected in

Ref. 18 was observed under red irradiation, which is not the

case for our present experiments. Properties of the noise sig-

nals in the first two regions substantially differ and are

described in more detail below.

Region of negative detuning. The Kerr-rotation noise

power spectra obtained in this region of the sample at differ-

ent magnetic fields are presented in Fig. 2 (noisy curves). A

nontrivial property of the spectra is their bimodal shape in

nonzero magnetic fields: along with a usual magnetic peak at

Larmor frequency shifting in magnetic field with a g-factor

of 0.35, the spectra show a distinct “nonmagnetic” peak in

the vicinity of zero frequency. The amplitude of this peak

decreases with increasing magnetic field, while its spectral

position remains the same.

Dependence of the noise power on the probe beam in-

tensity was found to differ noticeably from quadratic, thus

indicating a contribution of optical nonlinearity. The most

pronounced nonlinear behavior was revealed by the nonmag-

netic peak of the noise spectra, whose relative amplitude

FIG. 1. Experimental setup. Structure

of the sample is shown schematically

in the inset.

FIG. 2. The noise spectra in the region of negative detuning at different

magnetic fields. The noisy curves—experiment, smooth curves—fitting by

Eq. (1).

224305-2 Ryzhov et al. J. Appl. Phys. 117, 224305 (2015)

 [This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:

195.19.236.228 On: Tue, 16 Jun 2015 14:28:12



rapidly decreased with decreasing light intensity. The magni-

tude of the noise signal in this region of the sample was of

the order of shot-noise power of the probe beam, whose in-

tensity, in our experiments, was about 1 mW.

Region of anti-crossing of the polariton branches. Our

experiments have shown that, by moving the spot of the

focused probe beam in this region of the sample, we could

find the points of giant noise where the noise signal ampli-

tude, in zero magnetic field, exceeded its amplitude in the

region of negative detuning by several hundred times. The

giant noise spectrum had the shape of a peak at zero fre-

quency, �10–20 MHz wide, with its amplitude decreasing

with magnetic field (Fig. 3(a)). As the probe beam intensity

increased, the amplitude of the giant noise exhibited an

essentially nonlinear behavior: a steep growth at moderate

intensities was replaced by a decrease at the intensities

exceeding 1 mW (Fig. 3(b)). When detecting the above spec-

tra, the spectrum analyzer was adjusted to detect the spectra

starting from 5 MHz. A direct study of the output signal

of the balanced detector at low frequencies, using an oscillo-

scope, has shown that the regime of giant noise was accom-

panied by strong chaotic polarization oscillations at the

frequencies of 1–50 kHz. The above instable behavior in

the light polarization was observed at sufficiently high

intensities of the probe beam. A similar behavior was dem-

onstrated by the probe beam intensity.

III. HYPOTHESIS OF THE BUILT-IN AMPLIFIER

The results presented in Sec. II unambiguously indicate

crucial role of optical nonlinearity in the formation of the Kerr-

rotation noise signals observed in our experiments. Nonlinear

behavior of optical cavities with nonlinear absorbers is well

known and has been studied earlier in great detail.19–21 Special

attention has been paid to semiconductor microcavities in the

strong-coupling regime, with the nonlinearity resulting in the

optical bistability under quasi-resonant excitation of the lower

exciton-polariton branch.22,23 In this respect, the behavior of

our microcavity does not look surprising, because there are at

least two reasons why the optical field strength in the inter-

mirror gap may exceed by many orders of magnitude the field

strength in the probe beam: a sharp focusing of the beam on

the surface of the sample and resonant enhancement of the field

strength in the high-Q microcavity. We can judge about the

scale of the nonlinearity from the measured spectra of reflectiv-

ity at different regions of the sample with intensities of the

probe beam differed by an order of magnitude (Fig. 4). The

measurements of the reflectivity spectra were performed under

the same conditions as the measurements of the noise spectra.

It is seen from the figure that dependence of the reflectivity

spectrum on the probe beam intensity is distinctly revealed

even in the region of negative detuning and becomes dramatic

in the region of anti-crossing of the polariton branches where

the giant noise is observed. This behavior of the reflectivity

spectra allows us to suggest the following schematic explana-

tion of the oscillatory instability of the microcavity described

in the end of Sec. II. When the resonant light beam is turned

on, the light field amplitude in the microcavity starts to build-

up. Due to the nonlinearity of the medium in the inter-mirror

gap (resulted, e.g., from saturation of the QW-exciton

FIG. 3. (a) The giant noise spectra at zero magnetic field for different probe

beam intensities. (b) The giant noise spectra at different magnetic fields.

FIG. 4. Reflectivity spectra of the QW microcavity for different relative

positions of the photon mode and QW exciton resonances. The spectra

0–300 lm correspond to the region of negative detuning and the spectra

300–900 lm to the region of anti-crossing of the polariton branches. The

measurements were performed for two laser beam intensities: 3 mW (red

curves) and 0.3 mW (blue curves).
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 [This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:

195.19.236.228 On: Tue, 16 Jun 2015 14:28:12



susceptibility), the microcavity comes out of resonance with

the light field. As a result, the amplitude of the optical field in

the microcavity decreases, and it again comes back to the reso-

nance, the field inside it again increases, and so on. Such a

mechanism of self-excitation with auto-oscillations of the field

amplitude should reveal a threshold-type behavior with respect

to the light intensity. It is well known that the systems of this

kind, in the vicinity of the self-excitation threshold, become

highly sensitive to variations of their parameters. This is why it

is natural to expect that sensitivity of the reflection coefficient

of the nonlinear microcavity to fluctuations of its optical prop-

erties may strongly increase when the light beam intensity

approaches the self-excitation threshold. This is supported by

the analysis of a simple model presented in Sec. IV.

In our opinion, the giant noise arises in the region of

strong optical nonlinearity due to pre-threshold increase of

sensitivity of the cavity reflectivity to spin fluctuations (fluc-

tuations of gyrotropy in its intermirror gap).

Based on this hypothesis, the Kerr-rotation noise signal

S observed in our experiments can be represented in the form

S¼ (nþ 1)M, where M is the noise signal that would have

been observed in the optically linear microcavity and n is the

factor that accounts for the nonlinearity-related amplification

of polarimetric response of the cavity. In accordance with

the aforesaid, the factor n should depend on the probe beam

intensity n¼ n(I), with n(0)¼ 0, while with approaching I to

its threshold value Ic, it should strongly increase, n(Ic) � 1.

Thus, we can say that the above nonlinearity turns the micro-

cavity into an effective built-in amplifier of its ac gyrotropy

with the gain factor n controlled by the light intensity. Since,

in our experiments, we observe frequency dependence of the

noise power, we should take into account that the gain factor

n may depend on frequency x: n¼ n(I, x).

As was noted in Sec. II, the noise signal from the sample

shows a noticeable nonlinearity even in the region of nega-

tive detuning, where no giant noise is observed. Now, we

will show that the hypothesis of the built-in amplifier can

explain, in a natural way, the presence of nonmagnetic peak

in the noise power spectrum, described in the Sec. II.25 We

assume that the frequency dependence of the gain factor n
has the shape of a Lorentzian26 with the halfwidth D centered

at zero frequency

nðI;xÞ ¼ n0ðIÞDpLðD;xÞ;

where LðD;xÞ � p�1D=½D2 þ x2� and n0¼ n(I, 0). Then, in

accordance with the hypothesis of the built-in amplifier, for

the noise power spectrum observed in our experiment, we

can write the following equation:

SðxÞ ¼ ðn0ðIÞpDLðD;xÞ þ 1ÞC½LðDe þ kH;x� gbH=�hÞ þ LðDe þ kH;xþ gbH=�hÞ�I2
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{M

: (1)

Here, the factor in square brackets corresponds to the classi-

cal spectrum of spin noise in the magnetic field H
(Lorentzian peak with the halfwidth De centered at the

Larmor frequency gbH=�h); the factor I2 takes into account

dependence of the observed signal on the probe beam inten-

sity for linear regime of the microcavity (it is quadratic

because we detect power of the noise signal); the parameter k
takes into account a noticeable broadening of the noise spec-

trum with magnetic field observed in our experiments (it can

be explained by a spread of g-factors of the spins contributing

into the noise signal); and C is the proportionality factor con-

trolled by parameters of the photodetector (quantum yield,

load resistor, etc.), whose weak frequency dependence is

ignored. The results of fitting of the experimental noise spec-

tra using Eq. (1) are presented in Fig. 2 (smooth curves). The

values of parameters obtained in this fitting are: n0¼ 2.5,

D¼ 2p� 7 MHz, De¼ 2p� 20 MHz, k¼ 0.3 MHz/mT, and

jgj ¼ 0:35. As expected, the gain factor n0 proved to be

small, i.e., optical nonlinearity in the considered region of

negative detuning is not pronounced. The fact that, in this

case, n0� 2 is reflected in the bimodal shape of the observed

noise spectrum: the nonmagnetic peak corresponding to the

low-frequency components of the spin noise amplified by the

built-in amplifier and the magnetic peak at Larmor frequency

have comparable amplitudes. As the probe beam intensity

decreases, the gain factor n0 (controlled by the optical

nonlinearity) decreases, and the nonmagnetic peak of the

noise spectrum is being suppressed.

When passing to the region of the sample with strong

optical nonlinearity (the region of anti-crossing of the polari-

ton branches), where the giant noise is observed, the gain

factor n0 increases and eventually reaches several hundreds.

In accordance with Eq. (1), the observed signal, in this case,

represents only the spin noise amplified by the built-in am-

plifier: the entity in parentheses can be neglected. Since the

efficient amplification occurs only in the region of near-zero

frequencies, with a width of �D, at points of the giant noise

we observe only low-frequency components of the spin noise

with frequencies x<D, and the giant noise spectrum

acquires a monomodal shape (Fig. 3). When the magnetic

field is turned on, amplitudes of these components decrease

because the peak of the spin noise spectrum (at Larmor fre-

quency) shifts towards higher frequencies. This explains a

decrease of the giant noise amplitude with magnetic field.

IV. EXPERIMENTS WITH A REGULAR FIELD-INDUCED
PERTURBATION OF THE MICROCAVITY

In conformity with the hypothesis of the built-in ampli-

fier formulated in Sec. III, reflectivity of the nonlinear
microcavity can be much more sensitive to intracavity

changes of optical susceptibility than the linear microcavity.

224305-4 Ryzhov et al. J. Appl. Phys. 117, 224305 (2015)
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In the experiments described above, variations of optical sus-

ceptibility of the inter-mirror gap were related to spontane-
ous spin fluctuations. The effect of amplification, however,

should not depend on the source of these variations and, in

particular, should lead to amplification of polarimetric

response of the microcavity to a regular ac magnetic (or elec-

tric) field created by external sources. In this case, variation

of optical susceptibility (gyrotropy or linear birefringence)

of the medium in the inter-mirror gap is related to the

Faraday (Pockels) effect, while the effect of the built-in

amplifier should manifest itself in an essentially nonlinear

dependence of the polarimetric response of the microcavity

on the probe beam intensity. Our experimental observation

of such a response to a high-frequency electromagnetic field

created by an oscillatory circuit mounted on the sample has

shown that the above nonlinear dependence took place

indeed. The experiments were performed in the following

way. A coil of the oscillatory circuit (15 turns 10 mm in

diameter) was placed in front of the sample so that its mag-

netic field was directed perpendicular to the plane of the

sample (along the incident beam). A capacitor of the circuit

was chosen to provide its resonant frequency of about 15

MHz. The circuit was resonantly excited by a pick-up coil

fed by a high-frequency oscillator. Under these conditions, a

narrow peak at the frequency �15 MHz was seen in the

spectrum of the photodetector output signal. This peak dis-

played a resonant behaviour (with respect to the light wave-

length), which showed that it is related to modulation of

optical susceptibility of the medium in the inter-mirror gap

of the microcavity. In the region of the sample corresponding

to the giant noise, the magnitude of this peak substantially

varied with the spot on the sample. However, dependence of

its amplitude on the probe beam intensity was always nonlin-

ear (Fig. 5). In some places of the sample, this dependence

was even nonmonotonic. In spite of the fact that these results

are not yet quite systematic, they unambiguously indicate a

decisive role of nonlinearity of the microcavity in formation

of its polarimetric response. Note that this response revealed

a noticeable nonlinear behavior even in the region of nega-

tive detuning (where no giant noise was observed), which

confirms the above mechanism of formation of the nonmag-

netic component of the noise spectrum in this region.

In our experiments, modulation of the optical suscepti-

bility of the medium in the inter-mirror gap was, most likely,

controlled by the electro-optical Pockels effect (inherent in

GaAs). The effect of magnetic field created on the sample by

the coil of the oscillatory circuit was relatively weak, which

was evidenced by weak dependence of the polarimetric

response amplitude on the coil orientation: it remained prac-

tically the same with the coil axis aligned along the plane of

the sample.

V. MODEL OF NONLINEAR OSCILLATOR

Development of a detained model of nonlinear cavity

(with allowance for a particular mechanism of the optical

nonlinearity, spatial nonuniformity of the microcavity, and

profile of the focused probe beam) at this stage of the

research seems premature. The task of this section is to build

the simplest model of a nonlinear cavity demonstrating, at

the self-excitation threshold, a manifold increase of sensitiv-

ity of the cavity reflectivity to variations of refractive index

of the medium in the inter-mirror gap. In spite of the fact

that, in our experiments, we examined polarization proper-
ties of the reflected beam (rather than pure reflectivity), the

model presented below describes, in our opinion, the most

important qualitative properties of a real cavity and, to a

great extent, justifies the assumptions made above upon for-

mulation of the built-in amplifier hypothesis.

Let us put into correspondence with the microcavity an

oscillator, with the resonant frequency x0 and spectral width

of the resonance Dx. For such a consideration, the field am-

plitude A in the microcavity is given by the relationship

A ¼ iE Dx
ffiffiffiffi
Q
p

x0 � xþ iDx
Q � x

Dx
; (2)

where E and x are the field amplitude and frequency of opti-

cal oscillations in the probe beam, and the quantity Q for

x�x0 is close to the cavity finesse (we assume that Q� 1).

Amplitude R of the wave reflected from the cavity can be pre-

sented as a sum of the amplitude rtE of the wave reflected

from the front mirror (rt is the reflectivity of the front mirror,

jrtj � 1) and amplitude tA of the wave coming out of

the cavity through the front mirror (t is the transmission

coefficient of the front mirror, jtj � 1): R¼ rtEþ tA. Using

Eq. (2), we can express t through the resonant reflectivity of

the cavity rres ¼ R=Ejx¼x0
, which can be easily evaluated

experimentally and, for high-Q symmetric cavities, is a small

real value jrresj � 1. Now, for the reflected field, we obtain

the relationship R ¼ rtEþ ðrres � rtÞA=
ffiffiffiffi
Q
p

.

A likely reason for optical nonlinearity of our microcav-

ity is the dependence of the refractive index of the inter-

mirror gap on the intensity jAj2 of the field in it. In the sim-

plest case, this dependence can be taken into account
FIG. 5. Experimental dependence of amplitude of the field-induced response

of the microcavity on the probe beam intensity.
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assuming that the intensity jAj2 affects the eigen-frequency

of the cavity x0. In our model, we will consider this depend-

ence retarding and comprised of two contributions: fast (Xf

with characteristic time Tf) and slow (Xs, with characteristic

time Ts� Tf)
24

x0 ¼ �x0 þ Xs þ Xf

_Xsðf Þ þ Xsðf Þ=Tsðf Þ ¼ �sðf ÞjAj2:

�
(3)

Here, �x0 is the resonant frequency of the cavity in linear re-

gime, �f and �s are the constants describing the above contri-

butions and characterizing nonlinearity of the cavity. By

measuring time and frequencies in the units of Dx�1 and

Dx, respectively, and by passing to the dimensionless field

amplitude in the cavity a � A=
ffiffiffiffi
Q
p

E, we can obtain, using

Eqs. (2) and (3), the following set of equations, describing

dynamics of the nonlinear cavity:

1þ iz½ �a ¼ 1

z ¼ b� hs � hf

_hs fð Þ þ hs fð Þ=ss fð Þ ¼ gs fð Þjaj2

8>><
>>:
gs fð Þ �

�s fð ÞQE2

Dx2
hs fð Þ � Xs fð Þ=Dx b � x� �x0

Dx
: (4)

Here, ss(f)�DxTs(f), and the quantity z¼ [x�x0]/Dx has

the sense of cavity detuning dependent on jaj2. When param-

eters of the oscillator or regime of its excitation change, the

field oscillation amplitude in it is established with the

characteristic time Dx�1 which we take for unity. For this

reason, the set of equations (4) makes sense under the condi-

tion Dx�1 � Ts(f), which we consider to be satisfied. Let us

show that the above model of the nonlinear cavity admits

existence of self-oscillation. For this purpose, consider

behavior of the cavity in the time scale substantially exceed-

ing Tf. This allows us to consider the fast contribution Xf as

inertialess, to assume that hf ¼ cjaj2 (where c� gfsf), and to

transform the set of equations (4) to the following form:

½1þ z2�jaj2 ¼ 1

z ¼ b� hs � cjaj2
_hs þ hs=ss ¼ gsjaj2:

8>><
>>: (5)

From the first two equations, we can express jaj2 through hs.

Since the dependence jaj2ðhsÞ is obtained from solution of a

cubic equation, it may be multi-valued. It can be confirmed

by graphic analysis of the equation for the detuning z (with

which the quantity jaj2 is connected as jaj2 ¼ ½1þ z2��1
),

whose solution corresponds to the points of crossing of the

Lorentzian yðzÞ ¼ c=½1þ z2� and straight line y(z)

¼ b� hs� z.27 If the Lorentzian amplitude c is small enough,

the equation for the detuning has a single real root

z1	 b� hs. It can be shown that at c> ccr, there appears an

interval of values hs, for which the equation for detuning has

three real roots z1, z2, and z3. Therefore, at c> ccr (below, we

assume that c> 0), the dependence jaj2ðhsÞ becomes locally

multi-valued and, in the above interval of hs, has an S-wise

shape (see Fig. 6, in which this interval corresponds to

hs 2 ½hl; hr�). With decreasing c, the region of nonuniqueness

decreases and, at c¼ ccr vanishes (hl ¼ hrjc¼ccr
).

Using the dependence jaj2ðhsÞ presented in Fig. 6, we

can study, in great detail, dynamics of the considered model

of nonlinear cavity. The point on the plane jaj2; hs that

depicts the state of the cavity at arbitrary instant (“mapping

point”) should necessarily lie on the S-shaped curve (Fig.

6)—in this case, two first equations of system (5) will be sat-

isfied. The character of motion of the mapping point along
this curve is governed by the third equation of system (5)

and represents approaching of this point to the point of cross-

ing of the S-shaped curve and the straight line

jaj2 ¼ hs=gsss. This point corresponds to a stationary state of

the system. There are two essentially different modes of the

motion. The first one is realized when the straight line jaj2
¼ hs=gsss is arranged like the line OQ (Fig. 5). In this case,

the mapping point, by moving from the initial point A along

the S-shaped curve to the right, comes to the stationary point

G and stays there infinitely long. The second mode of the

motion is realized when, for the given parameters of the sys-

tem, the straight line jaj2 ¼ hs=gsss intersects the S-shaped

curve in some point G0 at the return segment of the interval

of non-uniqueness BD (as, e.g., the line OO0 in Fig. 5). In

this case, the mapping point, when moving from the point A
of the S-shaped curve towards the stationary point G0, will

come to point B where switching to point C will occur. After

that, the mapping point will start moving towards the station-

ary point G0 over the segment CD, and at point D a step-wise

switching to point E will occur again, and so on. Thus, in the

case of the second mode of motion, the mapping point per-

forms periodic motion over the loop EDCB (Fig. 6) formed

by two vertical tangents DC and CB to the S-shaped curve

and by two segments EB and DC. It is seen from Fig. 6 that,

to obtain such an instable (self-oscillatory) regime at c> 0,

Gs should be negative (in the general case, the constants c
and gs (gf and gs) should have different signs). The third

equation of system (5) can be written in the form
_hs ¼ gs jaj2ðhsÞ � hs=ss, wherefrom we obtain the following

expressions for the dimensionless times sEB (sDC), during

which the mapping point passes the path EB (DC), and for

the total period sA of the self-oscillation

sEB DCð Þ ¼
ð

EB DCð Þ

dhs

gsjaj2 hsð Þ � hs=ss

�����
����� sA ¼ sEB þ sDC: (6)

FIG. 6. The S-shaped curve illustrating instability of the nonlinear

oscillator.
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The multi-valued dependence a2(hs) (Fig. 6), entering these

equations, can be obtained both numerically and analytically

using the Cardano formula. Calculations according Eq. (6)

have shown that the period of self-oscillations substantially

depends on the intensity-related parameters of the problem c
and gs and may be an order of magnitude smaller than ss.

Thus, the above consideration seems quite plausible in the

case when ss exceeds sf by more than an order of magnitude.

Summarizing consideration of the self-oscillatory

regime in the above model of nonlinear cavity, let us enu-

merate the main conditions of the self-excitation. (i) jcj >
ccr ¼ 8

ffiffiffi
3
p

=9. The sense of this condition is that intensity

jAj2 of the field in the cavity should be high enough to

provide the nonlinear shift of the cavity eigen-frequency

of the order of the resonance width Dx.28 (ii) The line

jaj2 ¼ hs=gsss should intersect the S-shaped curve at the

return path of the ambiguity region. Note that the relative

position of the above line and S-shaped curve depends on the

dimensionless static detuning b. By varying this quantity,

one can remove the system from the regime of self-

oscillations.

Let us pass now to consideration of the cavity response

to a small modulation of the detuning db in the pre-threshold

regime, when c< ccr. In this regime, the system of equations

(6) has a stable stationary solution (we denote it a0, z0, hs0,

hf0) that is obtained from Eq. (6) by ignoring the terms _hs

and _hf . The problem we are interested in can be now formu-

lated as follows. Let us make in Eq. (6) the substitution b!
bþ db(t), db/b � 1 and find response dr of the microcavity

reflectivity in the vicinity of the stationary solution of Eq. (6)

to a small modulation of the detuning db. In conformity with

the standard procedure, one has to present the sought

solution of Eq. (6) in the form aðtÞ ¼ a0 þ daðtÞ; zðtÞ
¼ z0 þ dzðtÞ; hsðtÞ ¼ hs0 þ dhsðtÞ; hf ðtÞ ¼ hf 0 þ dhf ðtÞ and

to find the values da, dz, dhs, dhf in the first perturbation

order in db. It is expedient to perform the calculations for the

quantities q� 2Re ½daa
0� and v� 2Im ½daa
0�, entering the

expression for variations of the cavity reflectivity as follows:

dr ¼ ðrres � rtÞ½qþ iv�=2a
0. If the time dependence of db is

described by harmonic oscillations with the frequency �,

then, for the amplitudes of oscillations of the quantities q
and v (denote them by q0 and v0), we obtain the following

equations:

jv0j ¼ jvð�Þdbj jq0j ¼ jz0vð�Þdbj; (7)

where the susceptibility v(�) is defined as

v �ð Þ ¼ 2

1þ z2
0

� �2 � 2z0 gf sf= 1� i�sfð Þ þ gsss= 1� i�ssð Þ
� � :

(8)

The steady-state value of the detuning z0 entering these for-

mulas can be found from the equation

b� z0 ¼
gf sf þ gsss

1þ z2
0

; (9)

which, in the considered stable regime of the cavity, has a

single real solution. Using the expression for susceptibility

(8), we can calculate its behavior upon approaching to the

instability threshold c! ccr. From the results of such calcu-

lations presented in Fig. 6, we can see that the amplitude of

the susceptibility v(�) (and, hence, the amplitude of the

reflectivity modulation dr) substantially increases at c! ccr,

and the shape of its frequency dependence (excluding a nar-

row dip at �¼ 0) qualitatively coincides with that for the

gain factor in Eq. (1). The widths of the main peak and the

central narrow dip of the function jvð�Þj2 are controlled by

the times sf and ss (Fig. 7).

Thus, the main qualitative properties of a real microcav-

ity (listed at the beginning of this section) are successfully

described by our model. For this reason, a more detailed

analysis of the model (which seems quite realistic) is now

not needed, and we will restrict ourselves to two remarks.

First, the appearance of a narrow central dip in the function

jvð�Þj2 is a consequence of the condition necessary for the

self-excitation gfgs< 0 and, for this reason, this dip probably

is physically meaningful.29 Second, our assumptions about

presence of fast and slow response of the refractive index to

variations of the light beam intensity do not seem unrealistic:

the former can be related to bleaching of the QW exciton

susceptibility,30 while the latter, with relatively slow varia-

tions of the photo-induced charge or temperature.19,20

VI. CONCLUSIONS

We studied properties of the Kerr rotation noise in the

light beam reflected from a Bragg microcavity with a quan-

tum well in its inter-mirror gap. In the spectral region corre-

sponding to anti-crossing of the exciton-polariton branches,

we have found a dramatic enhancement (by more than a fac-

tor of 300) of the noise signal. The accumulation time, in our

experiments, is less than 1 s, which allows us to observe the

noise signal in real time. The effect is interpreted in terms of

a strong increase of polarimetric sensitivity of the nonlinear

microcavity in the vicinity of the threshold of self-

oscillations. In the framework of the developed model, we

FIG. 7. Frequency dependence of the susceptibility (8) normalized to the

linear susceptibility jvð�; cÞ ð1þ b2Þ2j2, at c¼ gfsf¼ 0.7, 0.75, 0.8, 0.85,

and 0.9. The values of other parameters are: b ¼ 1; ss ¼ 2� 107;
sf ¼ 0:0002 ss, and gs¼�0.6 c/ss.
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have described the main features of the noise signals also in

the case of negative detuning of the photon mode. The effect

of nonlinear amplification with the intensity-controlled gain

factor, described in this paper, provides possibility to

strongly improve sensitivity of the microcavity reflectivity to

variations of the intermirror gap refractive index highly

interesting for the spin noise spectroscopy and for solving

other problems of detecting weak polarization signals.
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