
Radiative decay rate of excitons in square quantum wells: Microscopic modeling and
experiment
E. S. Khramtsov, P. A. Belov, P. S. Grigoryev, I. V. Ignatiev, S. Yu. Verbin, Yu. P. Efimov, S. A. Eliseev, V. A.
Lovtcius, V. V. Petrov, and S. L. Yakovlev 
 
Citation: Journal of Applied Physics 119, 184301 (2016); doi: 10.1063/1.4948664 
View online: http://dx.doi.org/10.1063/1.4948664 
View Table of Contents: http://scitation.aip.org/content/aip/journal/jap/119/18?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
Exciton bound to a neutral donor in a parabolic quantum-well wire 
J. Appl. Phys. 106, 053716 (2009); 10.1063/1.3213333 
 
Binding energy of ionized-donor-bound excitons in parabolic quantum-well wires in a magnetic field 
J. Appl. Phys. 106, 053704 (2009); 10.1063/1.3211960 
 
On the tunnel injection of excitons and free carriers from In 0.53 Ga 0.47 As ∕ In 0.53 Ga 0.23 Al 0.24 As
quantum well to In As ∕ In 0.53 Ga 0.23 Al 0.24 As quantum dashes 
Appl. Phys. Lett. 89, 061902 (2006); 10.1063/1.2243889 
 
Acceptor binding energy in δ-doped GaAs/AlAs multiple-quantum wells 
J. Appl. Phys. 92, 6039 (2002); 10.1063/1.1516872 
 
Oscillator strength of excitons in (In, Ga)As/GaAs quantum wells in the presence of a large electric field 
J. Appl. Phys. 85, 2713 (1999); 10.1063/1.369606 
 
 

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Download to IP:  195.19.236.171 On: Wed, 18 May

2016 08:31:40

http://scitation.aip.org/content/aip/journal/jap?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1329196761/x01/AIP-PT/JAP_ArticleDL_051816/AIP-APL_Photonics_Launch_1640x440_general_PDF_ad.jpg/434f71374e315a556e61414141774c75?x
http://scitation.aip.org/search?value1=E.+S.+Khramtsov&option1=author
http://scitation.aip.org/search?value1=P.+A.+Belov&option1=author
http://scitation.aip.org/search?value1=P.+S.+Grigoryev&option1=author
http://scitation.aip.org/search?value1=I.+V.+Ignatiev&option1=author
http://scitation.aip.org/search?value1=S.+Yu.+Verbin&option1=author
http://scitation.aip.org/search?value1=Yu.+P.+Efimov&option1=author
http://scitation.aip.org/search?value1=S.+A.+Eliseev&option1=author
http://scitation.aip.org/search?value1=V.+A.+Lovtcius&option1=author
http://scitation.aip.org/search?value1=V.+A.+Lovtcius&option1=author
http://scitation.aip.org/search?value1=V.+V.+Petrov&option1=author
http://scitation.aip.org/search?value1=S.+L.+Yakovlev&option1=author
http://scitation.aip.org/content/aip/journal/jap?ver=pdfcov
http://dx.doi.org/10.1063/1.4948664
http://scitation.aip.org/content/aip/journal/jap/119/18?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/106/5/10.1063/1.3213333?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/106/5/10.1063/1.3211960?ver=pdfcov
http://scitation.aip.org/content/aip/journal/apl/89/6/10.1063/1.2243889?ver=pdfcov
http://scitation.aip.org/content/aip/journal/apl/89/6/10.1063/1.2243889?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/92/10/10.1063/1.1516872?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/85/5/10.1063/1.369606?ver=pdfcov


Radiative decay rate of excitons in square quantum wells: Microscopic
modeling and experiment

E. S. Khramtsov,1 P. A. Belov,2,a) P. S. Grigoryev,1 I. V. Ignatiev,1 S. Yu. Verbin,1

Yu. P. Efimov,2 S. A. Eliseev,2 V. A. Lovtcius,2 V. V. Petrov,2 and S. L. Yakovlev2

1Spin Optics Laboratory, St. Petersburg State University, Ulyanovskaya 1, 198504 St. Petersburg, Russia
2Department of Physics, St. Petersburg State University, Ulyanovskaya 1, 198504 St. Petersburg, Russia

(Received 11 December 2015; accepted 23 April 2016; published online 9 May 2016)

The binding energy and the corresponding wave function of excitons in GaAs-based finite square

quantum wells (QWs) are calculated by the direct numerical solution of the three-dimensional

Schr€odinger equation. The precise results for the lowest exciton state are obtained by the

Hamiltonian discretization using the high-order finite-difference scheme. The microscopic calcula-

tions are compared with the results obtained by the standard variational approach. The exciton

binding energies found by two methods coincide within 0.1 meV for the wide range of QW widths.

The radiative decay rate is calculated for QWs of various widths using the exciton wave functions

obtained by direct and variational methods. The radiative decay rates are confronted with the

experimental data measured for high-quality GaAs/AlGaAs and InGaAs/GaAs QW heterostruc-

tures grown by molecular beam epitaxy. The calculated and measured values are in good agree-

ment, though slight differences with earlier calculations of the radiative decay rate are observed.

Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4948664]

I. INTRODUCTION

The optical properties of semiconductor heterostructures

have been of growing interest during the last decades due to

various applications, e.g., light-emitting diodes and semicon-

ductor lasers.1–3 Modern epitaxial techniques allow one to

grow heterostructures with quantum wells (QWs) and super-

lattices where the quantum confinement of carriers strongly

modifies their energy spectrum. The optical properties of

such structures significantly depend on the structure design,

layer composition, layer potential profile, etc. This variety of

the structural properties is a basis for proposals of new devi-

ces like an excitonic transistor,4 an exciton-polariton

router,5,6 and a transistor switch.7

A particular role of excitons in the optical transitions

has been understood since their discovery in a bulk semicon-

ductor in 1952.8 One of the important characteristics of an

exciton is the binding energy caused by the Coulomb interac-

tion of the electron and the hole.9–13 In many bulk semicon-

ductors, this energy is relatively small, typically lower than

the lattice vibration energy at room temperature. It is much

larger in the wide bandgap semiconductors like GaN and

ZnO so that the exciton effects dominate in optical transi-

tions even at room temperature.14,15 In the semiconductor

heterostructures with QWs, the binding energy can signifi-

cantly increase further.9

Together with the binding energy, the radiative proper-

ties of an exciton are characterized by another important pa-

rameter, the radiative decay rate11 or the oscillator

strength,16 which is defined by the exciton-light coupling.

Since the discovery of the giant exciton oscillator strength

(the Rashba effect17), the exciton states and exciton-light

coupling have been drawing much attention.18–20 Recent

developments of the microcavities21,22 open up new frontiers

for controlling the exciton-light coupling efficiency.

A precise experimental determination of the exciton

binding energy is usually complicated by inhomogeneity of

the exciton ensemble in heterostructures due to defects and

roughness of the interfaces.12,13 The experimental study of

exciton-light coupling is also a nontrivial problem. The cou-

pling gives rise to an energy shift and a radiative broadening

of exciton lines,11 which can be, in principle, measured

using, e.g., the steady-state reflectance spectroscopy.23–25

This method, however, is applicable only for the high-

quality heterostructures when the non-radiative broadening

does not dominate over the radiative one. Another approach

is the time-resolved spectroscopy using photoluminescence

kinetics, pump-probe, or four-wave mixing methods for the

determination of the radiative decay time.21,26–29 Similar

problems appear in this approach if the quality of the hetero-

structure is not high enough.

The theoretical modeling of the exciton in a bulk semi-

conductor is usually carried out in the framework of the en-

velope function approximation (EFA), which, in the simplest

case, leads to the hydrogen model.16 In this model, the

motion of an exciton as a whole and the relative motion of

the electron and the hole are separated. This leads to two in-

dependent Schr€odinger equations (SEs) for the center-of-

mass and intrinsic motions. The latter one is similar to the

SE for a hydrogen atom and can be analytically reduced to

the one-dimensional problem. The hydrogen model becomes

unsuitable for semiconductors with a degenerate valence

band.30 In this case, the Luttinger Hamiltonian,31 which

couples the center-of-mass and intrinsic electron-hole

motions, is more appropriate. As a result, the variables of the

exciton SE cannot be separated and one has to consider thea)Electronic mail: pavelbelov@gmail.com

0021-8979/2016/119(18)/184301/13/$30.00 Published by AIP Publishing.119, 184301-1

JOURNAL OF APPLIED PHYSICS 119, 184301 (2016)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Download to IP:  195.19.236.171 On: Wed, 18 May

2016 08:31:40

http://dx.doi.org/10.1063/1.4948664
http://dx.doi.org/10.1063/1.4948664
http://dx.doi.org/10.1063/1.4948664
mailto:pavelbelov@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4948664&domain=pdf&date_stamp=2016-05-09


multi-dimensional SE. A study of the exciton in a QW meets

further complications of the problem. Even when only the di-

agonal part of the Luttinger Hamiltonian is included in the

problem, the presence of the QW potential requires one to

consider at least the three-dimensional SE, which cannot be

solved analytically.

The exciton states in QWs have been theoretically and

numerically studied by many authors.9,32–40 Miller et al.32

have considered a two-dimensional exciton approximation

for narrow QWs and obtained the exciton binding energy to

be nearly four times that for the bulk crystal, Rx. Bastard

et al.9 and Greene et al.33 employed the variational approach

with various types of trial wave functions. In these works,

the breakup of the 4Rx limit has been obtained for excitons

in the QWs with finite barriers. Similar results have been

obtained by Leavitt and Little35 who applied the method

based on the adiabatic approach. More recent paper of

Gerlach et al.38 describes a phenomenological model for the

binding energy of an exciton in a QW. The authors compare

the results of their model with the energies obtained by the

variational approach with the prescribed trial function for the

exciton wave function. The comparison shows a certain

advantage in accuracy of the variational approach over the

phenomenological model.

The variational approach became a standard one for the

numerical study of the binding energy.41–50 The trial wave

functions used in the variational calculations of the exciton

binding energy can be accurately chosen for two extreme

cases. One of them is the wide QW; when the width, L, is

much larger than the exciton Bohr radius, aB, the motion of

the exciton as a whole can be separated from the intrinsic

motion of the electron and the hole. In this case, the trial

function is a product of the hydrogen-like 1s-function and a

standing wave describing the quantization of the exciton

motion in the wide QW.16 Another case is the narrow QW,

in which the quantum confined energy of the electron and

the hole is much larger than their Coulomb coupling energy.

Then, the separately obtained wave functions of the quantum

confined electron and hole states are appropriate approxima-

tions.38 The part of wave function taking into account the

Coulomb interaction is usually modeled by a simple function

with some parameters.11,38 The precision of such approxima-

tions for the wide range of the QW widths between these two

extreme cases has not been studied in detail so far.

The calculations of the radiative decay rate (or the oscil-

lator strength) for the GaAs-based QWs have been carried

out in several works.51–56 In particular, the theoretical calcu-

lations by Iotti and Andreani55 and D’Andrea et al.56 pre-

dicted a general minimum of the oscillator strength at QW

width L � 2:5aB. This minimum defines the transition from

the so-called weak exciton confinement (L� aB) to the

strong confinement (L < aB), when the electron and the hole

are separately localized. These studies have not been contin-

ued because of lack of the reliable experimental data due to

low quality of the heterostructures. The experimental deter-

mination of the radiative characteristics has been done in a

series of papers.19,24,25,57–62 Recent studies of the radiative

decay rate for high-quality QWs have been carried out by

Poltavtsev et al.24,25 In these papers, the general theoretical

behavior has been experimentally confirmed. However, the

spread of the experimental measurements and the shortage of

the available theoretical calculations motivated us to fulfill

this deficiency.

In the present paper, we provide the results of numerical

solution of the SE for excitons in QWs with a degenerate va-

lence band. Partial separation of the center-of-mass motion

and cylindrical symmetry of the problem reduce the initial

SE to the three-dimensional one. We have numerically

solved the three-dimensional SE for the heavy-hole exciton

in QWs of various widths and precisely calculated the exci-

ton binding energy and the radiative decay rate.

The numerical solution of the problem has been done for

the GaAs/AlGaAs and InGaAs/GaAs QWs, which are widely

experimentally and theoretically studied now as the model

heterostructures.61,63 The obtained solutions are compared

with results of the variational approach with the trial function

proposed in Ref. 38. The results of the numerical experiments

for different widths of the QWs are discussed in detail.

We also experimentally measured the reflectance spectra

for several high-quality heterostructures with InGaAs/GaAs

and GaAs/AlGaAs QWs grown by molecular beam epitaxy.

An analysis of exciton resonances in the spectra using the

theory described in Ref. 11 allowed us to obtain the radiative

decay rates for excitons in these structures and to compare

them with the numerically obtained results.

The paper is organized as follows. In Section II, we

derive the three-dimensional SE from the complete exciton

Hamiltonian. The direct and variational methods of numeri-

cal solution are described in Section III. Section IV presents

results on the exciton binding energy and the wavefunction

obtained by these two methods. Section V contains the

obtained results for the radiative decay rate, their comparison

with experimental data, as well as an analysis of the decay

rate for the narrow and wide QWs. The approximations and

comparison of the data obtained by two numerical methods

are discussed in Section VI. Section VII summarizes main

results of the paper. Additionally, some details of the numer-

ical scheme and uncertainties are given in the Appendix.

II. MICROSCOPIC MODEL

The exciton in a QW is described by the SE with

Hamiltonian

H ¼ Eg þ Te þ Th �
e2

�jre � rhj
þ Ve reð Þ þ Vh rhð Þ: (1)

Here, indices e and h denote the electron and the hole, respec-

tively. We introduce the energy bandgap Eg, the kinetic opera-

tors for the electron, Te, and for the hole, Th, the relative

electron-hole distance, jre � rhj, the electron charge, e, and

the dielectric constant, �. The square QW potential Ve;hðre;hÞ
¼ 0 inside the QW, when jze;hj < L=2, and Ve;hðre;hÞ ¼ Ve;h

outside the QW, where Ve;h are the conduction- and valence-

band offsets.

In the effective-mass approximation,30 the kinetic opera-

tor of the electron in the conduction band is explicitly given

as Te ¼ k2
e=ð2meÞ, where ke ¼ �i�hre is the electron

184301-2 Khramtsov et al. J. Appl. Phys. 119, 184301 (2016)
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momentum operator and me is the electron effective mass.

The kinetic term of the hole in the valence band is given by

the Luttinger Hamiltonian,31 which can be written as

Th ¼
1

m0

�
c1 þ

5

2
c2

� �
k2

h

2
� c2 k2

hxJ2
x þ k2

hyJ2
y þ k2

hzJ
2
z

� �

�2c3

�X
m 6¼n

fkhm; khngfJm; Jng
��
; (2)

where cl with l¼ 1, 2, 3 are the Luttinger parameters, khm,

m ¼ x; y; z, are the components of the hole momentum oper-

ator, Jm are the 4� 4 angular momentum matrices,64

fJm; Jng ¼ ðJmJn þ JnJmÞ=2 denotes the anticommutator,

and m0 is the mass of the free electron.

We consider only the diagonal part of the expression

(2), assuming that the nondiagonal terms contribute little to

the energy.30 Therefore, we do not consider several effects

extensively discussed in literature.65,66 In particular, we

ignore the heavy-hole–light-hole coupling, which is essential

for the QWs of width L> 150 nm. For smaller widths, this

effect is negligible. Further discussion on the reliability of the

applied approximations is given in Section VI. Introducing the

effective masses mhxy ¼ m0=ðc16c2Þ, mhz ¼ m0=ðc172c2Þ,
of the heavy hole (upper sign) and light hole (lower sign),

respectively, up to the constant energy gap Eg, we obtain the

Hamiltonian

Hdiag ¼
k2

e

2me
þ

k2
hx þ k2

hy

� �
2mhxy

þ k2
hz

2mhz
� e2

�jre � rhj
þ Ve reð Þ þ Vh rhð Þ: (3)

In our study, we pay attention only to the heavy-hole excitons.

With the Hamiltonian (3), we come to the standard six-

dimensional SE, HdiagW ¼ EW, for the electron and the hole

coupled by the Coulomb interaction.67 The translational

symmetry along the QW layer allows us to reduce this equa-

tion only to the four-dimensional one by separation of the

center-of-mass motion in the (x, y)-plane. This motion is

described by an analytical part of the complete wave func-

tion, W. The relative motion of the electron and the hole in

the exciton is described by the part wðx; y; ze; zhÞ of the com-

plete wavefunction, where x ¼ xh � xe; y ¼ yh � ye. One

more dimension is eliminated by taking advantage of the cy-

lindrical symmetry of the problem and introducing the polar

coordinates ðq;/Þ for description of the relative motion.

Representing the wave function in the form

w x; y; ze; zhð Þ ¼ w ze; zh; qð Þeik// ¼
v ze; zh; qð Þ

q
eik//; (4)

where k/ ¼ 0; 1; 2;…, we proceed to the three-dimensional

SE, which is numerically studied in the present paper. In Eq.

(4), we introduce factor 1=q in order to fulfill the cusp condi-

tion68 at q¼ 0.

Since the light interacts mainly with the ground 1s state

of the exciton, we study the case when k/ ¼ 0. In this case,

the equation under consideration is written as9

K � e2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ ze � zhð Þ2

q þ Ve zeð Þ þ Vh zhð Þ
0
@

1
Av ze; zh; qð Þ

¼ Exv ze; zh; qð Þ; (5)

where the kinetic term reads

K ¼ � �h2

2me

@2

@z2
e

� �h2

2mhz

@2

@z2
h

� �h2

2l
@2

@q2
� 1

q
@

@q
þ 1

q2

 !
(6)

and l ¼ memhxy=ðme þ mhxyÞ is the reduced mass in the

(x, y)-plane. The energy Ex denotes the exciton energy with

respect to Eg.

In our study, Eq. (5) is solved numerically, and the energy

and corresponding wave function are obtained for QWs of

various widths and compositions of the QW layer and barriers.

Other parts of the complete wave function are analytically

known, though they are not of practical importance.

III. NUMERICAL METHODS

We performed the direct numerical solution of Eq. (5)

for precise calculations of the exciton ground state energy Ex

and the function vðze; zh; qÞ. The exponential decrease in v at

large values of variables allows us to impose the zero bound-

ary conditions for it at the boundary of some rectangular do-

main. The size of this domain varies from dozens of QW

widths (for small widths) down to several QW widths (for

large widths). Therefore, the studied boundary value problem

(BVP) is formed by Eq. (5) and the zero boundary conditions

at q¼ 0, some large value of q and at large positive and neg-

ative values of the variables ze;h. Since Eq. (5) is the standard

three-dimensional partial differential equation of elliptic

type, the direct numerical solution of the BVP is feasible

using available computational facilities. For this purpose, we

employed the fourth-order finite-difference approximation of

the derivatives on the equidistant grids of the equal step over

three variables. It allowed us to solve Eq. (5) with the maxi-

mum theoretical uncertainty proportional to the square of the

grid step because of a discontinuity of the potential. The pre-

cise values of the studied quantities are obtained by the

extrapolation of the results of calculations as the grid step

goes to zero. The details on the numerical scheme and theo-

retical uncertainties are described in the Appendix.

The nonzero solution of the homogeneous equation (5)

with trivial boundary conditions can be obtained by the diag-

onalization of the matrix constructed from this equation. The

obtained square matrix is large, nonsymmetric, and sparse.

The typical size of the matrix is of the order of 106, so we

keep in the calculations only nontrivial matrix elements of a

few diagonals. The diagonalization of such a matrix is diffi-

cult; however, a small part of the spectrum can be easily

obtained. Using the Arnoldi algorithm,69 we have calculated

the lowest eigenvalue of the matrix and the corresponding

eigenvector. As a result, the ground state energy, Ex, and the

corresponding wave function have been obtained for various

widths of QW. The excited states can be obtained by this

algorithm as the higher eigenvalues and eigenvectors.70

184301-3 Khramtsov et al. J. Appl. Phys. 119, 184301 (2016)
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One of the alternative numerical methods is the approxi-

mate solution of the SE with Hamiltonian H defined by Eq.

(1) using the variational approach. This technique has been

applied by many authors.9,11,33,38 In the framework of the

variational approach, the ground state energy of the system

with the Hamiltonian H is determined by the minimization

of the functional

F ¼ hwjHjwihwjwi ; (7)

with respect to some free parameters of the trial wave func-

tion w. For numerical calculation of the integrals in Eq. (7),

one has to define the trial function. In Ref. 38, the trial wave

function of the form

w ze; zh; qð Þ ¼ we zeð Þwh zhð Þexp � a
aB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ k ze � zhð Þ2

q� �
(8)

is applied. Here, the functions weðzeÞ and whðzhÞ are the

ground state wave functions of the free electron and the free

hole, respectively, and a and k are the varying parameters.

The shortcoming of the described variational approach is

that the trial wave function has the prescribed form. Moreover,

it assumes the partial separation of the variables, whereas the

Coulomb potential in Eq. (5) does not allow that separation. Of

course, one can define even more complicated trial func-

tions,33,71 but asymptotically (for small and large widths of

QW), they have to be reduced to the function (8). This fact as

well as the numerical simplicity of this ansatz provoked many

authors to use it for calculation of the exciton binding energy,

Rx. However, the accuracy of the results has not been studied

in detail so far. The obtained wave function has also not been

applied to calculate the exciton radiative characteristics.

We apply the described numerical algorithms for solv-

ing Eq. (5) with parameters for the GaAs/AlxGa1�xAs and

InxGa1�xAs/GaAs QWs, which are widespread in the con-

temporary experimental studies. The parameters, presented

in Table I, are general for such types of the QWs. In particu-

lar, they simulate the typical ratio of the band offsets at the

GaAs/Al0.3Ga0.7As interface: Ve=Vh � 2. It is well known

that the strain-induced effects are negligibly small in these

structures due to nearly equal lattice constants of GaAs and

AlAs. This fact is confirmed by the absence of the notable

splitting of the heavy- and light-hole excitons in the GaAs/

AlGaAs heterostructures with wide QWs.63 For the InGaAs/

GaAs QWs, the strain-induced effects strongly depend on

the indium content due to considerable mismatch of the

GaAs and InAs lattice constants. However, for planar struc-

tures, these effects do not disturb the rectangular profile of

the QW potentials.72 Therefore, they can be phenomenologi-

cally taken into account by changing the ratio Ve=Vh. We

have chosen the ratio Ve=Vh ¼ 65=35 for In concentration

x¼ 0.02 and Ve=Vh ¼ 55=45 for x¼ 0.09.56 In the calcula-

tions, we have used the heavy-hole GaAs mass parameters

reported in Ref. 38 as well as the InxGa1�xAs ones from Ref.

73 For the latter ternary alloy, the linear interpolation on x of

the mass parameters was used. For simplicity, we neglect the

difference of the electron and hole masses in the QW and in

the barrier layers. We ignore the discontinuity of the dielec-

tric constant at the QW interfaces as well.74 Reliability of

these approximations is given in Section VI.

IV. EXCITON BINDING ENERGY

The exciton binding energy, Rx, is defined by the exciton

ground state energy, Ex, with respect to the quantum confine-

ment energy of the electron, Ee, and the hole, Eh, in QW

Rx ¼ Ee þ Eh � Ex:

Energies Ee and Eh are obtained from solution of the corre-

sponding one-dimensional SEs for the electron and the hole

in QW.10

The calculations of the exciton binding energy have

been carried out for various widths of the GaAs/Al0.3Ga0.7As

QW. Fig. 1 shows the exciton binding energy, Rx, obtained

TABLE I. Material parameters used for solving the eigenvalue problem (5).

The energy gap mismatch denoted as DEg is calculated for AlGaAs hetero-

structure based on the data from Ref. 5, for InGaAs, it is based on Ref. 56.

Bottom part of the table contains the effective masses for pure materials.

These mass parameters for AlGaAs and InGaAs heterostructures are taken

from Refs. 5 and 9, respectively. Masses for the InGaAs/GaAs are obtained

by the linear interpolation on x.

Material parameters

Heterostructure GaAs/AlxGa1�xAs InxGa1�xAs/GaAs

x 0.3 0.02 0.09

DEg (meV) 365.5 30 139

Ve=Vh 0.65/0.35 0.65/0.35 0.55/0.45

� 12.53 12.53

Mass parameters

Material GaAs InAs GaAs

me=m0 0.067 0.026 0.067

mhz=m0 0.377 0.333 0.350

mhxy=m0 0.111 0.035 0.111

l=m0 0.042 0.015 0.042

FIG. 1. Exciton binding energy, Rx, obtained by the finite-difference numeri-

cal solution of Eq. (5) (blue curve) and by the variational approach (red

curve) for GaAs/Al0.3Ga0.7As QWs as a function of the QW width.

184301-4 Khramtsov et al. J. Appl. Phys. 119, 184301 (2016)
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from the microscopic finite-difference calculations and the

variational approach as a function of the QW thickness. The

results of two methods coincide with the precision of

0.1 meV for QW widths L � 2:5 nm. This result means that

the trial function (8) is a good approximation of the exciton

wave function for the lowest state. The variational approach

gives a bit smaller binding energy, which is the expectable

result because the minimum of functional (7) is achieved for

exact exciton wave function rather than for the trial function.

This discrepancy seems to be unimportant for comparison

with measurements due to typically larger uncertainties of

experimental data. Therefore, both methods can be success-

fully applied for determination of the exciton binding

energy.

The uncertainties of the finite-difference calculations of

Rx come from the calculated values of Ex because the quan-

tum confinement energies, Ee and Eh, can be calculated with

an arbitrary high precision. We obtained the relative uncer-

tainty of Rx to be smaller than 1% for 1:0 � L < 2:5 nm and

decreasing down to values smaller than 0.1% for wider

QWs. The uncertainty is much smaller than the difference of

the results obtained by two numerical methods.

The overall behavior of the binding energy within

the microscopic model for QW widths 1 � L � 150 nm can

be approximated by the function: RxðLÞ ¼ ð3:5431L2

þ146:694LÞ=ðL2 þ 11:1758Lþ 6:0473Þ with the accuracy

of 0.07 meV. The dependence of the parameters a and k on L
for the variational approach can be fitted by a phenomeno-

logical function

f ðLÞ ¼ f0ðexp½�ðL� L0Þ=DL1	 � exp½�ðL� L0Þ=DL2	Þ þ f1;

where parameters for aðLÞ are f0 ¼ �0:058; L0 ¼ 39 nm,

DL1 ¼ 50 nm, DL2 ¼ 17 nm, f1 ¼ 1:064, and for kðLÞ are

f0 ¼ �1:48; L0 ¼ �16 nm, DL1 ¼ 56 nm, DL2 ¼ 9 nm, and

f1 ¼ 1:21. The accuracy of these fits is of about 1.5%. In par-

ticular, for the QW of width L¼ 200 nm, where the exciton

can be treated as the free one, a ¼ 1:0604; k ¼ 1:1858.

These values are close to the expectable ones for the bulk

crystal:11 a1 ¼ 1; k1 ¼ 1.

Interestingly enough, the maximum binding energy is

achieved at the QW width of about 3 nm. The binding energy

decreases for thinner QWs due to the penetration of the car-

riers into the barriers. In the limit of very thick QWs, we

obtained the values approaching the free exciton binding

energy for the bulk crystal. From Fig. 1, one can see that, for

our case, this energy is Rx ¼ 4:1060:03 meV, which slightly

less than that reported in Ref. 30. It is worth noting that, for

the QW width L> 150 nm, the obtained results may be less

reliable due to omission of the nondiagonal Luttinger terms

in our model.

Together with the exciton ground state energy, in the

direct microscopic calculation, we have obtained the corre-

sponding wave function. In the wide QWs, the wave function

can be presented as a function uðZ; z; qÞ ¼ vðze; zh; qÞ=q,

depending of the relative coordinate, z ¼ ze � zh, and center-

of-mass coordinate, Z ¼ ðmeze þ mhzhÞ=ðme þ mhÞ. The sli-

ces of juðZ; z; qÞj2 as functions of z and q for three different

center-of-mass coordinates Z are shown in Fig. 2 for the QW

width L¼ 150 nm. These slices show the probability distribu-

tion for the relative distance between the electron and the

hole in the exciton. The center plot shows the exciton placed

in the center of the QW while the side plots present the exci-

ton near the QW interfaces. The magnitude of juðZ; z; qÞj2
for the side plots is in several orders smaller than for the cen-

ter plot. It is normalized to the center plot for visibility. As

seen from Fig. 2, the probability distribution is spherically

symmetric at Z¼ 0 nm and reveals some distortion near the

QW interfaces.

V. EXCITON-LIGHT COUPLING

A. Radiative decay rate

Exciton-light coupling is usually characterized by either

the radiative decay rate or the oscillator strength.11,16,52,53

The radiative decay rate, C0, characterizes the decay of elec-

tromagnetic field emitted by an exciton ensemble after the

pulsed excitation: EðtÞ ¼ Eð0Þ expðiw0t� C0tÞ. A consistent

exciton-light coupling theory is presented, e.g., in the mono-

graph of Ivchenko.11 It provides the following expression for

C0:

C0 ¼
2pq

�h�

ejpcvj
m0x0

� �2				
ð1
�1

U zð Þexp iqzð Þdz

				
2

; (9)

where q ¼
ffiffi
�
p

x=c is the light wave vector, x0 is the exciton

frequency, jpcvj is the matrix element of the momentum op-

erator between the single-electron conduction- and valence-

band states, and UðzÞ 
 wðze ¼ z; zh ¼ z; q ¼ 0Þ.
The simplification of Eq. (9) used in Refs. 53 and 55

takes into account that the QW width is much smaller than

the light-wave length 2p=q. It allows one to replace expðiqzÞ
in the integral by unity. In this case, the radiative decay rate

C0 is closely related to the oscillator strength per unit area,53

FIG. 2. The slices of the exciton wave function squared, juðZ; z; qÞj2, as

functions of relative coordinates ðz; qÞ for three different center-of-mass

coordinates Z ¼ �69; 0; 69 nm of the exciton. The QW width, L, equals to

150 nm. The coordinates of the center-of-masses of the excitons are depicted

by small crosses. The QW interfaces are drawn by the dashed vertical lines.

The probability for the electron and the hole to be at distance r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ q2

p
is shown in the logarithmic scale. The magnitude of the side plots is normal-

ized to the central one.
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f/S, by the formula C0 ¼ ðpe2f Þ=ðnm0cSÞ, where n is the re-

fractive index (
ffiffi
�
p
¼ nþ ik).

The wave function obtained from the microscopic calcu-

lation allowed us to calculate the radiative decay rate C0 of

the exciton ground state according to Eq. (9). We calculated

C0 for GaAs/Al0.3Ga0.7As QWs of various widths from 1 nm

to 300 nm. In the calculations, jpcvj2 ¼ m0Ep=2, where

Ep¼ 28.8 eV for GaAs and Ep¼ 21.5 eV for InAs are taken

from Ref. 73. The exciton frequency x0 is calculated using

bandgap Eg¼ 1.520 eV for GaAs11 and parameters listed in

Table I.

Fig. 3 shows the radiative decay rate in energy units, �hC0,

as a function of the QW width. The radiative decay rate

reaches its maximum at the QW width of about 130 nm, which

approximately corresponds to a half of the light wavelength in

the QW material, kðGaAsÞ ¼ kðvacÞ=nðGaAsÞ ¼ 230 nm,

where nðGaAsÞ ¼ 3:6 is the refractive index of GaAs at the

photon energy �hx ¼ Eg. So, this maximum of C0 corresponds

to the maximal overlap of the exciton wave function UðzÞ and

the light wave (see Eq. (9)).

As the QW width decreases, C0 also decreases due to

the diminishing of the overlap integral in Eq. (9). For small

QW widths, however, C0 grows, which correlates with the

increase in the exciton binding energy (compare with Fig. 1).

Therefore, we may suppose that this maximum of C0 is

caused by squeezing of the exciton in the narrow QWs by

the QW potential. The squeezing gives rise to the increase in

the probability to find electron and the hole in the same posi-

tion (ze¼ zh and q¼ 0). Between these maxima of C0, there

is a minimum for the QW width of about 30 nm, which cor-

responds to the exciton Bohr diameter. The presence of such

minimum was earlier pointed out by Iotti and Andreani.55

We compared our results with two simple approxima-

tions: the exciton in the bulk semiconductor for wide QWs

and two-dimensional approximation for narrow QWs. Both

the approximations are shown in Fig. 3 by various curves.

The wave function of the exciton in the bulk semiconductor

is given as11

w Z; rð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

2

pa3
BL�

s
cos

p
L�

Z

� �
exp � r

aB

� �
; (10)

where r is the electron-hole distance, L� ¼ L� 2Ld is the

effective QW width obtained from the QW width L, and the

dead layer Ld.75–77 The part of the wave function (10)

depending on Z is represented only by function cosðpZ=L�Þ.
It leads us to the conventional definition of the dead layer,

which is the distance from the QW interface to the point

where the cosine approximation of the exciton wave function

becomes zero. This definition of the dead layer is illustrated

by the inset of Fig. 3(b). Substituting the wave function (10)

in Eq. (9), one can calculate the radiative decay rate in a QW

with infinite barriers and a constant dead layer

Ld¼ 14.23 nm. It is shown by dashed curve in Fig. 3(a). One

can see that this approximation is acceptable for the QW

widths L � 140 nm.

A better approximation of the dependence C0ðLÞ can be

achieved using the variable dead layer.71 We extracted the

variable dead layer by fitting the function (10) at r¼ 0 to

the numerically obtained UðzÞ [see inset of Fig. 3(b)]. The

extracted values of Ld are shown in Fig. 3(b) by solid points.

The dependence of Ld on the QW width L can be well

approximated by the phenomenological formula: Ld ¼ a
ð1� expð�L=L0ÞÞ þ b, where a ¼ 20:660:5 nm, L0 ¼ 70

62 nm, and b ¼ �5:760:7 nm. Using this approach and

aB¼ 14.23 nm, we obtained more accurate approximation of

�hC0ðLÞ, which is shown in Fig. 3(a) by a red solid curve.

This approximation is appropriate for the QW widths down

to 100 nm.

For narrower QWs, both the bulk exciton wave function

and the idea of variable dead layer are no longer applicable.

Instead, for thin QWs, we implemented the two-dimensional

(2D) exciton approximation. The wave function of the 2D

exciton has the form11

w ze; zh; qð Þ ¼ we zeð Þwh zhð Þ

ffiffiffiffiffiffiffiffiffiffi
2

pq2
eff

s
exp � q

qeff

� �
; (11)

FIG. 3. (a) The radiative decay rate in energy units, �hC0, versus QW width,

L. Blue dots are obtained in the finite-difference calculation. The dashed line

corresponds to C0 for the bulk exciton in a QW with infinite barriers and

constant dead layer Ld¼ 14.23 nm. The solid red line is the calculation with

the variable dead layer shown in (b). The green solid line corresponds to C0

in the 2D exciton model with the varying effective radius qeff shown in

(c). (b) The variable dead layer as a function of QW width. The inset: func-

tion UðzÞ and its approximation by cosðpZ=L�Þ for QW with L¼ 150 nm.

The two-side arrow marked “Ld” illustrates definition of the dead layer.

(c) Effective 2D exciton radius, qeff , extracted from the finite-difference

(FD) calculations (solid points) for the QW widths 0–30 nm and its approxi-

mation by the function (13) (solid curve) with parameters: C1 ¼ 9:560:4 nm,

L1 ¼ 1461 nm, C2 ¼ 6:060:5 nm, L2 ¼ 2:460:3 nm. Dashed curves show

contributions fsquðLÞ and fpenðLÞ in Eq. (13).
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where qeff is the effective 2D exciton radius, weðzeÞ and

whðzhÞ are wave functions of the free electron and free hole

in a QW with finite barriers. Function (11) is the solution of

eigenvalue problem with the Hamiltonian (1) and 2D

Coulomb potential, �e2=ð�qÞ. In the true 2D exciton prob-

lem, qeff is the 2D Bohr radius

q2D ¼
�h2�

2le2
; (12)

which is twice smaller than aB.

The exciton in the QWs with finite heights of the bar-

riers does not reach two-dimensional limit due to penetration

of the exciton wave function into the barriers. Therefore, we

consider qeff as a characteristic parameter. We fitted the

wave function (11) to the numerically obtained wave func-

tion UðzÞ by varying qeff . The extracted effective 2D exciton

radius values are presented in Fig. 3(c). It is seen that qeff

decreases as L! 4 nm and then increases again as L! 0.

This behavior is well described by a phenomenological

function

f ðLÞ ¼ fsquðLÞ þ fpenðLÞ
¼ ½q2D þ C1ð1� e�L=L1Þ	 þ ½C2e�L=L2 	: (13)

The first part of this function, fsquðLÞ, decreases with L! 0

down to the 2D-limit given by Eq. (12), q2D ¼ 7:9 nm for

GaAs, and reflects the squeezing of exciton in narrow QWs.

Another one, fpenðLÞ, increases as L! 0 and reflects the pen-

etration of exciton into the barrier. Using this dependency,

we calculated �hC0 for the 2D exciton model (see Fig. 3(a)).

As it is seen, this model, even with varying qeff , is adequate

in terms of the radiative decay rate only for narrow QWs

L � 15 nm.

The described approximations are applicable for narrow

or wide QWs separately. The excitons in QWs of intermedi-

ate widths are not described by these models. Only the direct

microscopic calculation provides the precise values of the

radiative decay rate for the wide range of QW widths.

B. Experimental determination of C0

Exciton reflectance spectra can be used to obtain radia-

tive decay rate. According to the theory summarized in Ref.

11, the amplitude reflectance coefficient of a QW with an

exciton resonance is given as

rQW ¼
iC0

~x0 � x� i Cþ C0ð Þ ; (14)

where ~x0 is the renormalized exciton resonance frequency

and x is the frequency of the incident light. The nonradiative

decay rate C in Eq. (14) takes into account resonance broaden-

ing due to nonradiative processes. Reflectance rQW is strictly

related to the reflectance coefficient of the whole heterostruc-

ture, R, which, in turn, can be measured in experiment.

For a single QW heterostructure, the relationship

between R and rQW can be found in Ref. 11. In a structure

with several QWs as those used in our study, the reflectance

coefficient is generalized to

R ¼
				 r þ

P
jrQWje

i/j

1þ r
P

jrQWje
i/j

				
2

: (15)

Here, r is the Fresnel reflectance coefficient from the surface

of a heterostructure and / is the phase shift of the light wave

reflected by the QW with respect to that reflected by the

structure surface. The index j numerates the resonances

observed experimentally. Effectively, Eqs. (14) and (15) are

the direct relations between the reflectance R and the radia-

tive decay rate C0.

For comparison of the theoretical modeling with experi-

mental results, the high-quality heterostructures with QWs

grown by molecular beam epitaxy have been selected for

study of their reflectance spectra. These heterostructures con-

tain several QWs separated by relatively thick barrier layers,

which uncouple the wells. The spectra were measured using

a simple setup consisting of a white light source, a cryostat,

and a spectrometer equipped with a CCD camera. Special

precautions have been taken to accurately calibrate the abso-

lute value of reflectance. For this purpose, a monochromatic

light of a continuous-wave titanium-sapphire laser was used

to measure the reflectance at a spectral point beyond the

exciton resonances.

Fig. 4 demonstrates examples of the reflectance spectra

(blue curves) for the GaAs/Al0.3Ga0.7As and In0.02Ga0.98As/

GaAs heterostructures measured at 4 K. We used Eq. (15) to

fit the spectra with C0, C, x0, and / as the fitting parameters

for each resonance (red curves). The radiative decay rate in

energy units, that is, the radiative broadening, �hC0, as well as

FIG. 4. (a) The experimental reflectance spectrum (blue curve) of the hetero-

structure with two GaAs/Al0.3Ga0.7As QWs as well as the fit (red curve) of

the spectrum. The ground heavy- and light-hole exciton states are denoted

by Xhh and Xlh, respectively. (b) The same is for the heterostructure with

three In0.02Ga0.98As/GaAs QWs. Ground heavy-hole exciton states are

denoted by X.
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the nonradiative one, are presented in Table II for a series of

QW heterostructures. The nonradiative broadening originates

from the thermal and static disorder, e.g., on the interfaces.

The first one is suppressed by cooling the sample, whereas

the second one is small due to a high quality of the grown

structures. We fitted only the ground heavy-hole and light-

hole exciton states. In the InGaAs spectra, we were able to

reliably determine only the heavy-hole exciton resonances

because the light-hole ones are significantly detached by the

strain.72

The shape of exciton resonances (peaks, dispersion-

like curves, or dips) is known to be defined by the phase /j

in Eq. (15) related to the QW-to-surface distance for the

given sample. In Fig. 4(a), for example, the resonant pro-

files for the 20-nm QW and for the 14-nm QW are different

due to different QW-to-surface distances in this hetero-

structure. Otherwise, the shapes of the exciton resonances

in the three InGaAs QWs are similar [see Fig. 4(b)]. In this

case, QWs are shifted by a distance of about kðGaAsÞ with

respect to each other and, therefore, their phases are

approximately equal. In case of the peak-shaped exciton

resonance, �hðCþ C0Þ corresponds to the half-width at half-

maximum (HWHM) of the peak. Relatively small peculiar-

ities of the spectrum observed in Fig. 4(b) are the excited

quantum confined exciton states, which are beyond the

scope of the present paper.

Experimentally obtained radiative decay rates for

heavy-hole excitons are compared to the calculated data in

Fig. 5. In the calculations, we simulated GaAs/Al0.3Ga0.7As

and In0.02Ga0.98As/GaAs heterostructures with 365.5 meV

and 30 meV band offsets (see Table I), respectively. The cal-

culations indicate that the radiative decay rate for GaAs/

AlGaAs heterostructure grows as L diminishes in the range

L ¼ 5� 20 nm. The experimentally obtained values of �hC0

for the studied GaAs/AlGaAs structures exhibit a good

agreement with the calculated results. In particular, they sup-

port the tendency of increase in �hC0 with decrease in the

QW width in this range. This tendency is also confirmed by

many experimental data in Ref. 24.

Experimental results for InGaAs/GaAs heterostructures

demonstrate a trend of �hC0 to diminish with decrease in the

QW width down to L � 5 nm, which is in agreement with

the calculations. At the same time, the experimental data are

more spread around the values expected from the computa-

tion. A large spread of the data is also observed in Ref. 25.

We explain this spread mainly by the indium concentration

variation from one sample to another in the range of

2%� 7%. We should note that high mobility of indium

atoms during the growth process makes InGaAs heterostruc-

tures less predictable as compared to AlGaAs ones, in partic-

ular, due to the segregation effect.78

C. �hC0 in shallow quantum wells

The large difference in behavior of the radiative decay

rate for GaAs/AlGaAs and InGaAs/GaAs in the range of

small QW widths requires a particular analysis. We believe

that this difference is related to different depths of the QWs.

To check this assumption, we carried out computations of

�hC0 for different concentrations x in the InxGa1�xAs/GaAs

heterostructures that results in different heights of the QW

barriers. In particular, for x¼ 0.02 and 0.09, the barriers are

Ve¼ 19.5 meV and Ve¼ 76.5 meV, respectively.

In the inset of Fig. 5, the radiative decay rates for differ-

ent heterostructures are shown. It demonstrates the evolution

of the radiative decay rate in narrow QWs with the growth of

the barrier height. As the height increases with growing of x,

the peak of �hC0 becomes more pronounced and its maximum

is shifted to the lower QW widths. As we noted above, the

peak at L � 5 nm for the GaAs/AlGaAs QWs is formed due

to exciton squeezing by the QW potential.

In the case of InxGa1�xAs/GaAs QWs with small con-

centration of indium, x¼ 0.02, there is no peak of �hC0 at the

small QW widths. This is an indication of the weak exciton

squeezing due to the small QW potential depth. For the

InxGa1�xAs/GaAs QWs with x¼ 0.09, some intermediate

behavior is observed due to the intermediate height of the

barriers.

To understand this behavior, we applied the 2D exciton

model described in Sec. V A and extracted qeff for

InxGa1�xAs/GaAs QWs with 2% and 9% of indium [see Fig.

6(b)]. The dependence qeffðLÞ for the shallow QW (x¼ 0.02)

TABLE II. The radiative, �hC0, and nonradiative, �hC, decay rates in energy

units (leV). The data were extracted from the measured spectra of hetero-

structures with QWs of various widths, L (nm). The standard deviations

obtained in the fitting are also given.

Heterostructure L x �hC0ðXhhÞ �hC0ðXlhÞ �hCðXhhÞ �hCðXlhÞ

GaAs/AlxGa1�xAs 14 0.30 37 15 123 197

20 0.30 35 11 67 74

InxGa1�xAs/GaAs 2 0.02 30 93

3 0.03 27 42

3 0.02 26 65

30 0.04 38 130

35 0.05 35 157

40 0.07 37 285

95 0.02 58 117

Standard deviation 2% 5% 3% 6%
FIG. 5. The calculated radiative decay rate for InxGa1�xAs/GaAs QWs with

2% and 9% of In (blue and red curves, respectively) as well as for GaAs/

Al0.3Ga0.7As QWs (green curve). The empty squares and circles show the

experimental data for InGaAs/GaAs and GaAs/AlGaAs QWs, respectively.
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reveals the weak minimum, which is an indication of the

weak squeezing of the exciton. Correspondingly, no maxi-

mum of �hC0 should be observed for these QWs. Indeed, the

calculated width dependence of �hC0 shows monotonic rise

with L! 0 (see Fig. 6(a)). Curve qeffðLÞ for deeper QW

(x¼ 0.09) shows the noticeable minimum at L � 5 nm that

points out to an exciton squeezing. As a result, a maximum

of �hC0 appears [Fig. 6(a)].

The rapid growth of �hC0 at L! 0 in the InGaAs/GaAs

QWs with 2% of indium is observed (see Fig. 6(a)). An anal-

ysis has shown that this growth is explained by the stronger

penetration of exciton into the barriers as compared to the

deeper InGaAs QWs with 9% of indium. Due to the penetra-

tion, the overlap of the exciton wave function UðzÞ and the

light wave increases [see Eq. (9)] and, correspondingly, the

radiative decay rate increases as L! 0.

VI. DISCUSSION

The numerical results presented above have been

obtained with a good accuracy. For the exciton binding

energy, it is much less than 1% and for the radiative decay

rate, it is better than 4% (for L< 50 nm). At the same time,

these results are obtained in the framework of some simplifi-

cations of exciton problem, which should be discussed in

detail.

First of all, we should note that for the QW widths

L< 2.5 nm, the EFA may be rough. Therefore, other

approaches like tight-binding model, all-band pseudopoten-

tial method, or account for the interface short-range

corrections can be used to obtain reliable results for this

range of QW widths.79–81

In our model, we disregard the mismatch of effective

masses of carriers and of dielectric constants in the QW ma-

terial and in the barrier layers. The mass mismatch leads to

an increase in the binding energy by about 10% for narrow

GaAs/AlGaAs QWs of width L< 5 nm, when the exciton

wave function significantly penetrates into the barriers.43

The discontinuity of the dielectric constant further increases

the binding energy by about 5%.51 For larger L, the effect of

the mass mismatch disappears, and only the discontinuity of

the dielectric constants contributes to the binding energy

shift DRx < 0:5 meV.55,56 The radiative decay rate is notice-

ably affected by the mass mismatch for the narrow GaAs/

AlGaAs QWs with L< 5 nm only. We estimate that, for such

widths, �hC0 increases by about 15%. For larger widths, the

effect of the mass mismatch rapidly decreases and almost

vanishes for L¼ 10 nm. The change of �hC0 due to the mis-

match of dielectric constants seems to be negligible. For the

InGaAs/GaAs, the effect of both mismatches on the Rx and

�hC0 is unobservable for any QW widths due to the small in-

dium concentration.

Our model has some limitations for wide QWs. In par-

ticular, we ignored the coupling of the heavy- and light-hole

band, which is described by the off-diagonal terms in the

Luttinger Hamiltonian (2). For the unstrained GaAs/AlGaAs

heterostructures, this coupling becomes essential for the

QWs of width L> 150 nm, where the energy distance

between the heavy- and light-hole exciton states is compara-

ble with the contribution from the off-diagonal terms.

However, the effect of this coupling is relatively small. Our

estimates show that the mixing effect for the 80 nm GaAs/

AlGaAs QW gives rise to the exciton energy shift of about

10 leV. The exciton binding energy obtained in our work for

the 200-nm GaAs/AlGaAs QW differs only by 5% from the

bulk value reported in Ref. 30, where the heavy-hole–light-

hole coupling was taken into account. The radiative decay

rate is also changed by the same order of magnitude. This

difference is not important for the analysis of experimental

data because of unavoidable experimental uncertainties. For

the InGaAs/GaAs heterostructures, the strain-induced heavy-

hole–light-hole band splitting strongly suppresses the cou-

pling, and the off-diagonal terms do not play any role.

In the wide unstrained QWs, the energy distance

between the adjacent exciton quantum confined states may

be smaller than the radiative broadening, so they cannot be

considered as separated exciton resonances. In this case, the

exciton-light coupling should be considered for several

resonances simultaneously.82 Besides, the dielectric constant

should be replaced to a dielectric function depending on the

wave vector of the exciton propagating across the QW.11

Both these effects are considered in the model of excitonic

polaritons extensively discussed in literature for thin crystals

and wide QWs.63,76,83

The limitations described above show that our model

provides reliable results for the GaAs/AlGaAs QWs of

widths L ¼ 5� 150 nm and for the InGaAs/GaAs QW of

widths L ¼ 2:5� 200 nm. We should stress that the model is

applicable for the broad range of the QW widths between the

FIG. 6. (a) The calculated radiative decay rate for the InxGa1�xAs/GaAs

QWs with 2% and 9% of indium (curves with points) in comparison with

the 2D exciton model (smooth curves). Blue curves represent 2% of indium

in the heterostructures, while 9% of indium is shown in carmine. (b) The fit-

ted effective 2D exciton radius qeff (solid points) for 2% and 9% of indium

as well as the phenomenological approximations (see the text).
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very narrow and very wide QWs, where the approximate

methods are unreliable. In the range L< 30 nm, the calcu-

lated radiative decay rate has been compared with the data

obtained by D’Andrea et al.56 for InGaAs/GaAs QWs. The

observed small difference, less than 3 leV, supports the cor-

rectness of the results obtained in our work as well.

In Section IV, we have shown that the exciton binding

energy is obtained quite precisely by the finite-difference

method as well as by the variational approach with pre-

scribed trial function (8). The good agreement of the results

of two methods indicates that the chosen trial function is

appropriate for the wide range of QW thicknesses. It seems

that, for each QW width, the varying parameters allow one

to properly scale the trial function and, thus, to simulate the

exact ground state wave function. Therefore, besides the

binding energies, the wave functions obtained by two meth-

ods should also be similar. In this context, it is interesting to

compare the radiative decay rates obtained using these two

methods. The wave function of the exciton ground state

obtained by the variational approach for the GaAs/

Al0.3Ga0.7As heterostructure has been used to calculate C0.

The results obtained by two methods are compared in Fig. 7.

As seen, the relative difference of the calculated values (of

about 10%) is larger than that for the exciton binding ener-

gies. In particular, for L � 5 nm, the variational approach

gives greater radiative decay rate than the direct numerical

solution. Nevertheless, such difference is generally not so

important for comparison with experimental data because

their spread (see Fig. 5 and Refs. 24 and 25) exceeds this dis-

crepancy. Therefore, we may conclude that the variational

approach with the proposed in Ref. 38 anzatz (8) is appropri-

ate for calculation of the exciton binding energy as well as

the radiative decay rate.

The exciton binding energy and radiative decay rate are

the integral characteristics of the exciton states. Although the

comparison showed us that these characteristics are similar,

the wave functions obtained by different methods may differ

in some details. This difference may affect other properties

of excitons, e.g., sensitivity to a magnetic field.13 So, for the

future prospects, we have compared the wave functions

themselves. Fig. 8 shows the difference (in percent) of the

exciton wave functions obtained by two methods as a func-

tion of q and z for several widths of the GaAs/AlGaAs QWs.

The main difference of the wave functions is observed near

the z¼ 0, q¼ 0 point. This difference for small L does not

exceed 5% and rapidly decreases with the z and q rise. For

larger L, the difference is larger but also rapidly decreases as

z and q grow.

VII. CONCLUSIONS

In the present paper, we have numerically solved the

three-dimensional SE and obtained the exciton binding

energy as well as the ground state wave function. The stud-

ied SE was deduced from the electron-hole Hamiltonian with

the Luttinger term for the valence band taking into account

only the heavy-hole excitons. The SE was solved by two

methods: the direct one and the variational one. The varia-

tional method has been used by number of author who stud-

ied this problem. The direct microscopic solution using the

fourth-order finite-difference scheme has been carried out

for the first time. It allowed us to precisely calculate the

ground state and the exciton radiative decay rate.

We obtained the radiative decay rates for GaAs/AlGaAs

and InGaAs/GaAs heterostructures for various QW widths

1 � L � 200 nm and compound concentrations. We found

that, since the different concentrations lead to the different

magnitudes of band offsets, the behavior of the radiative

decay rate for narrow QW widths (2 < L � 10 nm) strongly

depends on the concentration. The increase in the concentra-

tion leads to the higher barriers and to growth of the peak of

the radiative decay. For very narrow QWs (L � 2 nm), the

radiative decay rate also behaves differently. If the QW is

shallow, then the radiative decay rate grows as L! 0.

Instead, if the QW is deep, then it seems to be decreasing.

The obtained wave functions were used to test some

simple models, namely, the 3D exciton model (exciton in the

bulk semiconductor) and the 2D exciton model. We have

FIG. 7. The radiative decay rate in energy units obtained for GaAs/AlGaAs

QWs by the microscopic finite-difference calculation in comparison to the

results from the variational approach as a function of the QW width.

FIG. 8. The relative difference (in percent) of the wave functions of excitons

in GaAs/AlGaAs QWs obtained by the precise microscopic calculation and

by the variational approach as a function of two variables: q, z ¼ ze ¼ zh for

QW widths L ¼ 5; 20; 40; 100 nm (from bottom to top). The functions are

shifted vertically for visibility.
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shown that these models are applicable only for wide and

narrow QWs, respectively. The parameters of the models

and the limits of applicability were estimated.

The comparison of the exciton binding energies

obtained by the direct microscopic calculation and by the

variational approach showed a very good agreement with the

discrepancy of less than 0.1 meV for a wide range of QW

widths. The analogous comparison of the radiative decay

rates gave the similar overall behavior of these quantities,

but larger differences (up to 10%). Nevertheless, even for

narrow QWs, this difference can be considered as unimpor-

tant because the available experimental data are more spread

for these QWs. As a result, both numerical methods can be

successfully used for the calculation of the exciton binding

energy and the radiative decay rate. The experimental meas-

urements of the radiative decay rate for several QW widths

presented in the paper are consistent with the results of the

calculations.
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APPENDIX: NUMERICAL DETAILS

In our study, we employ the well known finite-difference

(FD) approximation84–86 of the derivatives in Eq. (5) due to

its robustness as well as sparse and relatively simple form of

the obtained matrix equation. We consider the BVP for Eq.

(5) at the domain ½�Ze=2; Ze=2	 � ½�Zh=2; Zh=2	 � ½0;R	
over variables ze, zh, and q, respectively, and specify the ho-

mogeneous boundary conditions at the boundaries. The equi-

distant grids over each variable are introduced by the formulas

ze;k ¼ kDze
� Ze=2; zh;l ¼ lDzh

� Zh=2; qm ¼ mDq, where

Dze;h
¼ Ze;h=ðNze;h

þ 1Þ; Dq ¼ R=ðNq þ 1Þ are the grid steps

and the indices k, l, and m go from 1 to some integer values

Nze
; Nzh

, and Nq, respectively. We use the central fourth-order

FD formula for approximation of the second partial derivative

of vðze; zh; qÞ with respect to ze

�vk�2;l;m þ 16vk�1;l;m � 30vk;l;m þ 16vkþ1;l;m � vkþ2;l;m

12D2
ze

:

(A1)

Here, the unknown wave function on the grid vðze;k; zh;l; qmÞ
is denoted as vk;l;m. The same FD formula is employed for

the second derivative with respect to zh. The wave function v
at the knots beyond the considered domain over ze and zh is

taken to be negligible due to its exponential decrease in this

region. We apply the noncentral fourth-order FD formulas

for approximation of the first and second partial derivatives

of vðze; zh; qÞ with respect to q

�3vk;l;m � 10vk;l;mþ1 þ 18vk;l;mþ2 � 6vk;l;mþ3 þ vk;l;mþ4

12Dq
;

10vk;l;m � 15vk;l;mþ1 � 4vk;l;mþ2 þ 14vk;l;mþ3 � 6vk;l;mþ4 þ vk;l;mþ5

12D2
q

:

(A2)

It allows us to satisfy the trivial boundary condition at

q¼ 0 and to avoid knots qm < 0. At the knots qm > R, the

wavefunction is also assumed to be zero. It should be noted

that this assumption is possible only if the considered do-

main is large enough.

In the calculations, the grid steps over each variable have

been taken to be the same, D ¼ Dze
¼ Dzh

¼ Dq, and multiply

associated with the QW width. The formulas (A1) and (A2)

define the theoretical uncertainty of the numerical solution of

order of D4 as D! 0. However, the discontinuity of the

square potential at the QW interfaces decreases the conver-

gence rate of the solution over ze and zh to order of D2, whereas

the convergence rate over variable q is kept �D4. The use of

the second-order FD method leads to the overall convergence

rate of order of D due to the discontinuity of the potential.

In order to choose the appropriate numerical scheme, we

compared the exciton ground state energy, Ex, calculated

using the second-order FDs and fourth-order FDs (A1) and

(A2) in Eq. (5). The convergence of the exciton ground state

energy as a function of the square of the grid step, D2, is pre-

sented in Fig. 9 for AlGaAs and QW widths L¼ 5, 100 nm.

Although both schemes provide convergence to almost the

same values of energy as D2 ! 0, the rate of convergence is

different. For the energy obtained using the second-order

FD, the rate of convergence considerably depends on the

width of QW. For QWs of small widths (of order of the Bohr

radius aB), the linear convergence (with respect to D2) is

observed for both schemes, whereas for wide QWs the

second-order scheme gives a nonlinear convergence rate as

D2 ! 0. The nonlinear convergence rate for the second-

order scheme with respect to D is also obtained. The latter

means that this scheme does not allow one to achieve the

convergence region where the numerical solution would

have the uncertainty proportional to D. The energy obtained

using the fourth-order FD shows the linear dependence on

D2 for the whole range of the studied QW widths. It means
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that the use of the fourth-order scheme allows one to reach

the convergence region where the accuracy of the numerical

solution is of order of D2. As a result, we employed the

fourth-order FDs, performed a least square fit of the calcu-

lated energy, and extrapolated it to D¼ 0. The uncertainties

estimated from the least square fit are quite small. Thus, we

obtained the precise exciton ground state energy. The typical

grid step reached in the calculations with the QW widths

comparable with aB is D ¼ 0:25 nm, whereas for wide QWs,

the achieved grid step D ¼ 0:5 nm.

For the radiative decay rate in energy units, �hC0, calcu-

lated using the ground state wave function obtained from the

finite-difference solution, the convergence is not so precise.

The examples of the convergence rate for direct calculation

of �hC0 are shown in Fig. 10. For different QW widths, the

convergence rate is different. We fitted the convergence rate

as D! 0 by the function �hC0ðDÞ ¼ aDb þ c, where a,

1 < b < 2, and c are fitted parameters. The uncertainty was

estimated as a discrepancy of the calculated and extrapolated

values. This discrepancy is smaller for narrow QWs than for

the wide QWs. As a result, the uncertainty of our extrapola-

tion for obtaining the precise radiative decay rate was esti-

mated as 1.5 leV for QW width L< 50 nm and 3 leV for

wider QWs. For the variational calculations, the convergence

rate is good enough for precise extrapolation of the radiative

decay rate. This fact is also illustrated in Fig. 10.
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