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Bosons with finite lifetime exhibit condensation and lasing when
their influx exceeds the lasing threshold determined by the
dissipative losses. In general, different one-particle states decay
differently, and the bosons are usually assumed to condense in
the state with the longest lifetime. Interaction between the
bosons partially neglected by such an assumption can smear the
lasing threshold into a threshold domain—a stable lasing many-
body state exists within certain intervals of the bosonic influxes.
This recently described weak lasing regime is formed by the
spontaneously symmetry breaking and phase-locking self-orga-
nization of bosonic modes, which results in an essentially many-
body state with a stable balance between gains and losses. Here
we report, to our knowledge, the first observation of the weak
lasing phase in a one-dimensional condensate of exciton–polar-
itons subject to a periodic potential. Real and reciprocal space
photoluminescence images demonstrate that the spatial period
of the condensate is twice as large as the period of the underlying
periodic potential. These experiments are realized at room temper-
ature in a ZnO microwire deposited on a silicon grating. The period
doubling takes place at a critical pumping power, whereas at a lower
power polariton emission images have the same periodicity as
the grating.
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The application of artificial periodic potentials to electrons
and photons causes a rich variety of phenomena, from elec-

tronic minibands in semiconductor superlattices to characteristic
stop bands in photonic crystals (1–4). These phenomena form
the basis for further developments of optoelectronics. Cavity
polaritons (5, 6) (quasi-particles formed by the strong coupling
of confined photons with excitons) attracted much attention in
recent years due to the remarkable coherent effects linked to
their half-matter, half-light nature (7–11). As a result, a new area
of physics at the boundary between solid-state physics and pho-
tonics has emerged.
Experiments on spatially inhomogeneous polariton conden-

sation are usually interpreted assuming that all one-particle
states have the same lifetime (12, 13). Lifting off this assumption
leads to the prediction (14) of the “weak lasing” state of inter-
acting polaritons: a type of condensate stabilized by the spon-
taneous reduction of the symmetry rather than by the dissipation
nonlinearities due to, e.g., reservoir depletion. In this work we
report, to our knowledge, the first experimental observation of
room-temperature polariton condensation in 1D superlattices,
which brings clear evidence for the weak lasing state.
The polariton superlattice was assembled using a ZnOmicrorod

with a hexagonal cross-section: a natural whispering gallery reso-
nator to efficiently confine exciton–polaritons (15, 16). Setting the
microrod on a silicon slice with periodically arranged channels
(Fig. 1) allowed us to avoid the intrinsic structural diffraction
typical for the structures with periodic patterns deposited on top
of microcavities (17).

The polaritons in this structure were created by nonresonant
continuous wave (or long pulse) optical pumping at room
temperature, and they were characterized by angle-resolved
and spatially resolved photoluminescence (ARPL and SRPL)
from the top of the microcavity. The periodic potential caused
by the silicon grating manifested itself by a characteristic folded
dispersion of the lower polariton branch, revealed in the ARPL
images (Fig. 2). One can see the avoided crossing of the
polariton dispersion branches resulting in a distinct band gap
near the Bragg plane. At strong enough pumping the polariton
condensation demonstrates a striking feature: the condensate
is formed at the excited polariton states near the energy gaps
(states A, Fig. 3A) rather than at the ground state: the π-state
condensate (17).
We checked the spatial coherence of condensates at state A

by interferometry experiments. Fig. 3 E and F shows two SRPL
images of the condensates coming from the two arms of the
Michelson interferometer; Fig. 3F shows the inversion of the
pattern Fig. 3E by a retroreflector. Fig. 3G shows the in-
terference pattern created by the superposition of the two
images with the relative time delay smaller than the coherence
time of the polariton condensate (∼3 ps). The arrows indicate
unambiguous interference fringes between two condensates
separated by 6 μm. The interference patterns can be observed
even for a separation as large as 10 μm, i.e., the π-state condensate
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(17) in our superlattices indeed demonstrates a long-range
coherence.
Besides creating the potential wells for polaritons, the contacts

of the ZnO microrod with the patterned Si substrate affect the
polariton dissipation: In the contact regions (inside the wells) the
losses are stronger. This effect naturally explains the π-state
condensation: as it is shown in Fig. 3C the minima of the
probability amplitude of the state A are at the contact regions,
i.e., the polaritons in this state live longer than in the other
state A′ at the edge of the Brillouin zone, which has maxima at
the contact regions. The ground state D with zero wave vector
k is distributed between the wells and the barriers more equally
and thus possesses an intermediate lifetime. The presence of
long-living states at the Bragg gap edges has been previously
observed in experiments on X-ray diffraction in crystals (18)
and referred to as the Borrmann effect. A similar effect is
known to suppress light localization in disordered photonic
crystals (19). We calculated the lifetime of polariton states for
the different folded dispersion branches in the simplified
Kronig–Penney model (see SI Text for details) and found that
in the A state the polaritons indeed live longer than in the

states A′ and D, as shown in Fig. 3B (red color corresponds to
the longer lifetime): τA > τD > τA′.
It is safe to assume that all polariton states within the Brillouin

zone have approximately the same influx rate W , which is pro-
portional to the external pumping rate P. Accordingly, as W
increases, the lasing condition W τ≥ 1 is satisfied for the A state
first. Given the period of the structure a, the emission from this
state contains plane waves with wave vectors k∥ =±πð2n+ 1Þ=a,
where n= 0; ± 1; ± 2; . . . .
However, the condensate in the A state becomes unstable for

interacting polaritons at the second threshold W2 >W1 = τ−1A
(see SI Text for details). The condensed state for W >W2 is
stabilized by the gradually increasing admixture of the D state to
the A state. The experimental values of pumping that corre-
spond to the first and the second threshold are P1 ≈ 10  nW and
P2 ≈ 20  nW. The admixture of theD state is the manifestation of the
weak lasing regime (14) characterized by a spontaneous symmetry
breaking. Indeed, the condensate wave function can be written as

ΨðzÞ=CAψAðzÞ+CDψDðzÞ; [1]

where ψA;D are the single-polariton wave functions of the A and
D states, and the polariton density jΨðzÞj2 in this state is not
periodic with the period a of the underlying lattice. Instead, it is
periodic with the period 2a: because the signs of ψAðzÞ are
opposite in the neighboring barriers, while the signs of ψDðzÞ
are the same, the amplitudes of jΨðzÞj are different in odd and
even barriers. As we show in SI Text, the weak lasing condensate
can be formed in two equivalent states, with coefficients CA;D
having the same signs in one state and opposite signs in the
other. In both cases, the condensate acquires the double period
2a, and in addition to the pure A-state emission pattern there
appears an emission line at k∥ = 0 (with possible weak satellites
at k∥ =±2πn=a).
We observed the period doubling of the polariton condensate

in both ARPL and SRPL images (Fig. 4). At low pumping, the
emission has the same periodicity in real space as the super-
lattice, whereas for pumping above the second threshold of
about 20 nW the emission pattern doubles its period. We have
checked that for P> 20  nW the three peaks at k∥ = 0;  ± π=a in
Fig. 4C indeed correspond to the same frequency and are mutually
coherent. At large pumping, the ratio of the intensity of the k∥ = 0
peak to the intensity of the k∥ =±π=a peaks saturates at about 0.6,

Fig. 1. Illustration of the assembled polaritonic superlattice based on a
ZnO–Si microstructure. (A) Schematic representation of the 1D polaritonic
crystal. (B) Scanning electron microscope image (top view) of a ZnO microrod
with hexagonal cross-section placed on a periodic Si grating. The 1-μm-wide
silicon channels equally spaced with the internal distance a = 2 μm apply
a static periodic potential to the polaritons with amplitude ReU ∼ 2 meV.
The “s” and “f” mark the silicon-contacting parts and the freestanding parts
of the microcavity, respectively. (C and D) ARPL spectral images taken under
continuous He–Cd laser (325-nm) excitation. TE (electric field component of
light along the z axis) polariton modes are shown. (C ) Emission from a
freestanding ZnO microrod. The white dashed curves are theoretical fits of
the lower polariton branches. (D) The same ZnO microwire lying on a flat
silicon surface. The peak position and the lineshape at kjj = 0 are identified.
The horizontal dashed lines indicate the lower polariton energy shift (ReU).
The incidence angle ϕ is linked with the in-plane wave vector of light by kjj =
(E/Zc)sin ϕ, where E is the photon energy.

Fig. 2. Dispersion of exciton–polaritons in momentum space demonstrat-
ing formation of a polariton superlattice. (A) Photoluminescence mapping
(second derivative) in k space under continuous excitation at room tem-
perature. White dashed curves display the calculated dispersion with a band
gap (ΔE = 0.7 meV). (B and C) Enlarged regions identified by the dashed
rectangles in A, respectively, exhibiting the anticrossing dispersion and well-
resolved energy gap.
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which is substantially smaller than the theoretically expected
saturation value 1.5 for an ideal 1D lattice. This discrepancy is
presumably due to the strong disorder present in the ZnO
microrod, which is clearly seen from fluctuations in the ampli-
tudes of the peaks in Fig. 4D.
Previous low-temperature experiments on GaAs-based polar-

iton superlattices (17) evidenced polariton lasing from the edge
of the Brillouin zone but no period doubling. We believe that the
weak lasing phase in ZnO polariton superlattices is robust be-
cause both real and imaginary parts of the periodic potential are
modulated much stronger than in the planar GaAs microcavity
with a metallic pattern on the top studied in ref. 17.
In conclusion, by the nonresonant optical pumping of a ZnO

microrod–Si grid superlattice we created a condensate of exci-
ton–polaritons at room temperature and proved its long-range
phase coherence. At sufficiently strong pumping the spatial pe-

riod of the condensate turned out to be twice as long as the
period of the superlattice. This spontaneous symmetry breaking
strongly suggests that the weak lasing regime of polariton con-
densation has been achieved in our experiments.

Materials and Methods
The experimental setup is detailed in ref. 16. The ZnO microwires used here
were synthesized by a chemical vapor deposition method. Instead of di-
rectly depositing a periodic pattern on the top surface of a microcavity,
which might induce intrinsic structural diffraction, we laid the ZnO
microrod on a silicon slice with periodically arranged channels. They con-
tacted closely due to the van der Waals force. This microassembled struc-
ture introduced an additional modulation to the ZnO polariton energies
and lifetimes in the z direction (crystallographic c direction). The reso-
nance energies of the cavity are shifted due to the variation of the ef-
fective refractive index induced by the silicon substrate, which results in
the appearance of a superlattice potential. To characterize the polariton
states in this structure we detected the photoluminescence signal from the
top surface of the microcavity.
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