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Abstract
In this paper, we consider informative potentialities of the ‘active’ optical noise spectroscopy,
under which we understand, generally, the spectroscopy of the response of a multilevel quantum
system to a resonant optical field with its intensity (or polarization) modulated by a broadband
(‘white’) noise. We show that, in the linear approximation, such a response can be treated most
conveniently by introducing the notion of Stokes susceptibility (SS) whose spectrum is
determined by a Laplace transform of the response to a small step-wise change of the light beam
Stokes vector. The results of the calculations performed for a specific four-level energy diagram,
typical for certain low-dimensional quantum systems, show that the low-frequency SS spectrum
may provide information not only about the ground-state structure of the system (like
conventional ‘passive’ spin noise spectroscopy), but also about the properties of the optical
transitions (including nutation frequencies in the applied optical field). The considered version of
the spin noise spectroscopy allows one, on the one hand, to take advantage of the highly efficient
methods of data acquisition developed nowadays in this field of research and, on the other, to
considerably broaden potentialities of the noise spectroscopy.

Keywords: noise spectroscopy, Rabi frequency, electron spin resonance

1. Introduction

The notion of susceptibility arises in a great variety of phy-
sical problems when describing the quantitative relationship
between perturbation F of a material system and the response
R it produces. The behavior of this quantity versus frequency
forms the basis of most spectroscopic methods of research.
The simplest (and, at the same time, the most important) is the
case of linear susceptibility corresponding to the linear
response of the system to perturbation with a harmonic time
dependence. In this case, F F e ı t= ω

ω− and R R e ı t= ω
ω− , with

the susceptibility χω being a complex proportionality factor
connecting the amplitudes of the perturbation and response:
R Fχ=ω ω ω. The spectroscopy of linear susceptibility provides
information about the energy structure and relaxation char-
acteristics of the system under study. An example of the linear
susceptibility is the susceptibility ‘electric field—dipole
moment’, with the electric field and dipole moment being the
perturbation and response, respectively. The spectrum of this
susceptibility at opticalfrequencies is being studied in the
conventional linear optical spectroscopy. In this paper, we

describe the simplest properties of the susceptibilities ‘inten-
sity—absorption’ and ‘polarization—absorption’. Here, as the
perturbation we consider the intensity I of a polarized quasi-
monochromatic optical wave with the frequency ω acting
upon the system (atomic, molecular, or solid-state), and as the
response, the energy P absorbed by the system per unit time.
This susceptibility describes, in fact, the response of the
system to small variations of the Stokes vector of the acting
light (assuming its magnitude is proportional to the light
intensity). This is the reason why we found it appropriate to
use the term Stokes susceptibility (SS) to denote this quantity.
Of course, the fact that the medium responds to the intensity-
related characteristics of the light signifies its optical non-
linearity. In this sense, the SS introduced here describes linear
(or first-order) nonlinearity of the system.

It makes sense to note that the proposed SS spectroscopy
can be treated, in a certain sense, as a spectroscopy of double
resonance [1] because variations of the Stokes vector of the
nominally monochromatic optical wave with frequency ω are
unavoidably accompanied by the appearance of spectral side-
bands with shifted frequencies, and the system proves to be
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probed by two optical fields, as it occurs in the double
resonance spectroscopy. There are, however, essential dis-
tinctions between these two methods. First of all, the spectra
of the double resonance, as a rule, reveals singularities in the
vicinity of eigen-frequencies of the unperturbed Hamiltonian
of the system, while the SS spectrum may reveal singularities
at eigen-frequencies of some effective Hamiltonian that
depends both on the energy structure of the system under
study and on intensity and polarization of the quasi- mono-
chromatic optical wave, used for SS detection.

Another specific feature of the SS susceptibility is of a
methodological nature. The point is that the SS spectroscopy,
like the spectroscopy of spin noise, implies the detection of
signals in the range of radio-frequencies (up to a few GHz).
This fact allows one to employ for the measurements the
highly efficient and sensitive experimental equipment due to
which the spin noise spectroscopy acquired in the last decade
has shown high popularity [2, 5, 7–9].

A possible experimental setup for the observation of the
SS spectrum with the use of noise spectroscopy equipment is
shown in figure 1. The laser beam subjected to a broadband
noise intensity/polarization modulation passes through the
sample under study and hits a photodetector, whose output
signal is fed to the input of the spectrum analyzer. If the
intensity/polarization modulation spectrum of the laser beam
is ‘white’, then we will observe, at the output of the spec-

trum analyzer, the SS spectrum of the studied sample. So,
contrary to the conventional noise spectroscopy, which
implies an observation of the spontaneous noise of the sys-
tem, the SS spectroscopy implies an observation of the sti-
mulated noise of the system and thus can be called ‘active’
noise spectroscopy.

The task of the present work can be formulated as fol-
lows. Assume that the intensity I of the quasimonochromatic
electromagnetic field acting upon the system contains a dc (I0)
and a small ac ( I t( )δ ) component I I I t( )0 δ= + , with the dc
and ac components, having, in general, different polariza-
tions. Correspondingly, the power absorbed by the system
will contain the dc and ac components: P P P t( )0 δ= + .
Then, the SS K ı( )ν can be defined as P K ı I( )δ ν δ= for the
case I t Ie( ) ı tδ δ→ ν− and P t Pe( ) ı tδ δ→ ν− . This is the quan-
tity that is to be calculated for a specified model system.
Below we will perform such calculations for a model system
frequently encountered in semiconductor physics and will
consider spectral properties of the SS in the range of relatively
low (e.g., of the EPR range) frequencies ν ω≪ (here ω is the
frequency of the optical field). We will show that the SS of
this model system contains information not only about tran-
sition frequencies and relaxation rates observed in linear
spectroscopy, but also about frequencies of optrical nutation
(Rabi frequencies) usually obtained by means of pulsed
pump-probe spectroscopy. We will see that, in contrast to the

Figure 1. Schematic of experimental setup for observation of Stokes susceptibility (SS). L—laser, M—optical modulator, NG—noise
generator, S—sample, —transverse magnetic field, D—photodetector, SA—spectrum analyzer. Inset—energy structure of the model
system.
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conventional optical spectroscopy, which allows one to
measure frequencies of transitions between the states of the
nonperturbed Hamiltonian of the system, the SS spectroscopy
makes it possible (in a certain range of relaxation rates) to
measure the frequencies of transitions between the states of
the effective intensity-dependent Hamiltonian1.

In spite of the fact that the ‘active’ noise spectroscopy,
which implies real optical excitation of the system with real
dissipation of the absorbed energy, is essentially perturbative,
it has very much in common with the spectroscopy of spin
noise (see, e.g., [2]), which uses a highly stable probe beam,
propagating through a transparent sample, detects sponta-
neous fluctuations of its birefringence caused by its magne-
tization noise, and is considered, to a great extent,
nonperturbative. In principle, such a nonperturbative
approach can be also realized with the probe beam propa-
gating in the region of optical absorption [3]. In the SS
spectroscopy, on the contrary, the response is fundamentally
induced by modulation of the light beam and cannot be
observed for the light with a fixed Stokes vector. The first
observation of resonant response in the SS spectrum was, in
fact, described by Bell and Bloom in 1961 [4], long before the
first experiment on spin noise spectroscopy [5]. The authors
of [4] used, in their study, the light beam with a mono-
chromatically (rather than randomly) modulated Stokes vec-
tor. The experiments of this kind with the noise-modulated
light were described more recently in [3], where the resonant
paramagnetic susceptibility of an atomic gas was detected in
this way. The response of a two-level and three-level system
to the noise-modulated optical excitation was studied theo-
retically in [3, 6, 10–13] where it has been shown, in parti-
cular, that the SS spectrum may reveal spectral features
related to Rabi frequencies of the system.

It should be noted that the scheme with mono-
chromatically modulated light employed by Bell and Bloom
[4] is ideologically identical to the noise-assisted SS spec-
troscopy, but from the technical viewpoint they differ dras-
tically due to possibility of the up-to-date electronics to detect
a response on all available frequencies at a time (rather than
on a single one). The recent advent of the ultrafast digital
spectrum analyzers with the operation bandwidth of ∼1 GHz
and the averaging of the Fourier spectrum in real time made it
possible to greatly increase the sensitivity of the noise spec-
troscopy. This technical advancement has played a crucial
role in the development of the present-day spin noise spec-
troscopy [7, 8] and can be evidently applied to the ‘active’ SS
noise spectroscopy described in our paper.

It is noteworthy that the experimental approach analyzed
in this paper refers to the broad field of research associated
with spectroscopy of driven atoms intensely developed in the
1970s–1980s (see, e.g., [14–16]). An essential distinctive
feature of the technique considered here is that it implies
monitoring the system by detecting distortion of the light
intensity spectrum, rather than distortion of the optical spec-
trum of the system with the aid of a separate probe beam. This
is why the ‘active’ spectroscopy of optical noise, when the
pump laser beam modulated by a broadband noise serves
simultaneously as a probe, occupies a special niche in the
nonlinear optical spectroscopy [3, 6, 17–19].

It is also important that the experiment under con-
sideration can be performed with pure polarization modula-
tion of the probe light (keeping the light intensity constant). In
this case, the intensity noise of the light after the sample is
related only to its nonzero SS and is detected with no

Figure 2. (a) frequency dependence of the intensity-related Stokes
susceptibility for relatively long relaxation times in optical
transitions: 10, 22 1 2τ τ τ= = , the same for relatively short relaxation
times: 0.01, 22 1 2τ τ τ= = . The rest parameters, common for both
plots, are: T T T d10, 2 , 1, 1.52 1 2 ν Δ= = = = = .

1 In the case of a two-level system, this is the total Hamiltonian of the
problem that takes into account the time-dependent electromagnetic field
written in the coordinate frame rotating with optical frequency ω.
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background (unlike the case of noise intensity modulation).
For this reason, this version of the experiment may provide
higher sensitivity in the SS measurements.

In the next Section, we calculate the SS of a simplest
model system and analyze its frequency dependence.

2. Model calculations

2.1. Starting points

The sample under study is assumed to represent an ensemble
of particles, so that the power absorbed by the sample irra-
diated by the electromagnetic field is equal to the sum of
powers absorbed by each particle separately. The energy
spectrum of an individual particle (figure 1, inset) is supposed
to be comprised of two doublets, namely, the ground one

1 2± and the excited one 3 2± (the indicated quantities are
components of angular momentum upon the direction coin-
cident with the z-axis of our coordinate system). Magnetic
splitting of the ground doublet 1 2± is characterized by an
isotropic g- factor, while the doublet 3 2± can be split only by
the field component parallel to the z-axis. The spectral dis-
tance between the two doublets (denoted by Ω) is assumed to
be close to the frequency of the acting optical field ω. We
suppose that Ω lies in the optical range and substantially
exceeds all other frequency (energy) parameters of the
problem.

It should be noted that this energy diagram, with its
specific characteristics, is typical for certain two-dimensional
semiconductor structures [20] and is therefore of great interest
for the present-day semiconductor optics. The widely used
model of a charged quantum dot can serve as an example of
the above four-level system. In this case, the ground doublet
corresponds to two possible spin orientations of the resident
electron, while the excited one corresponds to the same for
the hole.

The SS introduced above was calculated in the following
way. Initially, the system under study was supposed to be
irradiated, for a sufficiently long time, by a monochromatic
light with a fixed intensity and polarization, so that the power
absorbed by the system is stationary. Then, the Stokes vector
of the light (its intensity or polarization) experiences a small
jump. The response of the system to this jump was used to
find the sought susceptibility by means of the Laplace
transform.

2.2. The dynamics of the system with no relaxation

To fulfil the program specified in the previous subsection, we
will reproduce, to a considerable extent, the conditions of the
experiment [4] and will consider the system in a transverse
(directed along the x-axis) magnetic field with the strength 
(figure 1). The optical field will be considered as a sum of a
linearly polarized wave with the amplitude A and a circularly
polarized wave with the amplitude B propagating along the z-

axis. The relevant Hamiltonian has the form:

H A t S S

B S t S t

cos cos sin

cos sin (1)

x y

x y

1
⎡⎣ ⎤⎦

⎡⎣ ⎤⎦
ω α α

ω ω

= +

+ +

Here, α is the angle specifying the direction of the linearly
polarized component of the optical field and Sx y, are the
operators that have the same nonzero matrix elements as the
operators of the appropriate components of the angular
momentum. Let us arrange the states of the model system in
the following order | 1 2 | 1 2 | 3 2 | 3 2+ 〉 − 〉 − 〉 + 〉. Then, the
matrices H1 and nonperturbed Hamiltonian H0 will acquire
the form

H
A t Bcos

2

0 0 0

0 0 ¯ 0
0 0 0
¯ 0 0 0

2

0 0 0

0 0 ¯ 0
0 0 0
¯ 0 0 0

(2)1

1

1

1

1

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
ω

ξ
ξ

ξ
ξ

ξ
ξ

ξ
ξ

= +

e eı ı t
1ξ ξ≡ ≡α ω

H
g

0 0 0
0 0 0

0 0 0
0 0 0

2
(3)0

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

ν
ν

Ω
Ω

ν β= ≡



It is convenient first to pass to the basis where H0 is
diagonal and then, to the rotating coordinate frame, where the
total Hamiltonian is time-independent. The first step corre-
sponds to the unitary transformation with the following
matrix

S S S
1

2

1 1 0 0
1 1 0 0
0 0 2 0

0 0 0 2

, with (4)1

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
≡

−
=−

Let us supply by tilda all the operators of the form
H SHS˜ ≡ . Then, as can be shown by direct calculations,

H̃

0 0 0
0 0 0
0 0 0
0 0 0

(5)0

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

ν
ν

Ω
Ω

= −

H
A t

B

˜ cos

2 2

0 0 ¯

0 0 ¯

0 0
¯ ¯ 0 0

2 2

0 0 ¯

0 0 ¯

0 0
¯ ¯ 0 0

(6)

1

1 1

1 1

1 1

1 1

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

ω
ξ ξ
ξ ξ

ξ ξ
ξ ξ

ξ ξ
ξ ξ

ξ ξ
ξ ξ

= −
−

+ −
−

and the density matrix S Sρ̃ ρ= describing the state of the
system satisfies the equation ı t H˜ [ ˜ , ˜]ρ ρ∂ ∂ = . Now, we pass
to the rotating frame using the following time-dependent
matrix transformation:

4

J. Phys. B: At. Mol. Opt. Phys. 47 (2014) 185401 G G Kozlov and V S Zapasskii



H e He e e˜ ˜ (7)ıMt ıMt ıMt ıMtσ ρ= ≡− −

where the diagonal matrix M has the form

M

0 0 0 0
0 0 0 0
0 0 0
0 0 0

(8)

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟ω
ω

≡

Then, one can easily find that the matrix σ meets the equation
ı H M˙ [ , ]σ σ= − . Calculation of the matrix H shows that it
contains time-independent elements as well as those propor-
tional to e ı t2 ω± . The matrix elements oscillating at double
frequency are ignored as essentially nonresonant. Taking into
account these remarks, the matrix H and equation for the
density matrix acquire the form:

H

d d d

d d d

d d

d d d d

0 ¯

0 ¯

0
¯ ¯ 0

(9)

1

1

1 1

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

ν ξ ξ
ν ξ ξ

ξ ξ Ω
ξ ξ Ω

=

+
− − +

−
+ +



where

d
A

d
B

4 2 2 2
1≡ ≡

Now all the operators are presented by the matrices 4 × 4, and
the equation of motion for the density matrix σ has the form:

ı W

W H M

˙ [ , ],

0 ¯

0 ¯

0
¯ ¯ 0

(10)

1

1

1 1

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

σ σ
ν χ χ

ν χ χ
χ χ Δ
χ χ Δ

=

≡ − =
− −
−



where

de de dı ı
1 1Δ Ω ωχ χ≡ − ≡ ≡ +α α

Our task is to calculate the power absorbed by the system.
This power can be written as follows:

P
d

dt
H

d

dt
H

H
dH

dt

Sp Sp

Sp ˙ Sp (11)

ρ σ

σ σ

= =

= +



 

Using the equations for the matrices H and M, we eventually
have:

P d

d

2 Im ¯ ( )

2 Im [ ] (12)
32 31 14 24

1 14 24

⎡⎣ ⎤⎦ω ξ σ σ σ σ
ω σ σ

= − + +
+ +

Equation (10) connects the density matrix elements
i k, , 1, 2, 3, 4ikσ = and their time derivatives. Let us intro-

duce the vector- column u , 1, 2 ,..., 16α =α , whose compo-
nents are the elements of the density matrix numbered by
rows: u i k, 4( 1)ikσ α= = − +α . For instance,

u u u, ,11 1 22 6 21 5σ σ σ= = = ... For a given number
1 16α< < , one can find the first i1 and second i2 indices:
i F i F( ), ( )1 1 2 2α α= = , where the integer functions F ( )1,2 α
can be defined by the tables. For instance,

F F F(1) 1, (7) 3, (3) 11 1 2= = = . It is clear that the
equation (10) for the density matrix is equivalent to an
equation for the 16-component vector u:

u Gu˙ (13)=

Where G is the 16 16× matrix. To express matrix G
16 16× in terms of matrix W 4 4× , let us define the function
W i k( , ) of two variables i and k so that at integer i and k it
coincides with the corresponding matrix element of the
Hamiltonian W and equals zero otherwise. Then, the calcu-
lation gives the following expression for the matrix G:

( )[ ]G ı W F F

W F
F

4 ( ) 1 , ( )

( ),
( )

4
1

, 1, 2 ,..., 16 (14)

1 2

1
2

⎡⎣
⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

β α α

α
β α

α β

= − −

−
−

+

=

αβ

2.3. The relaxation and steady state regime

To obtain the steady-state regime under optical excitation, we
have to take into account relaxation processes. The relaxation
of non-diagonal elements of the density matrix (dephasing)
can be taken into consideration by the replacement
G G 1 τ→ −αα αα α with 1, 6, 11, 16α ≠ . Besides, since the
relaxation times of the non-diagonal matrix elements σik and
σki are the same, the following relation should be satisfied:

F F4[ ( ) 1] ( )2 1τ τ=α α α− + .
To consider the relaxation of diagonal elements of the

density matrix, the equations for them should be modified as
follows:

˙ ...

˙ ...

˙ ...

˙ ...

T T T

T T T

T T T

T T T

11

22

33

44

l

l

u

u

22 11

1

33

13

44

14

11 22

1

33

23

44

24

44 33

1

33

13

33

23

33 44

1

44

14

44

24

⎧

⎨

⎪⎪⎪

⎩

⎪⎪⎪

σ

σ

σ

σ

= + +

= + +

= − −

= − −

σ σ σ σ

σ σ σ σ

σ σ σ σ

σ σ σ σ

−

−

−

−

or in terms of the u-vector

u

u

u u

u u

˙ ...

˙ ...

˙ ...

˙ ...

u u

T

u

T

u

T

u u

T

u

T

u

T

u

T T T T

u

T T T T

1

6

11 11
1 1 1

16 16
1 1 1

l

l

u u

u u

6 1

1

11

13

16

14

1 6

1

11

23

16

24

16

1 1 13 23

11

1 1 14 24

⎧

⎨

⎪⎪⎪⎪

⎩

⎪⎪⎪⎪

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

= + +

= + +

= − + +

= − + +

−

−

G
T

G
T

1
,

1
, (15)

l l1,1
1

1,6
1

Δ Δ= − =

G
T

G
T

1
,

1
1,11

13
1,16

14
Δ Δ= =

G
T

G
T

1
,

1
,

l l6,1
1

6,6
1

Δ Δ= = −

G
T

G
T

1
,

1
6,11

23
6,16

24
Δ Δ= =
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G
T T T

G
T

1 1 1
,

1
u u11,11

1 13 23
11,16

1

Δ Δ= − − − =

G
T

G
T T T

1
,

1 1 1
u u16,11

1
16,16

1 14 24
Δ Δ= = − − −

The ellipsis here implies terms of the dynamic equations with
no regard to the relaxation. The quantities T1

u and T1
l have the

sense of the population relaxation times for the upper and
lower doublets, respectively. T13 is the radiative decay time
for the transitions 1–3. Similarly, we assume that T 213 3τ= . In
terms of the vector u, the equation for the absorbed power
(12) takes the form

P d u u u u

d u u

2 Im ¯ ( )

2 Im [ ] (16)
10 9 4 8

1 4 8

⎡⎣ ⎤⎦ω ξ
ω

= − + +
+ +

As it was mentioned above our task is to calculate the
response of the system to a jump of the pump: d d dδ→ +
and d d d1 1 1δ→ + (remind that d and d1 are the normalised
amplitudes (9) of linearly and circularly polarised components
of the optical field). To solve this problem, we have to cal-
culate the steady-state density matrix before the jump at given
values of d and d1. This matrix can be found from the
equation G d d u( , ) 01 = . Thus, the matrix G d d( , )1 should
always have a zero eigen value. We will denote the eigen
vector corresponding to this value by e16. To obtain the vector
b∼e16 that described the steady-state density matrix, the
vector e16 should be normalized as b b b b 11 6 11 16+ + + =
and consequently

b
e

e e e e
.

16

1
16

6
16

11
16

16
16

=
+ + +

In this case, in conformity with equation (16), the power
absorbed before the jump is given by the formula

[ ]
( )P d b b b b

d b b

2 Im ¯

2 Im (17)

0 10 9 4 8

1 4 8

⎡⎣ ⎤⎦ω ξ

ω

= − + +

+ +

2.4. The jump

The jump of the intrensity and polarization of the optical field
corresponds to d d dδ→ + and d d d1 1 1δ→ + . Let the vec-
tors pi and numbers i, 1 ,..., 16iλ = be eigen for the matrix
G d d d d( , )1 1δ δ+ + . To find the transient response, we have
to solve the equation u G d d d d u˙ ( , )1 1δ δ= + + at the initial
condition u t b( 0)= = . Let us decompose the vector over
eigen vectors of the matrix

b C p (18)i
i

1

16

∑=

The coefficients Ci are found numerically. Then, solution of
the problem acquires the form:

u t C p e( ) (19)
i

i
i t

1

16
i∑= λ

=

The absorbed power after the jump is given by the
expression

( )

( )( )

P t d d C p p p p e

d d C p p e

( ) 2 ( ) Im ¯

2 Im (20)
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Let us define the quantity S as
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where

( )Z C p p p p¯i i
i i i i

10 9 4 8ξ≡ − + +

( )Y C p pi i
i i
4 8≡ +

Then, the module squared of the sought SS is given by the
expression

K ı S( ) ( ) (22)2 2ν ν ν=

3. Discussion

When the relaxation times entering the equations for elements
of the density matrix u Gu˙ = essentially exceed the optical
nutation period T T T T T T, , , , , , ,u l1

1
1

1 1 13 14 23 24χ χ τ< < α
− − , the

dynamics of the density matrix for times shorter than the
relaxation times is determined by equation (10). Under these
conditions, the above dynamics represent oscillations at fre-
quencies corresponding to all possible differences of the
appropriate eigen values W i, 1, 2, 3, 4i = of the effective
Hamiltonian W (equation (10)), with the values of
W i, 1, 2, 3, 4i = calculated numerically. Therefore, the fre-
quency dependence of the SS will reveal peaks at appropriate
frequencies, which, in this case, will be six: W W| |,1 1 2ξ ≡ −

W W| |,2 1 3ξ ≡ − W W| |,3 1 4ξ ≡ − W W| |,4 2 3ξ ≡ −
W W| |,5 2 4ξ ≡ − W W| |6 3 4ξ ≡ − . This is demonstrated in

figure 2(a), which shows frequency dependences of the SS
obtained using equations (21) and (22) at d d d0.4, 0.1δ= = ,
d 0.31 = , d d0.11 1δ = , 1Δ = , 1.5.ν = All the dephasing
times and all the population relaxation times were taken to be
10 and 20, respectively. Vertical lines show frequencies

i, 1 ,..., 6iξ = obtained by numerical diagonalization of
matrix (10).

The situation essentially changes when we pass to shorter
relaxation dephasing times ,1

1 1τ χ χ< <α
− − , (with α
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corresponding to the optical transitions
1 3, 1 4, 2 3, 2 4→ → → → ). This case corresponds to the
experiment of Bell and Bloom [5], when the system becomes
transparent to the light whose intensity oscillates at the fre-
quency of magnetic splitting 2ν (EPR frequency). In this case,
the SS should reveal a dip at the frequency of magnetic
splitting 2ν. This is illustrated by figure 2(b), which shows the
frequency dependence of the SS calculated for the case when
the above relaxation times of the optical transitions were
taken by a factor of 1000 shorter than in figure 2(a). It should
be emphasized that the dephasing time of the transition
1 2,→ which controls the width of the SS resonance at the
frequency 2ν, remained, as before, equal to 10.

Finally, consider the possibility, mentioned in the intro-
duction, to detect the SS spectrum using the light beam with a
fixed intensity. In this case, the quantities dδ and δd1 should
be connected by the following condition

d d
d d

d d

2 cos

cos
(23)1

1

1
δ δ

α
α

= −
+
+

(see definition (9) for the normalised amplitudes d and d1 of
the linearly and circularly polarised waves). Under this con-
dition, the SS spectrum appears to be similar to that described
above. For instance, in the case of short dephasing times in
the optical transitions (as in the experiment of Bell and Bloom
[5]), with the satisfied condition (23) (when only polarization
of the incident light is modulated), frequency dependence of
the SS appears to be qualitatively similar to that shown in
figure 2(b).

4. Conclusions

In this paper we analyze informative potentialities of the
‘active’ noise spectroscopy that implies studying the fre-
quency dependence of the response of a system to small
variations of the light beam Stokes vector. We show that this
Stokes spectroscopy, unlike the Faraday-rotation-based spec-
troscopy of spontaneous spin noise, does not require such
high polarimetric sensitivity and, therefore allows one to
obtain easier signals of resonant response with ancontrollable
magnitude. The drawback of this spectroscopy of being
essentially perturbative is compensated by additional possi-
bilities to detect frequencies of the light-induced dynamics of
the system usually derived from transients of nonlinear

optical response. The noise-assisted spectroscopy of Stokes
susceptibility looks especially promising in the context of the
up-to-date high-speed methods of data acquisition and
processing.
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