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Light scattering in a medium with fluctuating gyrotropy: Application to spin-noise spectroscopy
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The spin-noise signal in the Faraday-rotation-based detection technique can be considered equally correctly
either as a manifestation of the spin-flip Raman effect or as a result of light scattering in the medium
with fluctuating gyrotropy. In this paper, we present rigorous description of the signal formation process
upon heterodyning of the field scattered due to fluctuating gyrotropy. Along with conventional single-beam
experimental arrangement, we consider here a more complicated, but more informative, two-beam configuration
that implies the use of an auxiliary light beam passing through the same scattering volume and delivering
additional scattered light to the detector. We show that the signal in the spin-noise spectroscopy (SNS) arising
due to heterodyning of the scattered field is formed only by the scattered field components the wave vectors
of which coincide with those of the probe field. Therefore, in principle, the detected signal in SNS can be
increased by increasing overlap of the two fields in the momentum space. We also show that, in the two-beam
geometry of SNS, contribution of the auxiliary (tilted) beam to the detected signal is produced only by the region
of overlap between the two beams in real space and can be expressed analytically as the Fourier transform of
the spatial correlation function of the gyrotropy at the difference of their wave vectors. These features of the
two-beam geometry can be used for tomographic measurements in spin systems (a more sophisticated version
of three-dimensional tomography proposed earlier) and for studying spatial spin correlations by means of noise
spectroscopy.
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I. INTRODUCTION

Spin-noise spectroscopy (SNS), first realized in [1], has
turned nowadays into a powerful method of studying magnetic
resonance and spin dynamics in atomic and semiconductor
systems (see, e.g., [2–5]). The most fascinating results of
application of the SNS with the greatest progress in sensitivity
of the measurements were achieved in physics of semicon-
ductor structures, where the novel technique has allowed
one not only to considerably move ahead in the magnetic
resonance spectroscopy but also to discover fundamentally
new opportunities of research. Specifically, it has been estab-
lished that optical spectroscopy of spin noise (that implies
measuring wavelength dependence of the spin-noise power)
makes it possible to decipher the inner structure of optical
transitions [6]. Correlation nature of the SNS allowed one to
realize, on its basis, a sort of pump-probe spectroscopy [7]. Ef-
fective dependence of the spin-noise signal on the light-power
density (on the beam cross section) was used to demonstrate
SNS-based three-dimensional (3D) tomography [8,9]. Due to
high sensitivity of the SNS, it appeared possible to detect
magnetic resonance of quasifree carriers in a single quantum
well, 20 nm thick [10], to observe the spin-noise spectrum
of a single hole spin in a quantum dot [11], and to realize
magnetometry of local magnetic fields (including the field of
polarized nuclei) in a semiconductor [12,13]. Due to these
remarkable capabilities of the new technique, it acquired a
great popularity during the last decade.

At the same time, certain fundamental aspects of the
spin-noise-based magnetic resonance are not so far fully
understood. In the first publication [1], the polarization signal
detected with the aid of a balanced circuit was ascribed entirely
to fluctuations of the polarization plane azimuth of the probe
beam, with no reference to the optical heterodyning process.
It is interesting to note, in this connection, that practically

the same measuring system was considered earlier [14]
as a balanced optical heterodyne detector with orthogonal
polarizations of the local oscillator’s and signal’s waves.

In 1983 [15], it was shown theoretically that the effect
of magnetic resonance in the Faraday rotation noise is closely
connected with the spin-flip Raman scattering, and the detected
signal is the result of heterodyning of the light scattered in
the forward direction, with the local oscillator provided by
the probe field. In the framework of this model, the standard
experimental geometry of SNS, which implies collecting
only the scattered light lying within the solid angle of the
probe beam, may appear to be far from optimal. In other
words, it looks like the detected signal, in the SNS, can be
considerably increased by collecting the scattered light more
efficiently. First experiments carried out in this direction [16]
and our preliminary analysis of the problem have shown
that a favorable solution of this experimental task can be
achieved only with allowance for all the factors affecting
the heterodyning process (wave fronts of the reference and
scattered waves, shape of the beam, volume of the scattering
medium, shape and dimensions of the photosensitive surface,
correlation properties of the gyrotropy, etc.). Actually, this
problem, which we consider to be fundamental for the SNS
method, is rather complicated and needs to be analyzed
carefully and rigorously, with the results of the treatment
applicable to real experimental conditions. In our opinion,
computational details of such a treatment and particularities of
the used approximations are also highly important.

In this paper, we present such a treatment for a focused
Gaussian probe beam propagating through the medium with
fluctuating gyrotropy and analyze in detail the mechanism of
the intensity-noise signal formation due to heterodyning of
the scattered field on the detector. We also propose a two-
beam experimental arrangement, with the auxiliary light beam
tilted with respect to the probe, that makes it possible to get
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information about the spatiotemporal correlation function of
gyrotropy of the studied system (recall that in conventional
SNS only the spatially averaged temporal correlation function
is revealed).

The paper is organized as follows. In Sec. I, for complete-
ness of the narrative, we present a brief explanation of what is
the Gaussian beam and introduce a model of the polarimetric
detector used in our further analysis. We show here that the
detected signal in SNS is contributed only by the scattered
field that, in the momentum space, coincides with that of the
probe. In Sec. II, we present basics of the single-scattering
theory, apply it to the medium with gyrotropy randomly
modulated in space, and calculate the observed polarimetric
signal. In Secs. III and IV, we calculate the noise signal
observed in the two-beam configuration, when the auxiliary
beam propagating though the medium at some angle to the
main probe beam does not hit the detector and contributes
to the signal only by its scattered field. We show that the
spin-noise signal, under these conditions, is proportional to
the Fourier component of the spatial correlation function of
gyrotropy at spatial frequency equal to the difference between
the two wave vectors. In Sec. V, we present calculations for
the model of independent paramagnetic particles (spins) and
show that the signal produced by the auxiliary tilted beam is
of the same order of magnitude as the one produced by the
main probe and, hence, can be easily detected using the same
experimental setup.

II. DETECTING A POLARIMETRIC SIGNAL IN A
GAUSSIAN BEAM

In the simplest version of the light-scattering problem, the
probe beam can be taken in the form of a plane wave. However,
in the SNS experiments under consideration, when two light
beams are supposed to be used, with their spatial localization
being of crucial importance, this approximation proves to be
inappropriate. So, we will treat Gaussian beams the electric
fields Ep(r) of which are defined by the expression

E0(r) = ei[kz−ωt]kQ

√
8W

c

(cos φ, sin φ,0)

(2k + iQ2z)

× exp

[
− kQ2(x2 + y2)

2(2k + iQ2z)

]
, r = (x,y,z) (1)

where r ≡ (x,y,z), k ≡ ω/c (ω is the optical frequency and
c is the speed of light), W is beam intensity, and the angle φ

specifies beam polarization in the xy plane. Field (1) satisfies
Maxwell’s equations and represents the beam propagating
along the z axis. The parameter Q defines the e-level half
width 2w of the beam waist by the relationship w = 1/Q (w
is assumed greater than the wavelength λ = 2πc/ω). In our
estimations, we accept λ ∼ 1 μm and w ∼ 30 μm.

In the SNS experiments, we detect small fluctuations of
the optical field polarization, and, therefore, to calculate
correctly the SNS signal, we have to specify the model of the
polarimetric detector. We suppose the detector to be composed
of two photodiodes PD1 and PD2 (Fig. 1) arranged in two arms
of the polarization beam splitter (BS). The output signal U is
obtained by subtracting photocurrents of the two photodiodes
and (to within some unimportant factors) is given by the

FIG. 1. The two-beam experimental arrangement. BS, polariza-
tion beamsplitter; PD1 and PD2, photodetectors.

expression

U = ω

2π

∫ 2π/ω

0
dt

∫ lx

−lx

dx

∫ ly

−ly

dy[Re 2Ex(x,y,L)

− Re 2Ey(x,y,L)], (2)

where Ex,y are the x and y components of the complex input
optical field E, 2lx,y are the dimensions of sensitive areas
of the photodiodes along the x and y directions. We ascribe
physical sense to the real part of the complex optical field
and, as seen from Eq. (2), the output signal U represents the
difference between intensities of the input optical field in
the x and y polarizations integrated over sensitive areas of
the photodiodes and averaged over the optical period 2π/ω.

In our case, the input optical field E can be presented as
a sum of the probe field E0 (Re E0 ≡ E0) and the field E1
(Re E1 ≡ E1) arising due to scattering of the probe beam by
the sample with spatially fluctuating gyrotropy. Then, the first-
order (with respect to E1) contribution u1 to the polarimetric
signal can be written as

u1 = ω

π

∫ 2π/ω

0
dt

∫ lx

−lx

dx

∫ ly

−ly

dy[Ex0(x,y,L)Ex1(x,y,L)

− Ey0(x,y,L)Ey1(x,y,L)]. (3)

This formula shows that the observed signal can be thought of
as a result of heterodyning (mixing) of the unperturbed probe
field E0 with the field of scattering E1. Equation (3) also shows
that, for sufficiently large dimensions of the detector (lx,y �
λ = 2π/k), polarimetric signal u1 represents projection of the
scattered field (in the momentum space) onto the field of the
probe beam. This means, in turn, that this signal is controlled
by the fraction of the scattered field the distribution of which
in space, to a certain extent, reproduces the field of the probe
beam. Specifically, when the probe field represents a plane
wave E0 ∼ eiq0r with the wave vector q0, and the scattered
field can be presented by a superposition of the plane waves
E1 ∼ ∫

dqeiqrS(q), the signal u1 appears to be proportional to
the component of the scattered field at the spatial frequency
q0: u1 ∼ S(q0).

Let us now calculate the scattered field E1.
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III. POLARIMETRIC SIGNAL IN A MEDIUM WITH
FLUCTUATING GYROTROPY

In this section, we consider scattering of a monochromatic
light beam by the medium with randomly inhomogeneous
(spatially fluctuating) gyrotropy. Temporal dependence of the
polarimetric signal will be introduced to the derived equations
by substituting static gyrotropy time dependent one. This
“adiabatic” approximation is admissible because frequencies
of the SNS signals are much lower than that of the optical
beam. In this case, polarization of the medium P(r) can be
expressed through the electric field E(r) as follows:

P(r) = i[E(r)G(r)] = iE(r) × G(r), (4)

where G(r) is the spatially dependent gyration vector. At
this stage of our treatment, we assume the gyration vector
to be time independent. Then, Maxwell’s equations for the
electromagnetic field in the medium can be reduced to the
form

�E + k2E = −4πk2P − 4π grad div P, k ≡ ω

c
. (5)

We will search for a solution of this equation in the form
of series in powers of G(r). The zeroth-order term E0(r)
represents the probe beam field that we consider to be known.
The first-order term E1(r) corresponds to the single-scattering
approximation which is sufficient for our consideration. This
term satisfies the equation

�E1 + k2E1 = − 4πik2E0(r) × G(r)

− 4πi grad div E0(r) × G(r). (6)

Solution of this equation can be expressed in terms of Green’s
function �(r) = − exp(ikr)/4πr of the Helmholtz equation
[� + k2]�(r) = δ(r):

E1(r) = i

∫
exp(ik|r − r′|)

|r − r′| [k2E0(r′) × G(r′)

+ grad div E0(r′) × G(r′)]d3r′. (7)

Let the sample [the region where G(r) is nonzero] be placed
in the vicinity of the origin of our coordinate system x,y,z.
Let the photosensitive surface of the polarimetric detector be
parallel to the xy plane and the detector itself be set at z = L,
with L being large compared with the sample dimensions.
Then, as seen from Eq. (7), the scattered field can be presented
as a sum of two contributions:

E1(r) = E1
1(r) + E2

1(r), (8)

E1
1(r) ≡ ik2

L

∫
exp(ik|r − r′|)E0(r′) × G(r′)d3r′,

E2
1(r) ≡ i

L

∫
exp(ik|r − r′|) grad div E0(r′)

× G(r′)d3r′ = 1

k2
grad div E1

1(r).

We will concentrate on calculating the part E1
1(r) of the

scattered field because, in what follows, we will need this field
at small scattering angles and, in this case, as it can be directly
checked, only E1

1(r) is of importance.

We take the probe beam in the form of Eq. (1). We need
this field in two substantially separated spatial regions: first,
in Eq. (3) at large values of z ∼ L and, second, in Eq. (8) at
relatively small values of z within the sample. Calculation for
z ∼ L shows that the field E0 entering Eq. (3) has the form

(
Ex0(x,y,L)
Ey0(x,y,L)

)
=

(
cos φ

sin φ

)√
8W

c

k

QL

× sin

[
kL − ωt + k[x2 + y2]

2L

]

× exp

[
− k2(x2 + y2)

Q2L2

]
. (9)

While deriving this expression, we assumed that L > zc ≡
4πw2/λ (zc is the Rayleigh length). Using this assumption,
one has to accurately separate the real and imaginary parts in
argument of the exponential in Eq. (1): the real part enters the
exponential factor in Eq. (9) and describes the increasing beam
diameter at large L, while the imaginary part yields the last
term of the argument of the sin function and describes phase
distribution of the optical field in the plane of the photodetector.

In what follows, the length of the sample ls is supposed to
be smaller than the Rayleigh length zc. In the limit |z| < zc,
Eq. (1) can be simplified:

E0(r) = ei[kz−ωt]Q

√
8W

c

(cos φ, sin φ,0)

2

× exp

[
− Q2(x2 + y2)

4

]
, z < zc. (10)

Using this relationship, one can calculate the scattered field
E1

1(r) [Eq. (8)] and obtain, for real parts of Ex1 and Ey1 entering
Eq. (3), the following expression:

(
Ex1

Ey1

)
=

(− sin φ

cos φ

)√
2W

c

Qk2

L

×
∫

sin[k|r − r′| + kz′ − ωt]

× exp

[
− Q2(x ′2 + y ′2)

4

]
Gz(r′)d3r′. (11)

Using Eq. (3) and explicit expressions (9) and (11) for
the probe E0 and scattered E1 fields, we can calculate the
polarimetric signal. While averaging the product Ex0Ex1 over
the optical period, we come to the integral

ω

π

∫ 2π/ω

0
E0xE1x dt ∼ ω

π

∫ 2π/ω

0
sin[k|r − r′| + kz′ − ωt]

× sin

[
kL − ωt + k[x2 + y2]

2L

]

= cos k

[
z′ + |r − r′| − L − x2 + y2

2L

]
.

(12)
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The same is obtained for Ey0Ey1. Now, Eq. (3) gives

u1 = −4Wk3 sin[2φ]

cL2

∫ lx

−lx

dx

∫ ly

−ly

dy exp

[
− k2(x2 + y2)

Q2L2

]

×
∫

cos k

[
z′ + |r − r′| − L − x2 + y2

2L

]

× exp

[
− Q2(x ′2 + y ′2)

4

]
Gz(r′)d3r′, (13)

with r = (x,y,L) and r′ = (x ′,y ′,z′). The external integration
over dxdy runs over the detector sensitive area, and, therefore,
|x|,|y| < lx,y � L. We assume that dimensions of the detector
lx,y exceed the size Lλ/2πw of the probe beam spot at the
detector [see Eq. (9)]. Then, x and y can be estimated as
|x|,|y| ∼ Lλ/2πw. The internal integration dr′ runs over the
irradiated volume of the sample. For this reason, x ′,y ′ ∼ w and
z′ is of the order of the sample length ls . Taking into account
that Lλ/2πw,w,ls � L, we obtain the following expansion
for the factor |r − r′|:

|r − r′| ≈ L + x2 + y2

2L
+ x ′2 + y ′2

2L
− xx ′ + yy ′

L
− z′.

(14)

Note that the term ∼ z′2 vanishes. Further estimates show that
the term (x ′2 + y ′2)/2L can be omitted because, in our case,
k(x ′2 + y ′2)/2L < π/4 and, finally, we have

|r − r′| ≈ L + x2 + y2

2L
− z′ − xx ′ + yy ′

L
. (15)

Using this formula, we can evaluate the product of the
cosine functions in Eq. (13) as

cos k

[
z′ + |r − r′| − L − x2 + y2

2L

]
= cos k

[
xx ′ + yy ′

L

]
.

(16)

As was mentioned above, the detector dimensions are
assumed to be greater than the size of the probe beam spot:
lx,y > Lλ/2πw. This allows one to extend integration over
the detector surface in Eq. (13) to infinity, |lx,y | → ∞, and to
calculate all integrals using the formula∫

dx exp[−αx2 + iβx] =
√

π

α
exp

(
− β2

4α

)
. (17)

For example, the integral with cosine function in Eq. (16) (we
denote it I1) can be calculated as follows:

I1 =
∫ ∞

−∞
dx

∫ ∞

−∞
dy exp

[
− k2(x2+y2)

Q2L2

]
cos k

[
xx ′+yy ′

L

]

= Re
∫ ∞

−∞
dx

∫ ∞

−∞
dy exp

[
− k2(x2+y2)

Q2L2
+ik

xx ′+yy ′

L

]

= Re
∫ ∞

−∞
dx exp

[
− k2x2

Q2L2
+ ik

xx ′

L

]

×
∫ ∞

−∞
dy exp

[
− k2y2

Q2L2
+ ik

yy ′

L

]

= πQ2L2

k2
exp

(
− [x ′2 + y ′2]Q2

4

)
. (18)

Substituting Eq. (18) into Eq. (13), we obtain the following
expression for the polarimetric signal:

u1 = −4WkπQ2 sin[2φ]

c

×
∫

V

exp

[
− Q2(x ′2 + y ′2)

2

]
Gz(r′)d3r′. (19)

Recall that this formula is valid if the sample length ls is
smaller than the Rayleigh length, ls < zc [see definition of
the Rayleigh length after Eq. (9)] and the probe beam spot is
smaller than the detector photosensitive area, lx,y � Lλ/2πw.
It is seen from Eq. (19) that the polarimetric signal is, in fact,
proportional to the z component of the gyration averaged over
the irradiated volume of the sample, as is usually implied
intuitively.

Equation (19) allows one to obtain the expression for the
magnetization noise power spectrum observed in the SNS. In
this case, G(r) is proportional to instantaneous spontaneous
magnetization of the sample randomly fluctuating both in
space and in time. If characteristic frequencies of this field
are much lower than the optical frequency ω, one can use
Eq. (19) for calculating the random polarimetric signal by
substituting G(r) → G(r,t). The noise power spectrum N (ν)
is defined as the Fourier transform of the correlation function
of the polarimetric signal. Using Eq. (19), the noise power
spectrumN (ν) can be expressed in terms of the spatiotemporal
correlation function of the gyrotropy G(r,t):

N (ν) =
∫

dt〈u1(t)u1(0)〉 eiνt 16W 2k2π2Q4 sin2[2φ]

c2

×
∫

dteiνt

∫
V

d3r
∫

V

d3r′

× exp

[
− Q2(x ′2 + y ′2 + x2 + y2)

2

]

×〈Gz(r′,0)Gz(r,t)〉. (20)

To calculate the correlation function 〈Gz(r′,0)Gz(r,t)〉
entering Eq. (20), one should specify a particular model of
the gyrotropic medium. The example of such a model (the
model of independent paramagnetic atoms with fluctuating
magnetization) will be described in Sec. V. In the next section,
we will calculate the polarimetric signal provided by the
auxiliary tilted beam that produces the scattered field but does
not irradiate the detector (see Fig. 1).

IV. DETECTING THE SCATTERED FIELD OF THE
TILTED BEAM

Let the sample be illuminated by an auxiliary light beam
(AB) propagating at the angle � with respect to the main
probe beam Fig. 1. Note that the AB does not hit the detector,
but the scattered field of this beam may provide additional
contribution to the detected polarimetric signal, and our goal
now is to calculate the value of this contribution.

The calculation can be performed in the same way as in
the previous section with the following changes. The scattered
field is calculated using Eq. (8), with the field E0(r) replaced by
Et

0(r), where Et
0(r) represents the field of the auxiliary (tilted)

beam. The field Et
0(r) can be obtained by rotating E0(r) by
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the angle � around the axis (cos φ, sin φ,0) parallel to the direction of polarization of the probe beam: [17]

Et
0(r) = ME0(Mr). (21)

Here, the matrix M is defined as

M = R(−φ)H (�)R(φ) =
⎛
⎝ cos � sin2 φ + cos2 φ [1 − cos �] sin φ cos φ − sin φ sin �

[1 − cos �] sin φ cos φ cos � cos2 φ + sin2 φ cos φ sin �

sin � sin φ − sin � cos φ cos �

⎞
⎠

=

⎛
⎜⎝

1 − 1
2�2 sin2 φ 1

2�2 sin φ cos φ −� sin φ

1
2�2 sin φ cos φ 1 − 1

2�2 cos2 φ � cos φ

� sin φ −� cos φ 1 − 1
2�2

⎞
⎟⎠ + O(�3). (22)

Therefore, the field Et
0(r) is defined by the expression

Et
0(r) = Q

√
2Wt

c
(cos φ, sin φ,0) exp i[kZ(r) − ωt] exp

[
− Q2[X2(r) + Y 2(r)]

4

]
, (23)

where ⎛
⎝X(r)

Y (r)
Z(r)

⎞
⎠ ≡

⎛
⎝ cos � sin2 φ + cos2 φ [1 − cos �] sin φ cos φ − sin φ sin �

[1 − cos �] sin φ cos φ cos � cos2 φ + sin2 φ cos φ sin �

sin � sin φ − sin � cos φ cos �

⎞
⎠

⎛
⎝x

y

z

⎞
⎠ +

⎛
⎝δx

δy

δz

⎞
⎠ (24)

with r = (x,y,z). We denote by Wt intensity of the AB and take into account its possible spatial shift (δx,δy,δz). Substituting
Et

0(r) [Eq. (23)] into Eq. (8) instead of E0(r), one can obtain the following expression for the scattered field produced by the AB:
(
E t

1x

E t
1y

)
=

(− sin φ

cos φ

)√
2Wt

c

Qk2

L

∫
sin[k|r − r′| + kZ′ − ωt] exp

[
− Q2(X′2 + Y ′2)

4

]
Gz(r′)d3r′, (25)

where X′ = X(r′), Y ′ = Y (r′), and Z′ = Z(r′), with the functions X(r′), Y (r′), Z(r′) defined by Eq. (24) with substitution
x,y,z → x ′,y ′,z′. This formula has the same sense as Eq. (11); for clarity we supply components of the scattered field by
superscript t . Taking into account this replacement, one can get the relationship for the polarimetric signal produced by the AB
[instead of Eq. (13)]:

ut
1 = −4

√
WWtk

3 sin[2φ]

cL2

∫ lx

−lx

dx

∫ ly

−ly

dy exp

[
− k2(x2 + y2)

Q2L2

]

×
∫

cos k

[
|r − r′| + Z′ − L − x2 + y2

2L

]
exp

[
− Q2(X′2 + Y ′2)

4

]
Gz(r′)d3r′. (26)

Calculation of integrals can be made as in the previous section, and the final result for the polarimetric signal produced by the
AB is

ut
1 = −4

√
WWtkπQ2 sin[2φ]

c

∫
V

cos k[z′ − Z′] exp

[
− Q2(x ′2 + y ′2 + X′2 + Y ′2)

4

]
Gz(r′)d3r′, (27)

where r′ = (x ′,y ′,z′) and⎛
⎝X′

Y ′
Z′

⎞
⎠ =

⎛
⎝ cos � sin2 φ + cos2 φ [1 − cos �] sin φ cos φ − sin φ sin �

[1 − cos �] sin φ cos φ cos � cos2 φ + sin2 φ cos φ sin �

sin � sin φ − sin � cos φ cos �

⎞
⎠

⎛
⎝x ′

y ′
z′

⎞
⎠ +

⎛
⎝δx

δy

δz

⎞
⎠. (28)

One can see that ut
1 is proportional to overlap of the two beams and vanishes at large shifts δx,δy,δz. The trigonometric factor

cos k[z − Z], in fact, singles out the harmonic of the gyrotropy with the spatial frequency equal to the difference between the
wave vectors of the two beams. Total signal in the presence of two beams is the sum of Eqs. (19) and (27): u1 + ut

1. Recall that
the angle � should not be too large; otherwise, one should take into account the component E2

1(r) in Eq. (8).

V. NOISE SIGNAL IN THE TWO-BEAM CONFIGURATION

The noise signal produced by the two beams in the configuration of Fig. 1 is calculated as the Fourier transform of the
correlation function of the total polarimetric signal u = u1 + ut

1. It consists of three terms:

Nt (ν) =
∫

dteiνt 〈u(0)u(t)〉 =
∫

dteiνt
[〈u1(0)u1(t)〉 + 2

〈
u1(0)ut

1(t)
〉 + 〈

ut
1(0)ut

1(t)
〉]
. (29)
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Using Eqs. (19) and (27), one can write the expressions for each of them. The first term has been already calculated and is given
by Eq. (20). For the correlator entering the last term, we have

〈
ut

1(0)ut
1(t)

〉 = 16WWtk
2π2Q4 sin2[2φ]

c2

∫
V

d3r
∫

V

d3r′ cos k[z − Z] cos k[z′ − Z′]

× exp

[
− Q2(X2 + Y 2 + x2 + y2 + X′2 + Y ′2 + x ′2 + y ′2)

4

]
× 〈Gz(r′,0)Gz(r,t)〉, (30)

where x,y,z → r and X,Y,Z are defined by Eq. (28). Finally, the cross correlator 〈ut
1(0)u1(t)〉 can be written as

〈
ut

1(0)u1(t)
〉 = 16W

√
WWtk

2π2Q4 sin2[2φ]

c2

∫
V

d3r
∫

V

d3r′ cos k[z − Z]

× exp

[
− Q2(X2 + Y 2 + x2 + y2)

4
− Q2(x ′2 + y ′2)

2

]
× 〈Gz(r′,0)Gz(r,t)〉. (31)

Consider now the physical sense of different factors entering
Eqs. (20), (30), and (31).

The exponential factor reduces the region of integration
down to the region of overlap of the two beams. If � is not too
large and ls� < w, this region is close to the “beam volume
within the sample.” In this case, the exponential factor can be
calculated at X = x,Y = y,Z = z,X′ = x ′,Y ′ = y ′,Z′ = z′.
Note that it is rather difficult to satisfy the condition ls� < w in
a real experiment. For this reason, the overlapping factor may
considerably reduce contribution of the AB to the polarimetric
signal.

It is noteworthy that, as follows from Eq. (31), contribution
of the auxiliary beam to the detected signal is controlled by the
volume of overlap of the two beams, which is getting smaller
with increasing �. Though the value of this contribution,
under these conditions, becomes smaller, spatial resolution of
this technique, which can be evidently used for tomographic
purposes, can be substantially improved.

The trigonometric factor at small angles � is controlled
by the difference between wave vectors of the two beams
because the cosine argument can be evaluated as z − Z =
[cos φy − sin φx]�.

The correlation function 〈Gz(r′,0)Gz(r,t)〉 is determined
by a particular model of the gyrotropic medium. For homoge-
neous media, it depends on the difference r − r′ of the spatial
arguments. For the model of independent spins described
below, 〈Gz(r′,0)Gz(r,t)〉 ∼ δ(r − r′)e−|t |/τ cos ω0t.

Thus, the integrals entering Eqs. (20), (30), and (31) can
be calculated for any particular model of the gyrotropic
medium. In the next section, we will present calculations for
the model of independent paramagnetic particles (spins). Still,
the following general remark should be made. Let the beam
waist 4w and the sample length ls be much greater than the
gyrotropy correlation radius Rc and spatial period 2π/k�

related to the difference of wave vectors of the two beams:
4w,ls � Rc,2π/k�. Then, one can substitute variables in the
integrals entering Eqs. (20), (30), and (31) in the following
way, r,r′ → R ≡ r − r′,R′ ≡ r + r′, and take advantage of
the fact that the correlator 〈Gz(r′,0)Gz(r,t)〉 depends on the
difference of its arguments:

〈Gz(r′,0)Gz(r,t)〉 ≡ K(r − r′,t). (32)

Then, the integral over R ≡ r − r′ in Eq. (20) can be
estimated as the average of K(R,t) over the irradiated volume
of the sample Vb. The integration over R′ ≡ r + r′ gives this
volume itself, and we obtain

N (ν) = 16W 2k2π2Q4 sin2[2φ]

c2

∫
dt eiνt

=
∫

V

drdr′ exp

[
− Q2(x ′2 + y ′2 + x2 + y2)

2

]

×K(r − r′,t)

∼ W 2ls sin2[2φ]

S

∫
dt eiνt

∫
Vb

dR K(R,t). (33)

Here, we denote the cross-section area of the beam by
S ≡ 4πw2 and take into account that w = 1/Q and that the
irradiated volume of the sample is Vb = Sls , where ls is the
sample length. We come to the known result that the noise
power signal is proportional to the sample length and inversely
proportional to the beam cross section [1,2,4].

The correlation function Eq. (30) can be estimated in a
similar way. If � is not too large, then the arguments of
the cosine functions can be evaluated as z − Z = [cos φy −
sin φx]� and z′ − Z′ = [cos φy ′ − sin φx ′]�. Therefore, one
can represent the product of the cosine functions in Eq. (30)
as

cos k[z − Z] cos k[z′ − Z′]

= 1

2
cos{k�[(y − y ′) cos φ − (x − x ′) sin φ]}

+ 1

2
cos{k�[(y + y ′) cos φ − (x + x ′) sin φ]}.

Note that the difference �k between the wave vector of
the two beams for small � has only x and y components:
�k = k�(− sin φ, cos φ,0). Therefore, this relationship after
substitution of variables r,r′ → R = r − r′,R′ = r + r′ takes
the form

cos k[z − Z] cos k[z′ − Z′] = 1

2
cos(�k,R) + 1

2
cos(�k,R′).

Recall that our treatment is valid when w is large enough
(�kw > 2π ). In this case, the integral

∫
Vb

dR′ cos(�k,R′) ∼
0, and we come to the conclusion that the correlation function
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Eq. (30) can be estimated as follows:
〈
ut

1(0)ut
1(t)

〉

∼ WWtQ
4 sin2[2φ]

∫
Vb

dRdR′ K(R,t) cos(�k,R)

∼ WWt sin2[2φ]ls
S

∫
Vb

dR K(R,t) cos(�k,R). (34)

Thus, contribution of the AB to the noise signal is propor-
tional to the Fourier transform of the correlation function of
gyrotropy at spatial frequency equal to the difference of the
wave vectors of the two beams (�k).

Therefore, by measuring dependence of the noise signal, in
the two-beam configuration, on the angle between the beams
(in fact, on �k) and using the inverse Fourier transform, one
can restore spatial dependence of the gyrotropy correlation
function K(R,t). Recall that in the conventional spin-noise
spectroscopy, only temporal dependence of this correlation
function averaged over the irradiated volume of the sample is
revealed.

Similarly, it can be shown that, under these conditions,
contribution of the cross correlator Eq. (31) is relatively small.

VI. THE MODEL OF INDEPENDENT SPINS

In this model, the random field of gyrotropy Gz(r) has the
form

Gz(r) =
N∑

i=1

gi(t)δ(r − ri), (35)

thus corresponding to N paramagnetic particles (spins) ran-
domly distributed over the volume of the medium with some
average density σ ≡ N/V , where V is the total volume
of the system. We assume that gi(t) is proportional to
the z component of magnetization of the ith particle. The
polarimetric signal can be calculated using Eq. (19):

u1 = u1(t) = −4WkπQ2 sin[2φ]

c

×
∫

V

exp

[
− Q2(x ′2 + y ′2)

2

]∑
i

gi(t)δ(r′ − ri)d
3r′.

(36)

Let us calculate polarimetric signal u10 for the sample in
which all magnetizations gi(t) are constant and the same:
gi(t) = g0 = const. This corresponds to a paramagnet in a
high magnetic field at low temperature. In this case, Eq. (36)
gives

u10 = −8Wkg0σ lsπ
2 sin[2φ]

c
. (37)

We will see below that the quantity u10 provides us a conve-
nient scale. Let us now consider the gyrotropic medium with
the quantities gi changing randomly in a stationary way with
the correlation function 〈gi(t)gk(t ′)〉 = δikK(t − t ′) [which
should be distinguished from the spatiotemporal correlation
function of Eq. (32)] and calculate, for this model, the noise

power spectrum using Eq. (20). We have

〈Gz(r′,0)Gz(r,t)〉
= 1

V

∑
i

∫
d3ri〈gi(0)gi(t)〉δ(r′ − ri)δ(r − ri)

= δ(r − r′)σK(t), (38)

and, consequently,

N (ν) = 16W 2k2π3Q2lsσ sin2[2φ]

c2

∫
dt eiνtK(t). (39)

If we accept for the beam area the expression S = 4πw2,
then Q2 = 1/w2 = 4π/S. Taking into account Eq. (37), we
obtain the expression for the noise power spectrum:

N (ν) = u2
10

σ lsS

∫
dteiνt 〈g(0)g(t)〉

g2
0

. (40)

Note that σ lsS ≡ Nb is the number of spins in the irradiated
volume of the sample.

In the simplest case, each paramagnetic particle of the
gyrotropic medium can be associated with the effective spin
1/2. Then, the total magnetization can be expressed as g2

0 =
(gβ)2/4 (here, g is the effective g factor and β is the Bohr
magneton). In the presence of the transverse magnetic field Bx ,
the correlator 〈g(0)g(t)〉 can be calculated using the following
chain of relationships:

〈g(0)g(t)〉 = (gβ)2

2
Sp [SzSz(t) + Sz(t)Sz]ρeq,

Sz(t) = e−iω0tSx Sze
iω0tSx ω0 ≡ gβBx

h̄
. (41)

Here, ρeq is the density matrix of the two-level system
representing our effective spin 1/2. If the temperature is
high enough (kT � gβBx), the density matrix can be taken
constant, ρeq = Î /2 (Î is the unit matrix), and we obtain

〈g(0)g(t)〉 = (gβ)2

4
Sp [SzSz(t) + Sz(t)Sz]

= (gβ)2

4
cos ω0t → (gβ)2

4
e−|t |/τ cos ω0t

⇒ 〈g(0)g(t)〉
g2

0

= e−|t |/τ cos ω0t. (42)

Here we introduce phenomenologically the transverse relax-
ation time τ . So, for the noise power spectrum, we have

N (ν) = u2
10τ

Nb

[
1

1 + (ω0 + ν)2τ 2
+ 1

1 + (ω0 − ν)2τ 2

]
.

(43)

The root-mean-square value of the polarimetric noise is given
by the relationship

〈δu2〉 = 1

2π

∫
N (ν)dν = u2

10

Nb

. (44)

In a similar way, one can calculate the power spectrum of the
polarimetric noise in the presence of the auxiliary beam AB.
Using Eq. (37) for the correlation function and Eqs. (20), (30),
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and (31), we obtain

〈u(0)u(t)〉 = u2
10

e−|t |/τ cos ω0t

Nb

×
{

1 + 2

√
Wt

W
exp

[
− k2�2

4Q2

]

+ Wt

W

1

2

(
1 + exp

[
− k2�2

Q2

])}
. (45)

If 2π/k = 1 μm, � ∼ 0.1, and 1/Q ∼ 30 μm, the ex-
ponential factors can be omitted, and simplified expressions
for the correlation function and for the noise power spectrum
acquire the form

〈u(0)u(t)〉 = u2
10

Nb

[
1 + Wt

2W

]
e−|t |/τ cos ω0t, (46)

N (ν) = u2
10τ

Nb

[
1 + Wt

2W

]

×
[

1

1 + (ω0 + ν)2τ 2
+ 1

1 + (ω0 − ν)2τ 2

]
. (47)

It is seen from Eq. (47) that if Wt ∼ W then switching the
auxiliary beam on leads to 50% increase of the noise power
and, therefore, can be easily observed. Note once again that we
assumed complete overlap of the two beams. Therefore, the
contribution of the auxiliary beam to the noise power spectrum
in real experiments, when this is not the case, may be somewhat
smaller.

The above treatment was performed for the case of absence
of any spatial correlation in the field of gyrotropy. The result of
this assumption is the absence of any dependence of the noise
signal on the angle � (at small �). In the presence of spatial
correlation of the gyrotropy, the noise signal will decrease with
� (with increasing �k = k�). Specifically, if the noise signal
decreases, say, by a factor of 2 at an angle of �1/2, then the
correlation radius of the gyration field Rc can be estimated as
Rc ∼ [�k1/2]−1 ≡ [k�1/2]−1.

To estimate and probably to measure the gyrotropy field
correlation function in the above arrangement, the tilted beam
can be obtained using the same lens that is employed to
focus the probe beam. For this purpose, the auxiliary beam
propagating parallel to the probe and shifted from it by the
distance D hits this lens. Then, the two beams will intersect
after the lens in the vicinity of its focal plane at the angle D/f ,
where f is the focal length of the lens. By varying the distance
D, one can change the above angle and observe changes in
the noise signal needed to calculate the correlation function
of the gyrotropy. The maximum (minimum) angle of beam
convergence that can be obtained in this way is estimated as
�max ≈ R/f (�min ≈ d/f ), where R is the lens radius and d

is the diameter of the beams incident upon the lens. Taking R

= 25 mm, f = 50 mm, and d = 3 mm, we obtain �min = 0.06
rad and �max = 0.5 rad. If the light wavelength is λ = 1 μm,
then the range of the correlation radii that can be covered in the
above two-beam arrangement is Rmin

c = λ/2π�max ≈ 0.3 μm
and Rmax

c = λ/2π�min ≈ 3 μm. Note that reduction of the
noise signal with increasing � can also occur due to decreasing
overlap of the beams. This effect is to be taken into account
upon processing of the experimental data. However, for the

samples thin enough compared with the Rayleigh length,
the role of this factor may be insignificant (the Rayleigh
length for the beams considered above lies in the range
of 1 mm).

VII. DISCUSSION AND CONCLUSIONS

The polarization noise signal in SNS is known to be a
result of mixing of the field scattered by fluctuating spins with
that of the probe beam. The main goal of this paper was to
present rigorous description of signal formation in SNS and
to figure out whether the scattered field coming out of the
sample practically isotropically can be used more efficiently
in the SNS measurements. The sample with fluctuating spins
is considered here as an inhomogeneous optical medium with
its gyrotropy fluctuating both in time and in space. The noise
signal arising due to heterodyning of the scattered light is
calculated for a focused Gaussian beam in the single-scattering
approximation. We show that, in real experiments, only a
fraction of the scattered field that overlaps with the probe
beam in the momentum space contributes to the detected
signal. Therefore, a more efficient use of the scattered field,
in spin-noise spectroscopy, can be achieved by increasing this
overlap in the proper optical arrangement. Our calculations
confirm the common assumption that the noise signal, in
the conventional geometry of SNS, is proportional to the
sample’s gyrotropy spatially averaged over the irradiated
volume. We also consider a two-beam geometry in which
properties of the scattered light field are revealed in a much
more pronounced way. It is shown that the additional signal
produced by the auxiliary light beam, tilted with respect to
the probe, is proportional to the Fourier transform of the
gyrotropy correlation function at spatial frequency equal to
the difference of wave vectors of the two beams. Accordingly,
in the presence of spatial correlation of the gyrotropy, Fourier
components at higher spatial frequencies will appear to be
suppressed, and contribution of the auxiliary beam at larger
angles between the beams will decrease. This effect can be
used to investigate spatial correlation of spins related, e.g., to
spin-spin interactions, motion of spin carriers, etc.

Our calculations also show that the additional signal, in
the two-beam geometry, is produced only by the region
of spatial overlap of the two beams. This means that the
two-beam geometry allows one to realize the SNS-based 3D
tomography with substantially higher spatial resolution than
in the standard single-beam configuration [8,9]. The results of
rigorous solution of the problem are presented here for the case
of spatially uncorrelated gyrotropy with the “white” spectrum
of the gyrotropy spatial fluctuations.

Note that calculations of the SNS signal were performed,
in this paper, for a simplified optical arrangement with
no lenses after the scattering volume. We believe that our
conclusions, in their main features, will remain valid for
standard optical schemes with dioptric elements. At the same
time, we admit that, for some specific arrangements of focusing
and collecting the fields on the detectors, the overall conditions
of heterodyning may change and our conclusions will need to
be corrected. We plan to analyze this issue more accurately
elsewhere.
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