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Spin-noise spectroscopy of randomly moving spins in the model of light scattering: Two-beam
arrangement
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A strict analytical solution of the problem of spin-noise signal formation in a volume medium with randomly
moving spin carriers is presented. The treatment is carried out in the model of light scattering in a medium
with fluctuating inhomogeneity. Along with conventional single-beam geometry, we consider the two-beam
arrangement, with the scattering field of the auxiliary (tilted) beam heterodyned on the photodetector illuminated
by the main beam. It is shown that the spin-noise signal detected in the two-beam arrangement is highly sensitive to
motion (diffusion) of the spin carriers within the illuminated volume and thus can provide additional information
about the spin dynamics and spatial correlations of spin polarization in the volume media. Our quantitative
estimates show that, under real experimental conditions, spin diffusion may strongly suppress the spin-noise
signal in the two-beam geometry. The mechanism of this suppression is similar to that of the time-of-flight
broadening with the critical distance determined by the period of two-beam spatial interference rather than by
the beam diameter.
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I. INTRODUCTION

Spectroscopy of spin noise rapidly developing during the
past decade has been shown to be an efficient method of
research with a wide range of interesting informative abil-
ities in the field of magnetospin physics [1–3]. Spin-noise
spectroscopy (SNS) has made it possible to study resonance
magnetic susceptibility of nano-objects (e.g., quantum wells
and quantum dots), hardly accessible for the electron spin reso-
nance technique [4,5], to observe the dynamics of nuclear mag-
netization [6,7], and to investigate certain nonlinear phenom-
ena in such systems [8]. The fact that magnetization is detected,
in SNS, by optical means1 provides this method with additional
informative channels. Specifically, studying the spin-noise
power dependence on the probe light wavelength makes it
possible to identify the type of broadening (homogeneous or
inhomogeneous) of optical transitions [9,10]. Temporal mod-
ulation of the probe beam (e.g., shaping the ultrashort optical
pulses) allows one to extend the range of the detected noise
signals up to microwave frequencies [11]. The use of tightly fo-
cused probe beams provides an opportunity to detect the noise
signals with a high spatial resolution and even to perform three-
dimensional tomography of magnetic properties of materials
[12]. The range of objects of SNS is not restricted to solid-state
systems. Nowadays, this method is widely applied to the study
of atomic gases [13], from which SNS originated [14].

The magnetic state of a material (magnetization), in SNS,
is monitored by polarization plane rotation of the probe
beam transmitted through the sample. It is assumed, in these
measurements, that the detected angle of the polarization

*Corresponding author: gkozlov@photonics.phys.spbu.ru
1This is performed by measuring polarization modulation of the

probe beam passing through the sample under study.

plane rotation is proportional to the total magnetization of the
illuminated volume of the sample. This is considered to be valid
even for spontaneous spatiotemporal stochastic fluctuations
of the magnetization detected in SNS. This simple picture is
commonly used to interpret experimental data in SNS. In a
consistent analysis, however, a polarimetric signal detected
in SNS should be regarded as a result of scattering of the
probe light by the randomly gyrotropic medium [15]. Such
an analysis performed in Ref. [16] allowed us to justify the
above simple picture and, in addition, to propose a two-beam
modification of the SNS that makes it possible to observe
both temporal and spatial correlations in magnetization of the
illuminated region of the medium. In Ref. [16] we restricted
our treatment to the case of thin samples (compared to the
Rayleigh length of the probe beam), typical for experiments
with solid-state samples. In this paper we consider a more
general case of a volume medium with moving spin carriers
(more typical for atomic vapors). In the first part of the paper,
which is a continuation of the work in Ref. [16], we analyze
the formation of the SNS signals for the samples with the
thickness exceeding the Rayleigh length of the focused light
beams. We show that the noise signal ceases to increase with the
sample thickness when it substantially exceeds the Rayleigh
length. For the case of the two-beam arrangement, we derive
the expression for the spin-noise signal which shows that this
signal is defined by the fluctuations of the gyrotropy only in
the region of the overlap of the beams used. We also obtain
an explicit expression for the spin-noise signal in the medium
with diffusion of spin particles. Our estimates show that atomic
diffusion in gaseous systems may drastically suppress the
noise signal created by the auxiliary beam and thus hinder
its observation.

The paper is organized as follows. In Sec. I, in the single-
scattering approximation, we derive the expression for the
noise polarimetric signal from the sample transilluminated by
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FIG. 1. Two-beam experimental arrangement. Here PBS denotes
the polarization beam splitter and PD1 and PD2 are photodetectors.

two coherent laser beams (referred to as main and auxiliary),
with only one of them (the main) hitting the detector [Eq. (13)].
In Sec. II we obtain relationships for the gyrotropy noise
power spectrum detected using SNS. We present calculations
of these spectra for samples of arbitrary thickness in the
framework of the model of resting gyrotropic particles and of
the diffusion model. We show the that amplitude of the noise
spectrum becomes independent of the sample thickness when
the latter exceeds the Rayleigh length of the beam [Eq. (20)].
We also describe the effect of time-of-flight broadening of the
spectrum arising in the diffusion model and present a simple
experimental illustration of the conclusions using as a model
object a thick cell with Cs atoms in a buffer-gas atmosphere.
In Sec. III we present an analysis of signals observed in the
two-beam arrangement of SNS [16]. For the contribution to the
noise spectrum associated with the auxiliary beam, we obtain
an expression that takes into account diffusion of the gyrotropic
particles [Eq. (37)]. Recommendations are given regarding the
choice of the systems where the above signal can be observed.
The results of the work are summarized in the Conclusion.

II. POLARIMETRIC SIGNAL FROM A RANDOMLY
GYROTROPIC SAMPLE: THE TWO-BEAM

ARRANGEMENT

In this section we present the solution of a problem typical
for noise spectroscopy. Let us consider a weakly gyrotropic
sample with spatial distribution of the gyration vector de-
scribed by the function G(R), with |G(R)| � 1. The sample is
probed with two Gaussian beams with a frequency ω (Fig. 1),
for which the sample is transparent. One of the beams (hereafter
referred to as main), after passing through the sample, hits the
differential polarimetric detector comprised of a polarization
beam splitter and two photodetectors. The total output signal
is obtained as a difference of signals of the two detectors. The
second beam (hereafter referred to as auxiliary) also passes
through the sample, but does not hit the detector. Electric fields
of the main and auxiliary beams will be denoted, respectively,
by E0(R) and Et

0(R). We assume that the detector is initially
balanced, i.e., polarization of the main beam is chosen so that,
in the absence of the sample [at G(R) ≡ 0], the output signal
of the detector is zero. Our task is to find the gyrotropy-related
increment of the output signal δU (in what follows, just signal)

in the first order of gyrotropy G(R). A similar problem for thin
(compared to the Rayleigh length) samples was considered in
Ref. [16]. Below we present the solution of this problem for
samples of arbitrary length.

The signal δU arises due to the fact that at G(R) �= 0 the
beam hitting the detector contains not only the field of the
main beam, but also the field E1(R) that appears as a result of
scattering of the main or auxiliary beam by the sample. Since
we neglect any optical nonlinearity, these two fields may be
calculated independently and the signal δU may be represented
as a sum of two contributions related to scattering of the
main and auxiliary beams. Since the detector is permanently
irradiated by the main beam, detection of these fields occurs
in the regime of heterodyning, with the role of local oscillator
played by the field of the main beam.

In what follows we will use complex electromagnetic fields
with time dependence in the form e−ıωt assigning a physical
sense to their real parts (which will be denoted by calligraphic
letters). The calculations will be performed in the coordinate
system with its x and y axes aligned along principal directions
of the polarization beam splitter and z axis collinear with the
main beam. The coordinate origin is located in the region of the
sample, with its characteristic size ls being much smaller than
the distance from the photodetector L: ls � L (Fig. 1). For the
signal δU we are interested in, we will use the expression [16]

δU = ω

π
Re

(∫ 2π/ω

0
dt

∫ lx

−lx

dx

∫ ly

−ly

dy[Ex0(x,y,L)Ex1(x,y,L)

− Ey0(x,y,L)Ey1(x,y,L)]

)
. (1)

Here the integration over x and y, for products of components
of the complex field of scattering E1(x,y,L) and the real
part of the field of the main beam E(x,y,L) ≡ ReE0(x,y,L),
is performed over the effective photosensitive surface of the
detector 2lx × 2ly located at a distanceL from the sample along
the main beam propagation direction (Fig. 1). The integration
over t corresponds to averaging over the period of optical
oscillations.

Below, following [16], we will calculate the field of
scattering produced by the auxiliary beam [we will denote
it, as before, by E1(R)] and the related polarimetric signal
denoted by δUt . As shown in Ref. [16], this field satisfies the
inhomogeneous Helmholtz equation

∇2E1 + k2E1 = −4πk2α(r)Et
0(r) ≡ −4πk2Pt (r). (2)

Here k ≡ ω/c (c is the speed of light), α(r) is the polarizability
tensor of the gyrotropic medium [connected with the gyration
vector as αik(r) = ıεikjGj (r), with εijk the unit antisymmetric
tensor], Pt (r) is the sample polarization induced by the field
Et

0(r) of the auxiliary beam, and ∇2 = ∂2/∂x2 + ∂2/∂y2 +
∂2/∂z2 is the Laplace operator. The solution of Eq. (2) is
obtained using the Green’s function �(r) of the Helmholtz
operator �(r) = −eıkr/4πr and has the form

E1(r) = k2
∫

eık|r−R|

|r − R|Pt (r)d3R. (3)
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For further calculations, it is convenient to introduce the vector
function 	(R) with the components defined by the expression2

	i(R) ≡
∫

S

dx dy Ei0(x,y,z)
eık|r−R|

|r − R|
∣∣∣∣
z=L

,

i = x,y, r = (x,y,z) (4)

and auxiliary functions 	±
i (R),

	i(R) ≡ 	+
i (R)e−ıωt + 	−

i (R)eıωt . (5)

Using Eqs. (1), (3), and (4), we can obtain the following equa-
tion for the contribution δUt into the output signal associated
with the auxiliary beam:

δUt = k2 ω

π
Re

∫ 2π/ω

0
dt

∫
d3R

[
P t

x (R)	x(R)

−P t
y (R)	y(R)

]
. (6)

By substituting 	(R) into this equation in the form of Eq. (5)
and taking into account that Pt (r) ∼ e−ıωt , we can ensure
that, after integration over time, only terms containing 	−

x,y(R)
survive in Eq. (6):

δUt = 2k2Re
∫

d3R
[
	−

x (R)P t
x (R) − 	−

y (R)P t
y (R)

]
eıωt .

(7)

The factor eıωt eliminates the time dependence of the field
Pt (r). Let us write explicit expressions for the fields of the
main E0(r) and auxiliary Et

0(r) Gaussian beams [16],

E0(r) = eı(kz−ωt)

√
8W

c

kQ

(2k + ıQ2z)
exp

[
− kQ2(x2+y2)

2(2k + ıQ2z)

]
d

≡ A0(r)e−ıωt , (8)

Et
0(r) = eı(kZ−ωt+φt )

√
8Wt

c

kQ

(2k + ıQ2Z)

× exp

[
− kQ2(X2 + Y 2)

2(2k + ıQ2Z)

]
dt ≡ At

0(r)e−ıωt , (9)

where

r = (x,y,z),

⎛
⎝X

Y

Z

⎞
⎠ ≡ R̂r + δr, (10)

R̂ ≡
⎛
⎝1 0 0

0 cos � sin �

0 − sin � cos �

⎞
⎠.

Here W and Wt are the intensities of the main and auxiliary
beams, respectively. The parameter Q is connected to the beam
radius in the waist ρc by the relation Q ≡ 2/ρc. Polarization of
the main and auxiliary beams is specified by the Jones vectors

2It is noteworthy that the function 	(r) has the sense of the field
created by the source that is distributed over the surface of the detector
and has the density E0(x,y,L). For this reason, the field 	(r) is similar
to that of the main beam E0(r). An explicit expression for 	(r) was
derived [17] and is presented below Eq. (12).

d and dt lying in the planes perpendicular to the propagation
directions of the beams. The sense of the angle � is made
clear by Fig. 1 and, as in Ref. [16], we assume that � < 1.
The parameters δr and φt describe, respectively, the spatial and
phase shifts of the auxiliary beam with respect to the main one.
In Eqs. (8) and (9) we introduced time-independent amplitudes
of the fields of the main and auxiliary beams A0(r) and At

0(r).
Using Eq. (2) to express polarization Pt (r) through the field
of the auxiliary beam (9), we obtain, with the aid of (7), the
expression for the detected signal

δUt = 2k2Re
∫

d3R
[
	−

x (R)αxx(R)At
0x(R)

+	−
x (R)αxy(R)At

0y(R)

−	−
y (R)αyx(R)At

0x(R)

−	−
y (R)αyy(R)At

0y(R)
]
. (11)

Now we use the result of [17] showing that the function 	−
i (R)

can be expressed through the main beam amplitude A0(r) as
follows (see footnote 2):

	−
i (R) = − ıπ

k
A∗

0i(R), i = x,y. (12)

By substituting Eq. (12) into Eq. (11) and taking into account
that, in the considered case of gyrotropic sample, the polariz-
ability tensor has the form αij = ıεijkGk(R) (εijk is the unit
antisymmetric tensor), we obtain the following final expression
for the polarimetric signal δUt from the gyrotropic sample
illuminated by the main and auxiliary light beams:

δUt = 2πk Re
∫

d3R
[
A∗

0x(R)At
0y(R)

+A∗
0y(R)At

0x(R)
]
Gz(R). (13)

Equation (13) shows that the polarimetric signal associated
with the auxiliary beam [At

0(r)], detected by its mixing with
the wave of the main beam [A0(r)], is controlled by gyrotropy
of the sample only in the region of overlap of the two
beams. Recall that Eq. (13) describes the contribution to the
polarimetric signal arising due to scattering of the auxiliary
beam. Along with this contribution, there always exists the
contribution related to scattering of the main beam observed in
the conventional single-beam arrangement, when the auxiliary
beam is absent. To calculate this contribution, one just has
to set At

0(r) = A0(r) in Eq. (13). The total signal in the
two-beam arrangement is obtained by summation of the two
contributions.

III. NOISE POWER SPECTRUM IN THE
SINGLE-BEAM ARRANGEMENT

In this section we calculate the spin-noise signal for the
conventional single-beam geometry. Polarization of the main
beam (which is the only one in this arrangement) is specified by
the Jones vector d = (cos φ, sin φ,0) (in the coordinate system
introduced above). Using Eq. (8), we can show that dependence
of the beam radius ρ(z) (at 1/e-level of the field squared) on
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the coordinate z has the form

ρ(z) ≡
√

4k2 + Q4z2

2k2Q2
= ρc√

2

√
1 + z2

z2
c

= λ√
2πρc

√
z2
c + z2.

(14)

Here ρc = 2/Q, λ ≡ 2π/k is the light wavelength, and zc ≡
πρ2

c /λ is the Rayleigh length (half-length of the quasicylindri-
cal region of the Gaussian beam). As was already noted, the
polarimetric signal in the single-beam arrangement (denoted
by u1) can be calculated using Eq. (13), by setting in it
At

0(r) = A0(r). With allowance for (8) and (14), we have

u1 = sin 2φ
8πkW

c

∫
d3R Gz(R)

ρ2(z)
exp

[
− x2 + y2

ρ2(z)

]
. (15)

Since the gyrotropy of the sample is connected with its
magnetization, temporal fluctuations of the latter give rise
to fluctuations of the gyrotropy: Gz(R) → Gz(R,t). In a
typical experiment on spin-noise spectroscopy, one observes
the noise power spectrum of the gyrotropy N (ν), which is
determined by the Fourier transform of the correlation function
of the polarimetric signal N (ν) = ∫

dt〈u1(t)u1(0)〉eıνt . Using
Eq. (15), we obtain, for the gyrotropy noise power spectrum,
the expression

N (ν) = sin2 2φ

[
8πkW

c

]2 ∫
dt eıνt

∫
d3R d3R′

ρ2(z)ρ2(z′)

× exp

[
−

(
x2 + y2

ρ2(z)
+ x ′2 + y ′2

ρ2(z′)

)]
×〈Gz(R,t)Gz(R′,0)〉. (16)

The correlation function of the gyrotropy 〈Gz(R,t)Gz

(R′,0)〉 entering this equation is calculated on the basis of one
of the models of the sample under study. Most frequently, the
gyrotropy is implied to be created by ensembles of gyrotropic
particles (e.g., paramagnetic atoms) and is described by the
expression

Gz(R,t) =
∑

i

gi(t)δ(R − ri(t)), (17)

where gi(t)δ(R − ri(t)) is the contribution of the ith particle
to the total gyrotropy of the sample and ri(t) is the coordinate
of the ith particle that may be time dependent. The function
gi(t) can be considered proportional to the magnetic moment of
the ith particle, with the proportionality factor being generally
dependent on the frequency ω of the light beam.

A. Model of resting paramagnetic particles

We start our treatment with the simplest model that implies
that the sample consists of N identical particles at rest, ran-
domly distributed over the volumeV with the densityσ .3 In this
case, the gyrotropy is given by Eq. (17) with time-independent
coordinates of the particles ri(t) → ri . The second assumption
of this simple model is that the functions gi(t) are supposed

3Such a model, for samples thin compared to the Rayleigh length,
was considered in Ref. [16].

to be random independent quantities so that 〈gi(t)gk(t ′)〉 =
δik〈g(t − t ′)g(0)〉. Here the function 〈g(t − t ′)g(0)〉 is the
same for all particles. Under these assumptions, for the
correlator entering Eq. (16), we can obtain the expression
[16] 〈G(R,t)G(R′,0)〉 = σ 〈g(t)g(0)〉δ(R − R′). By substitut-
ing this expression into (16) and calculating the integrals with
δ functions, we obtain, for the noise power spectrum, the
expression

N (ν) = 32σπ3 sin2 2φ

[
kW

c

]2 ∫
dt eıνt 〈g(t)g(0)〉

×
∫

dz

ρ2(z)
. (18)

Since 1/ρ2(z) ∼ 1/[z2 + z2
c ] [see Eq. (14)], the main contri-

bution to the signal is made by the region of the sample in
the vicinity of the beam waist, where |z| < zc. This makes it
possible to use the SNS method for tomography [12], with the
spatial resolution in the longitudinal direction, as expected,
being determined by the Rayleigh length zc of the probe beam.

Let us denote the bounds of the sample along the light beam
(i.e., along the z axis) by z1 and z2. Then, using Eq. (14) for the
beam radius ρ(z) and integrating over z in Eq. (18), we obtain

N (ν) = 32σπ3k3 sin2 2φ

[
W

c

]2[
arctan

z2

zc

− arctan
z1

zc

]

×
∫

dt eıνt 〈g(t)g(0)〉. (19)

It follows from Eq. (19) that with increasing thickness of the
sample (z1 → −∞ and z2 → ∞) the noise signal is saturated
approaching the limiting value

N∞(ν) = 32π4σk3 sin2 2φ

[
W

c

]2 ∫
dt eıνt 〈g(t)g(0)〉

= 32π4σk3T2

[
W

c

]2[ sin2[2φ]〈g2〉
1 + [ν − ωL]2T 2

2

+ sin2[2φ]〈g2〉
1 + [ν + ωL]2T 2

2

]
. (20)

This expression corresponds to the correlator 〈g(t)g(0)〉 =
〈g2〉e−|t |/T2 cos ωLt .4 To illustrate the above formulas, we
have measured experimentally the dependence of the noise
signal area

∫
N (ν)dν of cesium vapor on the position z

of the cell with respect to the beam waist (Fig. 2). The
measurements were performed using a focused laser beam with
the wavelength λ = 0.85 μm. The length of the cell 2lc was
2 cm. In accordance with Eq. (19), the measured dependence
should have the form ∼arctan[z − lc]/zc − arctan[z + lc]/zc.
As can be seen from Fig. 2, the experimental dependence is
well approximated by this formula, with the best-fit value of
the parameter zc (zc = 3.3 × 10−3 m) well correlated with
characteristics of the laser beam used. In spite of the fact that

4Such a correlator corresponds to the case when gyrotropy of
the sample is created by the system of paramagnetic particles in a
magnetic field; the quantities ωL and T2 are, respectively, the Larmor
frequency of the effective spin and its dephasing time.
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FIG. 2. Variation of area of the gyrotropy noise power spectrum
S of Cs atoms in earth’s magnetic field with displacement of the cell z
with respect to the light beam waist. The solid curve denotes the theory
and circles show the experiment. The wavelength of the light beam
and its waist radius are, respectively, λ = 0.85 nm and ρc = 30 μm.

the cell thickness considerably exceeded the Rayleigh length
zc (shown in Fig. 2 by a horizontal segment), the value of the
noise signal appeared to be noticeably (by ∼25%) smaller than
the limiting value (indicated in Fig. 2 by a horizontal line at the
level π ). At the same time, it can be seen from the experimental
illustration presented and Eq. (19) that, for the thickness of the
sample 2lc exceeding the Rayleigh length by a factor of 4–5,
further reduction of the beam radius ρc (with a corresponding
decrease of the Rayleigh length zc = πρ2

c /λ) does not lead to a
substantial increase of the noise signal. Thus, it makes sense to
decrease the radius of the probe beam for an increasing value
of the spin-noise signal only for samples that are thin compared
to the Rayleigh length of the light beam.

B. Diffusion model

Our assumption that the gyrotropy is created by resting
particles is plausible for solid materials with embedded param-
agnetic atoms giving rise to the gyrotropy. For semiconductor
samples, with the gyrotropy created by the moving charge
carriers, as well as for gaseous systems, this assumption may
be incorrect. It is natural to take into account the motion of
gyrotropic particles in such systems using a diffusion model,
with N particles randomly moving in a finite volume V [18].
In this case, Eq. (17) for the gyrotropy remains valid.

Quantitative analysis and experimental study of the diffu-
sion effects in SNS of gaseous systems were recently presented
in Ref. [19]. In this section, with the aid of the relationships
obtained above, we will reproduce the main results of [19],
treating the spin-noise signal as a result of scattering of a
Gaussian probe beam. In addition, the notions introduced in
this section will be used below to calculate the signal in the
two-beam arrangement, when intuitive considerations about
signal formation are not as self-evident as in conventional
single-beam geometries.

If one considers a semiconductor system with a relatively
low electron density in the conduction band or a gaseous
system with diffusion motion of gyrotropic atoms occurring
in a dense medium of nongyrotropic buffer gas, then the
contribution of each particle to the gyrotropy of the sample can
be considered as independent of other particles. In this case,
for the correlation function of gyrotropy entering Eq. (16) for
the noise power spectrum, we can write the chain of equalities

〈Gz(R,t)Gz(R′,0)〉
=

∑
ik

〈gi(t)gk(0)δ(R − ri(t))δ(R′ − rk(0))〉

= 〈g(t)g(0)〉
∑

i

〈δ(R − ri(t))δ(R′ − ri(0))〉

= N〈g(t)g(0)〉〈δ(R − r1(t))δ(R′ − r1(0))〉
= N〈g(t)g(0)〉〈δ(R − R′ − r(t))〉〈δ(R′ − r1(0))〉, (21)

where r(t) ≡ r1(t) − r1(0) is the vector of diffusion displace-
ment of the particle from the starting point r1(0). Here we
assume that fluctuations of gyrotropy for each particle are
independent of its diffusion motion5 and suppose, as before,
that 〈gi(t)gk(t ′)〉 = δik〈g(t − t ′)g(0)〉. Thus, the problem is
reduced to studying diffusion motion of any single particle
(e.g., the first one). The coordinate r1(0) of this particle at
t = 0 may acquire, with equal probability, any value within
the volume V . Therefore, averaging of the last δ function over
r1 yields the factor 1/V . By virtue of statistical uniformity
of the sample, the distribution function P (r,t) of the vector
of diffusion displacement r(t) ≡ r1(t) − r1(0) of the chosen
particle does not depend on the starting point r1(0) and is
defined by the diffusion equation with the initial condition
P (r,0) = δ(r),

∂P

∂t
= D∇2P, P (r,0) = δ(r), (22)

where D is the diffusion coefficient and r = (x,y,z). Thus, the
chain of equalities (21) can be continued as follows:

〈G(R,t)G(R′,0)〉 = N

V
〈g(t)g(0)〉〈δ(R − R′ − r(t))〉

= σ 〈g(t)g(0)〉〈δ(R − R′ − r(t))〉
= σ 〈g(t)g(0)〉P (R − R′,t). (23)

Here σ = N/V is the density of the particles. Standard
solution of the problem (22) leads to the following expression
for the distribution function P (r,t):

P (r,t) = 1

8(πDt)3/2
exp

[
− r2

4Dt

]
. (24)

Substituting this function into (23), we obtain, for the gyrotropy
correlator in the presence of diffusion, the final expression

〈Gz(R,t)Gz(R′,0)〉 = σ 〈g(t)g(0)〉
8(πD|t |)3/2

exp

[
− |R − R′|2

4D|t |
]
.

(25)

5This assumption is arguable, but for the simplest analysis of the
diffusion effects it is acceptable.
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Here we took into account the parity of the correlation function.
By substituting this expression into Eq. (16) for the noise power
spectrum we obtain

N (ν) = sin2 2φ
8
√

πσ

D3/2

[
kW

c

]2 ∫
dt eıνt 〈g(t)g(0)〉

|t |3/2

×
∫

d3R d3R′

ρ2(z)ρ2(z′)
exp

[
− x2 + y2

ρ2(z)
− x ′2 + y ′2

ρ2(z′)

]

× exp

[
− |R − R′|2

4D|t |
]
. (26)

Here R = (x,y,z) and R′ = (x ′,y ′,z′). The integrals over
x,y,x ′,y ′ are reduced to Gaussian by appropriate rotations of
the coordinate system in the planes xy and x ′y ′ that eliminate,
in the exponent, the terms ∼xy and ∼x ′y ′. By calculating these
Gaussian integrals, we arrive at the expression for the noise
power spectrum

N (ν) = 32σπ5/2

D1/2
sin2 2φ

[
kW

c

]2 ∫
dt

|t |1/2
eıνt

×
∫

dz dz′〈g(t)g(0)〉
4D|t | + ρ2(z) + ρ2(z′)

exp

[
− (z − z′)2

4D|t |
]
,

(27)

which transforms to Eq. (18) at D → 0.
Equation (27) can be simplified assuming that the diffusion

length for the characteristic decay time of the correlator
〈g(t)g(0)〉 is smaller than the Rayleigh length. In the situation
typical for SNS, when the correlator 〈g(t)g(0)〉 decreases
exponentially, 〈g(t)g(0)〉 = 〈g2〉e−|t |/T2 cos ωLt (see footnote
4), the above condition can be written in the form

√
DT2 � zc

[see Eq. (14)]. In this case, we may set, in Eq. (27), ρ(z) ≈
ρ(z′), perform integration over z′, and obtain the simplified
expression for the noise power spectrum

N (ν) = 32π3σ sin2 2φ

[
kW

c

]2 ∫
dt dz

eıνt 〈g(t)g(0)〉
2D|t | + ρ2(z)

at 2
√

DT2 < zc, (28)

where ρ(z) is defined by Eq. (14). It can be seen from
this relationship that, in the region of the sample where
ρ(z) <

√
2DT2 (provided that such a region exists), the time

dependence of the integrand deviates from ∼〈g(t)g(0)〉, which
is usually exponential. As a result, the shape of the noise power
spectrum deviates from Lorentzian and the noise spectrum
reveals the so-called time-of-flight broadening [18]. If the
beam is so broad that ρc >

√
DT2, then this effect proves to

be suppressed and can be neglected. Estimates show that the
conditions of applicability of Eq. (28) often are true in practice.
Using Eq. (14) for the function ρ(z), the integration over z in
Eq. (28) can be performed analytically. Let us present the result
for the case when the sample length is much larger than both
the Rayleigh length and the diffusion length

√
DT2 for the time

T2:

N (ν) = 32π4k3ρcσ sin2 2φ

(
W

c

)2 ∫
dt

eıνt 〈g(t)g(0)〉√
4D|t | + ρ2

c

at 2
√

DT2 � zc, ls � zc. (29)

As can be seen from Eq. (29), when the diffusion drift
√

DT2

for the time T2 is smaller than the beam radius ρc, the effects
of diffusion can be neglected. Otherwise, the noise spectrum
exhibits the time-of-flight broadening.

IV. TWO-BEAM NOISE SPECTROSCOPY

Above we presented calculations of the noise signals de-
tected in the single-beam arrangement, traditional for SNS.
Consider now the case when the beam that induces scattering
and the beam that plays the role of local oscillator are different
A0(R) �= At

0(R) [16] (Fig. 1). We will assume that waists of
these two beams intersect in the region of the gyrotropic sample
studied and we will analyze the problem under the following
simplifying assumptions.

(i) Both beams propagate in the direction close to the z

axis, the angle � between the beams is small enough to
make possible low-power approximations of its trigonometric
functions, and the main components of the electric fields of the
beams lie in the xy plane.

(ii) The angle � is large enough not to make the length of
the beam overlap larger than the Rayleigh length.

Appropriate quantitative conditions will be presented be-
low. Let us choose the coordinate system so that both the beams
(the main and auxiliary) lie in the yz plane (i.e., the beams are
rotated with respect to each other around the x axis). Bearing
in mind assumption (i), polarizations of the main and auxiliary
beams are specified by the following two-dimensional (in the
plane xy) Jones vectors:

d =
(

cos φ

sin φ

)
, dt =

(
cos η

sin η

)
. (30)

Using assumption (ii), we can neglect, in Eqs. (8) and (9), the
terms Q2z and Q2Z as compared with 2k. After that, with the
aid of Eq. (13), we obtain, for the polarimetric signal produced
by the auxiliary beam [below referred to as ut

1(t)], the following
expression [δUt → ut

1(t)]:

ut
1(t) = 16πk

ρ2
c c

√
WWt

∫
d3R cos

(
k�y + k�2z

2
− φt

)

× sin[φ + η] exp

[
−2

x2+y2 + yz� + z2�2/2

ρ2
c

]
×Gz(R,t). (31)

When deriving this formula, we took into account the smallness
of the angle � [see the transformations (10)]. The exponential
of the quadratic form of the coordinates in this formula is
essentially nonzero in the region ∼ρc × ρc (in the plane
xy) over the length ∼ρc/� (along the z axis). Therefore,
assumption (ii) can be expressed by the inequality ρc/� <

πρ2
c /λ. Keeping this in mind, we arrive at the conclusion that

the above assumptions impose the following restrictions upon
the angle � between the beams:

λ

πρc

< � < 1. (32)
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Typically, ρc ∼ 30 μm at λ ≈ 1 μm. Therefore, for validity
of the calculations carried out in this section, the angle �

should meet the inequality 10−2 < � < 1, which can be easily
satisfied in practice.

When calculating the noise power spectrum detected in the
two-beam arrangement, one has to take into account that the
total polarimetric signal δU (t), in this case, is the sum δU (t) =
u1(t) + ut

1(t), with u1(t) and ut
1(t) given by Eqs. (15) and (31),

respectively. Hence, the formula for the noise power spectrum
N (ν) = ∫

eıνt 〈δU (0)δU (t)〉dt will contain four contributions

N (ν) =
∫

dt
[〈u1(t)u1(0)〉 + 〈

u1(t)ut
1(0)

〉 + 〈
ut

1(t)u1(0)
〉

+ 〈
ut

1(t)ut
1(0)

〉]
eıνt . (33)

If no special measures are taken to stabilize the relative phase
φt of the main and auxiliary beams, then it is natural to perform
averaging over this phase, which will be below implied.
Typically, both beams can be obtained by splitting the beam
of the same laser. In this case, the averaging over the relative
phase can be performed by means of the mirror, attached to
the audio vibrator, placed in the channel of the auxiliary beam.
As a result of this averaging, the cross correlators 〈ut

1(0)u1(t)〉
and 〈ut

1(t)u1(0)〉 will vanish. The first correlator 〈u1(t)u1(0)〉 in
Eq. (33) has been already calculated above [Eq. (16)]. It gives
the noise spectrum observed in the single-beam arrangement.
For this reason, in what follows we will consider the contribu-
tion to the noise spectrum related only to the auxiliary beam
and controlled by the correlator 〈ut

1(t)ut
1(0)〉. Let us define this

contribution by Nt (ν) ≡ ∫
dt〈ut

1(t)ut
1(0)〉eıνt . If the sample

gyrotropy represents a random field statistically stationary in
space and in time, then its correlation function depends only on
the difference between its spatiotemporal arguments and can
be represented in the form K(R − R′,t) ≡ 〈G(R,t)G(R′,0)〉.
Using Eq. (31), we obtain for the correlator 〈ut

1(t)ut
1(0)〉 the

relation

〈
ut

1(t)ut
1(0)

〉 = 128π2k2

ρ4
c c

2
WWt sin2[φ + η]

∫
d3R d3R′

× exp

[
− 2

x2 + y2 + yz� + z2�2/2

ρ2
c

]

× exp

[
− 2

x ′2 + y ′2 + y ′z′� + z′2�2/2

ρ2
c

]

× cos

[
k�(y − y ′) + k�2(z − z′)

2

]
×K(R − R′,t). (34)

Here the averaging over the relative phase of the beams φt is
performed.

Using Eq. (34) as a starting point, we can obtain a simpler
approximate formula, suitable for estimating the SNS signals
under experimental conditions typical for this method. Note
that the exponential factors in Eq. (34) in fact shrink the
integration region to the region of overlap between the main
and auxiliary beams. The volume of this region Vo can be

evaluated in the following way:

Vo ≈
∫

d3R exp

[
− 2

x2 + y2 + yz� + z2�2/2

ρ2
c

]

= π3/2ρ3
c√

2�
. (35)

For this reason, in Eq. (34) we may restrict the region of
integration over d3R and d3R′ with the volume Vo and set the
exponential factors to be equal to unity. After that, the integrand
will appear to be dependent on the difference R − R′. Now let
us pass to new variables r ≡ R − R′ and g ≡ R + R′. The
integral over g will give the volume of integration Vo, and for
the correlator (34) we can write the approximate formula

〈
ut

1(t)ut
1(0)

〉 ≈ æ
π7/2k2

ρcc2
WWt sin2[φ + η]

×
∫

Vo

d3r cos(�k · r)K(r,t), (36)

where

�k ≡ k�

⎛
⎝ 0

1
�/2

⎞
⎠

is the difference wave vector of the main and tilted beams,
while the numerical factor is æ = 16/

√
2. When the region

of overlap of the beams is large compared to the gyrotropy
correlation radius and spatial periods of cosine in (34), λ/2π�

(in the y direction) and λ/2π�2 (in the z direction), then the
integral in Eq. (36) coincides with the Fourier transform of the
gyrotropy correlation function.

Using the relation (36), we can calculate the contribution
to the gyrotropy noise power spectrum associated with the
auxiliary beam in the presence of diffusion. For the correlation
function of the gyrotropy, we use Eq. (25), in which we set
〈g(t)g(0)〉 = 〈g2〉e−|t |/T2 cos ωLt (see footnote 4). Calculating
the Fourier transform of Eq. (25) and substituting it into
Eq. (36), we obtain

Nt (ν) ≈ æ
T ∗

2 σπ7/2k2

�ρcc2
WWt

[
sin2[φ + η]〈g2〉

1 + [ν − ωL]2T ∗2
2

+ sin2[φ + η]〈g2〉
1 + [ν + ωL]2T ∗2

2

]
, (37)

where

T ∗
2 ≡ T2

1 + k2�2DT2
. (38)

As can be seen from this formula, diffusion leads to broad-
ening of the noise spectrum and reduction of its amplitude,
provided the diffusion length for the dephasing time

√
DT2

exceeds the spatial period of interference between the main
and auxiliary beams 1/k� = λ/2π�. In the opposite case
(i.e., at

√
DT2 < λ/2π�), the contributions Nt (ν) [Eq. (37)]

and N (ν) [Eq. (27)] have comparable amplitudes and spectral
widths.

Now let us present arguments that allow us to believe
that Eq. (37) works well even when the basic conditions of
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its derivation are poorly satisfied. For this we present the
result of consistent computation of the integral (34) with the
correlation function of gyrotropy in the form (25). In this case,
the integrand represents an exponential of some quadratic form
of the integration variables. Such a form can be diagonalized
with the proper orthogonal transformation of the coordinate
system. After this, the integral (34) is reduced to a product of
Gaussian integrals. Omitting cumbersome manipulations, we
present the final result of such calculations

〈
ut

1(t)ut
1(0)

〉 = 8π7/2k2

ρ2
c c

2
WWt sin2[φ + η]

σ 〈g(t)g(0)〉
(Dt)3/2

×
[

1 + ρ2
c

4Dt

]−1/2 exp[−(M−1h,h)/4]√
detM

,

(39)

where the vector column h and the matrix M are defined by
the relations

h = k�

⎛
⎜⎝

1
�/2
−1

−�/2

⎞
⎟⎠, M ≡

⎛
⎜⎝

α δ γ 0
δ β 0 γ

γ 0 α δ

0 γ δ β

⎞
⎟⎠,

α ≡ 2

ρ2
c

+ 1

4Dt
, β ≡ �2

ρ2
c

+ 1

4Dt
, δ ≡ �

ρ2
c

, γ ≡ − 1

4Dt
.

(40)

Calculations of the correlation functions of the polarimetric
signal show that the results obtained using (37) and (39) at
ρc > 3λ and 0.05 < � < 0.3 practically coincide if we set in
Eq. (37) æ = 32.

Our efforts to observe the noise signal from cesium atoms
(see the end of Sec. II A) associated with the auxiliary beam
(Fig. 1) have failed. The reason for this failure is likely to be
the following. Let us compare the amplitude of the noise signal
(37) related to the auxiliary beam with that of the signal (20)
detected in the single-beam arrangement. Using Eqs. (37) and
(20), at ωLT2 � 1, we obtain the relationship

Nt (ωL)

N∞(ωL)
= 1

1 + k2�2DT2

λ

2π3/2ρc�

Wt

W

sin2[φ + η]

sin2 2φ
.

(41)

The two last factors can be made ∼1 by tuning the polarization
and intensities of the main and auxiliary beams. The second
factor describes the decrease of the noise signal in the two-
beam arrangement resulting from incomplete overlap of the
two beams. At λ ∼ 1 μm, ρc ∼ 30 μm, and � ∼ 0.1 rad,
this factor is ∼1/30. Finally, the first factor describes the
decrease of the noise spectrum amplitude Nt (ν) associated
with diffusion of the gyrotropic particles. Let us estimate this
factor for our particular case of cesium atoms. Taking for the
diffusion coefficient of Cs atoms in the buffer gas atmosphere
the value D = 2 × 10−5 m2/s [20] and for the dephasing time

of Cs spins the value T2 ∼ 10−3–10−4 s,6 we obtain that,
at � = 0.1 and λ = 1 μm, the quantity k2�2DT2 is ∼103.
Thus, in our case, the noise signal associated with the tilted
beam appears to be suppressed by a factor of ∼3 × 104 that
substantially hampers its detection. It seems that observation
of this signal may appear possible for systems with weak
diffusion (like quantum dots) or for semiconductor systems
with shorter dephasing time T2, when the noise signal from
quasifree electrons, in the single-beam arrangement, can still
be reliably detected.

As it was shown above, the observation of the noise
signal associated with the auxiliary beam can be difficult, due
to possible smallness of this signal. At the same time, its
observation is of interest because it expands the informative
potential of the noise spectroscopy technique, allowing, in
principle, one to measure the total spatiotemporal correlation
function of the sample’s gyrotropy. It makes sense to point
out here one methodological possibility that appears in the
two-beam experiment, which can facilitate observation of this
signal. Since the auxiliary beam does not hit the polarimetric
receiver, one can observe its contribution to the noise signal
(detected in the main beam channel) by means of modulation
(amplitude or phase) of the auxiliary beam with subsequent
lock-in amplification of the noise signal. In the simplest case,
the effect of the auxiliary beam can be detected as the difference
of the noise signals observed in the main beam channel with
the auxiliary beam turned on and off.

V. CONCLUSION

In this paper we presented, in the single-scattering approxi-
mation, consistent calculations of polarimetric signal detected
in spin-noise spectroscopy. The expressions derived can be
applied to samples with the length exceeding that of Rayleigh
of the probe laser beams. The calculations are performed
for model systems comprised of gyrotropic particles with
allowance for their possible diffusion. Analysis of two-beam
arrangement of SNS was presented that makes it possible to
study not only temporal but also spatial correlations of the
gyrotropy. It was shown that diffusion of gyrotropic particles
may broaden the noise spectra observed in the two-beam
arrangement, with this broadening substantially exceeding the
time-of-flight broadening observed in the conventional single-
beam arrangement. Altogether, the two-beam arrangement
considered in this paper provides SNS with degrees of freedom
that may, in certain cases, considerably widen the potential
of this tool of research as applied to systems with randomly
moving spins.
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