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Hidden polarization of unpolarized light
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We consider polarization properties of the unpolarized emission of an ensemble of classical emitters with
randomly varying polarization. The light is supposed to be unpolarized in the sense that all three polarization-
related components of its Stokes vector are zero. At the same time, the mean-square values of these components
should not be necessarily zero, may differ from each other, and, therefore, may provide additional information
about properties of individual emitters. Experimentally, this information is revealed as dependence of the
polarization noise on the azimuth of the quarter-wave plate placed before the polarization-sensitive detector. This
dependence appears to be different for the emitters randomly polarized over the equator of the Poincaré sphere, or
preferentially located on its poles, or uniformly covering the whole sphere. We show that full quantitative analysis
of the polarization-noise anisotropy allows one, in the framework of the proposed model, to get information
about polarization characteristics of individual emitters hidden in the emission of the ensemble. Vitality of the
method is illustrated by its application to polarization analysis of the polariton laser emission, which is shown to
predominantly arise from linearly polarized emitters.
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I. INTRODUCTION

Polarization properties of light are often described in
terms of the Stokes (Poincaré) vector that is capable of
evaluating preferential polarization of the beam or absence
of any preferential polarization. In the latter case (when all
the polarization-related components of the Stokes vector are
zero), the light is considered to be unpolarized. Such a light
may be a result of averaging of the light-field polarization over
time, over the spectrum, or in some other way, but the Stokes
vector does not contain any information about these details.
The problem of storing properties of individual emitters in
the emission of their isotropic ensemble is not new. The
first consistent analysis of statistical properties of resonant
scattering (fluorescence) of random dipole emitters (perhaps
overseen in due time) was performed in publications [1,2]
which were adequately evaluated and reviewed only recently
[3,4]. Publications [1,2] describe a method that allows one,
by studying polarization characteristics of the light emitted
by isotropic ensemble of scatterers, to determine the type of
scatterer (linear, circular, or elliptical dipole). In [5], a version
of synthesis of unpolarized light from phase-uncorrelated
orthogonally polarized emitters was considered and hidden
anisotropy of such an unpolarized light was analyzed. In
recent years, a considerable interest has been drawn to the
“anatomy” of the unpolarized or partially polarized beams
[6–11],which makes it possible to disclose hidden anisotropy

of the light field at high spectral or temporal resolution and to
get a deeper insight into its polarization properties. A fascinat-
ing area of research where hidden polarization characteristics
of unpolarized light are of fundamental interest is related
to studying emission of the exciton-polariton laser. Intimate
polarization properties of this emission, in the continuous
mode of excitation, may provide unique information about the
condensate dynamics [12].

In this paper, we propose a method of polarization analysis
of a stationary light field created by an ensemble of classical
emitters with polarizations randomly varying in time, so that
the detected emission appears to be completely unpolarized.
The light is assumed unpolarized by definition when all three
polarization-related Stokes parameters of the beam vanish or,
which is the same, when the length of its Poincaré vector
turns into zero [14]. The proposed method is appropriate, e.g.,
for description of the polarization properties of an amplified
spontaneous emission [7], or of a polariton laser [12], or of
a superposition of many independent classical emitters. We
show that the light that is unpolarized in the above sense
and thus revealing no polarization anisotropy in the intensity
measurements, can exhibit this anisotropy in its polarization
noise after passing through a phase plate. Note that this fact
may appear to contradict our intuitive feeling that unpolarized
light after passing through a phase plate remains unpolarized
as before and cannot be distinguished from the initial beam.
This is really true if the description of the light polarization is
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restricted to its Stokes vector (or, better to say, to the mean
values of the Stokes vector components), but it is not true
if we consider mean-square values of these components. We
show that dependence of the polarization noise power on the
azimuth of the quarter-wave plate contains information about
the polarization distribution of emitters over the Poincaré
sphere.

The paper is organized as follows. In Sec. II, we formu-
late the problem and describe the experimental technique. In
Sec. III, we derive a general equation for the output signal
of the differential detector in the considered experimental
arrangement. In Sec. IV, we describe the polarization noise of
the light created by a single randomly polarized emitter and
by an ensemble of such emitters for some particular cases of
randomization of their Jones vectors. In Sec. V, we apply the
proposed method to extract information on the polarization
of individual emitters in the Bose-Einstein condensate of
polaritons.

II. STARTING POINTS

Polarization measurements underlying the proposed exper-
imental approach imply the use of the conventional polari-
metric technique (Fig. 1). The polarization state of the beam
is measured with a differential detection unit comprised of
a polarization beamsplitter (4) and two photodetectors (5),
with their photocurrent subtracted at the exit of the circuit.
A quarter-wave plate (3) is placed in front of the beamsplitter,
and the effect of its orientation on the detected polarization
noise is studied. A specific feature of this situation is that
the light beam incident upon the beamsplitter is supposed
to be unpolarized, and no time-averaged output signal of
the detector should be observed at any mutual orientation of
the beamsplitter and phase plate. The detected polarization
noise, however, does not necessarily vanish under balanced
conditions and may vary with orientation of the phase plate.
For definiteness, the axes of the laboratory coordinate system
x and y are assumed to be horizontal and vertical, whereas
polarizing directions of the beamsplitter are fixed at an angle
of 45◦ with respect to x and y.

FIG. 1. Schematic of the measurement. 1 – light source, 2 – lens,
3 – quarter-wave plate, 4 – polarization beamsplitter, 5 – balanced
photoreciever.

Note that the case of completely unpolarized light is chosen
to simplify description of the measuring procedure and pro-
cessing of the experimental data. Actually, the same approach,
with some modifications, can be applied to the analysis of a
partially polarized light.

We will assume that the detected light admits represen-
tation in the form of sum of contributions (rays), with each
of them being polarized (in this case, the sum of these
contributions may not have any definite polarization). Then,
polarization state of each of the rays can be described by the
Jones vector [13]

|E0〉 =
(

sin α/2

eıβ cos α/2

)
, (1)

representing the vector of electric field strength of the ray
normalized to unity. At β = 0, the ray is polarized linearly and
the angle α is equal to the azimuth of its linear polarization; at
α = π/2 and β = π/2, the ray is polarized circularly. In the
general case, the angle α indicates the azimuth of the polar-
ization plane of the ray, while β characterizes its ellipticity.
As is known [14], polarization of the ray, in some cases, can
be conveniently characterized also by the quasi-spin vector
L (Poincaré vector), whose components can be calculated
through the Jones vector of Eq. (1) as Li ≡ 〈E0|Si |E0〉, i =
x, y, z, where Si are the doubled Pauli matrices [15]

L =
⎛
⎝sin α cos β

sin α sin β

cos α

⎞
⎠. (2)

Below, we will need the expression for the signal s arising
at the exit of the polarization photodetector with the quarter-
wave plate in front of it when it is illuminated by the ray
of unit intensity with polarization corresponding to the Jones
vector (1). Direct calculations show that

s = f (α, β, φ) ≡ − 1
2 {cos α sin 4φ

−2 sin α sin β cos 2φ + 2 sin α cos β sin2 2φ}
= − 1

2 {Lz sin 4φ − 2Ly cos 2φ + 2Lx sin2 2φ}. (3)

Here, φ describes orientation of the quarter-wave plate in the
laboratory coordinate system.

III. RANDOMIZATION OF THE STOKES VECTOR

A. Single fluctuating emitter

In what follows, we will consider behavior of the signal s

when the Jones vector of the ray randomly varies in time so
that the light on average appears to be unpolarized. One can
easily see that this can be made in different ways.

It is clear, in particular, that if there is no preferential
azimuth α and no preferential ellipticity β, and, in addition,
there is no correlation between α and β, then 〈cos α〉 =
〈sin α cos β〉 = 〈sin α sin β〉 = 0 (〈L〉 = 0), and 〈s〉 = 0. In
other words, under these conditions, the light, in terms of
the quasi-spin (Stokes) vector, appears to be unpolarized.
This does not mean, however, that 〈s2〉 = 0, and it is not
clear whether this quantity depends on φ or not. Moreover,
the light unpolarized on average (〈s〉 = 0) can be obtained
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FIG. 2. Lower panel represents calculated dependences of the
polarization noise 〈δs2〉 on the angle φ for different models of
ensembles of random emitters: curve 1 – linearly polarized emitters
[illustrated by Poincaré sphere (a) of the upper panel], curve 2 –
circularly polarized emitters [sphere (b)], and curve 3 – emitters
uniformly distributed over the Poincaré sphere (not shown on the
upper panel). Sphere (c) illustrates the case of emitters uniformly
distributed over a meridian of the Poincaré sphere (discussed in the
text).

from randomly varying polarizations with strong preference
for certain Jones vectors. For instance, if the light beam is
polarized linearly in a random way, i. e., β = 0, and α is
distributed uniformly over the interval [0, 2π ], then, as can
be easily shown,

〈δs2〉 = 1
2 sin2 2φ (random linear polarization). (4)

If the light is polarized circularly in a random way, then α =
±π/2, β acquires the values ±π/2 with equal probability, and

〈δs2〉 = cos2 2φ (random circular polarization). (5)

Though ensembles of linear oscillators are encountered more
frequently, the case of circular emitters is not unique either.
A good example of circularly polarized emitters is provided
by exciton-polariton condensates. In [16], in particular, the
circular polarization of polariton emission has been controlled
by the polarization of the pumping laser, while in [17], it has
been built up spontaneously and was stochastically changing
from right to left circular between different realizations of the
condensate.

Arrangement of emitters over the Poincaré sphere, in the
two above cases, is shown schematically in Figs. 2(a) and 2(b)
[18]. Polarization of this light does not have any preferential
direction, but these directions arise after the light is transmit-
ted through the phase plate. As a result, polarization fluctua-
tions of the light acquire orientational dependence described
by Eqs. (4) and (5).

The expressions (4) and (5) can be easily understood in
terms of the Poincaré vector. As seen from Eq. (3), our
detecting system (polarization photodetector with the quarter-

wave plate) can measure different components of the Poincaré
vector depending on orientation φ of the quarter-wave plate.
For example, if φ = 0, the only Poincaré vector component
of the incident beam that can be detected by the system
is Ly . As is known, this component is associated with the
degree of circular polarization. For this reason, it does not
seem unexpected that the polarization noise produced by
the ensemble of circular oscillators reveals the maximum
at φ = 0 [see Eq. (5)]. The same is valid for the case of
linear emitters. The noise signal exhibits a maximum at φ =
π/4 when the only Poincaré vector component to which the
system is sensitive is Lx , which describes the degree of linear
polarization.

Another specific case of the unpolarized light can be real-
ized by a randomly polarized emitter when the parameter α

is fixed, while the random quantity β is distributed uniformly
over the interval [−π/2, π/2] [Fig. 2(c)]. In this case, the po-
larization state of the light is equivalent to that of the randomly
linearly polarized light transmitted through the quarter-wave
plate [see Eq. (4)]. In this case, the angular anisotropy of
the polarization noise will be observed in the setup of Fig. 1
without any quarter-wave plate just by rotating the balanced
detector around the beam axis (or by rotating a half-wave plate
in front of the detector).

B. Ensemble of fluctuating emitters

In the above discussion, we have considered a single ray
with a definite instantaneous polarization state. Consider now
the model in which the detected light beam represents a set
of such rays with random polarizations, so that the light
beam on average appears to be unpolarized. This situation
may occur when the detected light beam is created by N

emitters, each having the intensity Ii and the polarization
described by the Jones vector with the azimuth αi and ellip-
ticity βi (i = 1, . . . , N ). Such a model is used, for example, to
describe polarization properties of some laser sources [7,11],
for description of emission of the Bose-Einstein condensate
of polaritons in semiconductor structures [12], and for some
other cases of combined action of a multitude of classical
emitters.

We will assume, for the beginning, that statistical prop-
erties of all the emitters are the same, with each emitter
being unpolarized in the sense that 〈f (αi, βi, φ)〉 = 0 [here
i = 1, 2, . . . , N , and the function f (α, β, φ) is defined by
Eq. (3)]. In this case, emission of the described ensemble
of emitters appears to be, on average, unpolarized, while
fluctuations of the polarization (polarization noise) may ex-
hibit anisotropy and, thus, may contain information about the
source of emission (e.g., about the spin state of the specific
Bose-Einstein condensate of exciton-polaritons [19]).

The polarization noise can be observed using the above
simple experimental setup (Fig. 1), with calibration of the
observed polarization signal by the intensity noise. Let us cal-
culate the values of both of the above noises (polarization and
intensity). We introduce the following notation for the mean
intensities of the emitters and their mean-square fluctuations
〈Ii〉 = 〈I1〉, 〈I 2

i 〉 = 〈I 2
1 〉, and 〈δI 2

i 〉 = 〈I 2
i 〉 − 〈Ii〉2 = 〈I 2

1 〉 −
〈I1〉2 = 〈δI 2

1 〉. Then, the mean intensity of emission for the
ensemble of N emitters 〈I 〉 and its mean-square fluctuation
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〈δI 2〉 are given by the equations

〈I 〉 = N〈I1〉, 〈δI 2〉 = N
[〈
I 2

1

〉 − 〈I1〉2
]
. (6)

The quantities 〈I 〉 and 〈δI 2〉 can be measured experimentally
and used to obtain mean values of 〈I 2

1 〉 and 〈I1〉:

〈I1〉 = 〈I 〉
N

,
〈
I 2

1

〉 = 〈δI 2〉
N

+ 〈I 〉2

N2
. (7)

The signal s arising at the exit of the polarimetric detector
with the quarter-wave plate, when it is illuminated by the light
from N emitters, is given by

S =
N∑

i=1

Iif (αi, βi, φ). (8)

Since, in our case, emission of the ensemble of emitters is
unpolarized, the mean value of the signal at the exit of the
detector is zero 〈S〉 = 0. Thus, the mean-square fluctuation of
this signal is determined by the formula

〈δS2〉 =
N∑

i,k=1

〈IiIk〉〈f (αi, βi, φ)f (αk, βk, φ)〉

= N
〈
I 2

1

〉〈f 2(α1, β1, φ)〉

=
[
〈δI 2〉 + 〈I 〉2

N

]
〈f 2(α1, β1, φ)〉. (9)

Here, for 〈I 2
1 〉, we use Eq. (7). We will use this formula to

analyze some particular models of ensembles of randomly
polarized emitters.

IV. SEVERAL PARTICULAR CASES

We will consider three models of the polarization-noise
formation (already mentioned above) and will show that de-
pendence of the mean-square fluctuations 〈δS2〉 on orientation
of the quarter-wave plate φ appears to be, for these models,
essentially different.

In the first model, the emission of each emitter is sup-
posed to be linearly polarized [i.e., all the quantities βi (i =
1, . . . , N ) are zero], while the azimuth αi of linear polariza-
tion of each emitter acquires with equal probability all values
within the interval [0, 2π ] [see Fig. 2(a)]. By calculating the
mean square 〈f 2(α, 0, φ)〉 [Eq. (3)], we come to the following
expression for the value of the polarization noise 〈δS2〉:

〈δS2〉1 = N
〈
I 2

1

〉
2

sin2 2φ. (10)

In the second model, we assume that polarization of each
emitter is circular, with its sign being random [see Fig. 2(b)].
In this case, αi = π/4, and βi = ±π/2, i = 1, . . . , N , and the
expression for the polarization noise 〈δS2〉 gains the form

〈δS2〉2 = N
〈
I 2

1

〉
cos2 2φ. (11)

These equations are, in fact, the dimensional presentations of
Eqs. (4) and (5) with explicit values of the factors providing
quantitative description of the polarization noise.

Finally, in the third model, we assume that the quasi-spin
[Eq. (2)] describing polarization of each emitter is distributed

uniformly over the Poincaré sphere. In this case

〈S〉 = 1

4π

∫ π

0
dα sin α

∫ 2π

0
dβ f (α, β, φ) = 0, (12)

and the mean square of function (3) can be obtained from the
formula

〈f 2(α, β, φ)〉 = 1

4π

∫ π

0
dα sin α

∫ 2π

0
dβ f 2(α, β, φ) = 1

3
.

(13)

Thus, for the third model, the mean-square variation of the
polarization signal does not change with orientation of the
quarter-wave plate (φ) and is equal to

〈δS2〉3 = N
〈
I 2

1

〉
3

. (14)

The three above models of unpolarized light, as one can
see, are characterized by the essentially different dependence
of the noise polarization signal on orientation of the quarter-
wave plate placed in front of the differential polarimetric
detector (see Fig. 2, lower panel).

When the angular dependence of the polarization noise is
measured, qualitative information on the polarization charac-
teristics of individual emitters can be immediately obtained
from the “phase” of this curve: for linearly polarized emitters
and circularly polarized emitters the noise power will be
the greatest when the axes of the phase plate, respectively,
coincide with polarizing directions of the beamsplitter (φ =
π/4 ± π/2) or rotated by π/4 with respect to them (φ = 0 ±
π/2). As can be shown, this qualitative conclusion remains
valid when polarizations of the emitters are preferentially
polarized linearly or circularly.

This reasoning allows us to make an important conclusion
about the informative potential of the proposed experimental
approach. One can see that if the angular dependence of
the polarization noise 〈δS2〉 for any particular system can
be approximately described by one of the above models (or
by their combination, see below), then, by measuring the
mean intensity of this emission 〈I 〉, its variance 〈δI 2〉, and
polarization fluctuations 〈δS2〉, and using Eqs. (6), (10), (11),
and (14), one can find the model parameters 〈I1〉, 〈I 2

1 〉, and
N that characterize completely the system within the adopted
model.

V. EXPERIMENTAL ILLUSTRATION

To illustrate applicability of the proposed approach to
real experimental measurements, we have chosen the most
interesting and most convenient, for our purposes, source: a
semiconductor-based exciton-polariton laser [20]. Emission
of this source, in the cw mode of excitation, is often un-
polarized but is characterized by strong intensity and polar-
ization fluctuations (because of relatively small number of
emitters) [12]. Polarization characteristics of the polariton
Bose-Einstein condensate emission were studied in many
papers [19,21–23], but these studies were mostly restricted to
conditions of pulsed excitation. In the cw nonresonant optical
pumping regime one could expect strong polarization fluctu-
ations of the polariton laser emission on a timescale of hun-
dreds of picoseconds or longer. These fluctuations are usually
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washed out in a time-integrated measurement. This makes po-
larization noise studies in the cw regime especially valuable.

The sample is an ultrahigh finesse 5
2λ Al0.3Ga0.7As micro-

cavity with a top (bottom) distributed Bragg mirror (DBR)
comprising 45 (50) periods of AlAs/Al0.15Ga0.85As. Four sets
of three Al0.3Ga0.7As/GaAs (9/12 nm) quantum wells are
positioned at antinodes of the light wave field. The structure
was designed to form an exciton-polariton condensate at high
pump power density levels and is characterized by a very high
level of homogeneity. The sample was excited nonresonantly
at the wavelength of 751 nm at an angle of ∼60◦ to the
microcavity surface. The secondary emission of the sample
was separated from scattered pump light with a long-pass
filter with 800 nm cutoff wavelength and was collected in
the normal direction [Fig. 3(a)]. Pump-power dependence of
the emission intensity clearly demonstrated the threshold-
type behavior [Fig. 3(b)]. The operation point was chosen
essentially above the polariton lasing threshold, as shown in
the figure. The results presented below, however, were also
checked at lower pump power (∼50 mW) and turned out to be
qualitatively the same.

The emission was found to be strongly unpolarized (the
degree of polarization was below 1%). The results of the mea-
surements made according to the above protocol have shown
that, indeed, the quarter-wave plate before the detector did
not bring any imbalance to the differential detector, while the
detected polarization noise exhibited a strong dependence on
the phase-plate orientation [see Fig. 3(c)]. This dependence
provided us with several informative parameters.

Polarization noise exhibited a distinct sinusoidal depen-
dence on the phase-plate orientation φ [Fig. 3(c)]. The phase
of this dependence, which corresponded to maximal noise
upon coincidence of the phase-plate axes with polarizing

FIG. 3. Experimental illustration. (a) Geometry of the polariton
emission excitation. (b) Polariton emission intensity versus pump
power. (c) Experimental dependence of the polarization noise power
versus the quarter-wave-plate orientation.

directions of the beamsplitter, indicated the predominant
role of linearly polarized emitters in the studied light. This
conclusion agrees well with the results of Ref. [24] where
the predominantly linear polarization of polaritons in the
condensate was explained in terms of the anisotropic spin-
dependent polariton-polariton interactions. It is also important
to note that no modulation of the polarization noise power
was observed with the half-wave plate rotating in front of
the detector. This showed that the sample did not reveal any
noticeable intrinsic birefringence and no polarization pinning
[21] thus confirming the highest quality of the sample.

As one can see from Fig. 3(c), angular dependence of
the polarization noise appears to be not as pronounced as
it should be for pure linearly polarized emitters (the noise
signal does not vanish at φ = 0). Taking into account the
above evidence of absence of any intrinsic anisotropy in
the sample, we suggest that the most likely reason for this
discrepancy is that not all emitters are polarized linearly. In
particular, this dependence may be a result of combined action
of random linearly and circularly polarized emitters (with
numbers N1 and N2, respectively). In this case, calculations
of the polarization noise, similar to those performed above,
lead to the expression

〈δS2〉 =
〈
I 2

1

〉
N1

2

[
x + 1

2
+

(
x − 1

2

)
cos 4φ

]
, (15)

where x ≡ N2/N1. By fitting the experimental angular depen-
dence of the polarization noise [Fig. 3(c)] with this formula,
we can find x. In our case, the ratio of the sinusoidal com-
ponent of the angular dependence of the polarization noise
A to the pedestal B [see Fig. 3(c)] is A/B = [x − 1/2]/[x +
1/2] ≈ −0.4 ⇒ x ≈ 0.2.

We do not analyze here another possible reason for the
reduced amplitude of the experimental curve in Fig. 3(c),
namely, random emitters with slightly elliptical polarization.
At this stage of the research, we cannot distinguish between
these two cases. Still, these simple measurements with cw
excitation of the polariton emission allowed us to get reliable
information about the predominant type of emitter in the
polariton laser, in spite of the fact that the emission did not
show any preferential polarization.

VI. CONCLUSIONS

In this paper, we analyze polarization characteristics of
unpolarized light produced by an ensemble of randomly fluc-
tuating classical emitters and show that by studying angular
anisotropy of the polarization noise of this emission one can
obtain information about the distribution of individual emit-
ters over the Poincaré sphere. In the experimental arrangement
considered here, this polarization anisotropy is revealed as de-
pendence of the polarization noise power (polarization noise
squared) on the azimuth of the quarter-wave plate placed in
front of the polarization detector. Thus we can distinguish the
cases of emitters arranged over the equator of the Poincaré
sphere, over its near-pole regions, or over its meridian. In prin-
ciple, this approach can be extended to the analysis of higher
powers of the Stokes-vector noise that may contain, as we
believe, additional information about the hidden anisotropy of
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the ensemble. Still, even in this simplest version, the proposed
method, in our opinion, may be useful for analysis of emission
of different ensembles of emitters.

ACKNOWLEDGMENTS

The authors are thankful to M. M. Glazov for useful
discussions. Financial support from the Russian Foundation
for Basic Research (RFBR) and Deutsche Forschungsgemein-

schaft (DFG) in the framework of International Collaborative
Research Center TRR 160 (Project No. 15-52-12013) and
from RFBR Grant No. 17-02-01112 is acknowledged. The
authors acknowledge financial support from Saint-Petersburg
State University (Research Grant No. 11.34.2.2012). P.S. ac-
knowledges bilateral Greece-Russia “Polisimulator” project
co-financed by Greece and the EU Regional Development
Fund. The work was carried out using the equipment of SPbU
Resource Center “Nanophotonics” [25].

[1] P. Soleillet, Sur les paramètres caractérisant la polarization
partielle de la lumière dans les phénomènes de fluorescence,
Ann. Phys. (Paris, Fr.) 10, 23 (1929).

[2] F. Perrin, Polarization of Light Scattered by Isotropic Opales-
cent Media, J. Chem. Phys. 10, 415 (1942).

[3] O. Arteaga, Sh. Nichols, and B. Kahr, Mueller matrices in
fluorescence scattering, Opt. Lett. 37, 2835 (2012).

[4] O. Arteaga and Sh. Nichols, Soleillet’s formalism of coherence
and partial polarization in 2D and 3D. Application to fluores-
cence polarimetry, J. Opt. Soc. Am. 35, 1254 (2018).

[5] V. P. Karasev and A. V. Masalov, Unpolarized light states in
quantum optics, Opt. Spectrosc. 74, 551 (1993).

[6] P. Réfrégier, T. Setälä, and A. T. Friberg, Maximal polarization
order of random optical beams: reversible and irreversible po-
larization variations, Opt. Lett. 37, 3750 (2012).

[7] A. Shevchenko, M. Rousset, A. Friberg, and T. Setal, Polariza-
tion time of unpolarized light, Optica 4, 64 (2017).

[8] T. Setälä, A. Shevchenko, M. Kaivola, and A. T. Friberg,
Polarization time and length for random optical beams,
Phys. Rev. A 78, 033817 (2008).

[9] T. Setälä, F. Nunziata, and A. T. Friberg, in Information Optics
and Photonics: Algorithms, Systems, and Applications, edited
by T. Fournel and B. Javidi (Springer, Berlin, 2010), Chap. 16.

[10] T. Setälä, F. Nunziata, and A. T. Friberg, Differences between
partial polarizations in the space–time and space–frequency
domains, Opt. Lett. 34, 2924 (2009).

[11] P. Janassek, S. Blumenstein, and W. Elsäßer, Recovering a
hidden polarization by ghost polarimetry, Opt. Lett. 43, 883
(2018).

[12] I. I. Ryzhov, M. M. Glazov, A. V. Kavokin, G. G. Kozlov, M.
Aßmann, P. Tsotsis, Z. Hatzopoulos, P. G. Savvidis, M. Bayer,
and V. S. Zapasskii, Spin noise of a polariton laser, Phys. Rev.
B 93, 241307(R) (2016).

[13] M. Born and E. Wolf, Principles of Optics (Cambridge Univer-
sity, Cambridge, MA, 1999), p. 952.

[14] C. Brosseau, Fundamentals of Polarized Light: A Statistical
Optics Approach (Wiley, New York, 1998).

[15] Note that the Poincaré vector we use in this paper differs from
the Stokes vector only by the order of its components.

[16] I. Shelykh, K. V. Kavokin, A. V. Kavokin, G. Malpuech, P. Bi-
genwald, H. Deng, G. Weihs, and Y. Yamamoto, Semiconductor
microcavity as a spin-dependent optoelectronic device, Phys.
Rev. B 70, 035320 (2004).

[17] H. Ohadi, A. Dreismann, Y. G. Rubo, F. Pinsker, Y. del Valle-
Inclan Redondo, S. I. Tsintzos, Z. Hatzopoulos, P. G. Sav-
vidis, and J. J. Baumberg, Spontaneous Spin Bifurcations and
Ferromagnetic Phase Transitions in a Spinor Exciton-Polariton
Condensate, Phys. Rev. X 5, 031002 (2015).

[18] The instantaneous polarization state implies polarization state
of the quasimonochromatic light measured at times much
longer than the light wave period, when characterization of the
light polarization by means of a Jones vector makes sense.

[19] D. Read, T. C. H. Liew, Yuri G. Rubo, A. V. Kavokin, Stochastic
polarization formation in exciton-polariton Bose-Einstein con-
densates, Phys. Rev. B 80, 195309 (2009).

[20] S. Christopoulos, G. Baldassarri von Högersthal, A. J. Grundy,
P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christ-
mann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, Room-
Temperature Polariton Lasing in Semiconductor Microcavities,
Phys. Rev. Lett. 98, 126405 (2007).

[21] J. Levrat, R. Butté, T. Christian, M. Glauser, E. Feltin, J.-F.
Carlin, N. Grandjean, D. Read, A. V. Kavokin, and Y. G.
Rubo, Pinning and Depinning of the Polarization of Exciton-
Polariton Condensates at Room Temperature, Phys. Rev. Lett.
104, 166402 (2010).

[22] H. Ohadi, E. Kammann, T. C. H. Liew, K. G. Lagoudakis,
A. V. Kavokin, and P. G. Lagoudakis, Spontaneous Symmetry
Breaking in a Polariton and Photon Laser, Phys. Rev. Lett. 109,
016404 (2012).

[23] D. Colas, L. Dominici, S. Donati, A. A. Pervishko, T. CH
Liew, I. A. Shelykh, D. Ballarin, M. de Giorgi, A. Bramati,
G. Gigli, E. del Valle, F. P. Laussy, A. V. Kavokin, and D.
Sanvitto, Polarization shaping of Poincaré beams by polariton
oscillations, Light: Sci. Appl. 4, e350 (2015).

[24] M. M. Glazov, M. A. Semina, E. Ya. Sherman, and A. V.
Kavokin, Spin noise of exciton polaritons in microcavities,
Phys. Rev. B 88, 041309(R) (2013).

[25] photon.spbu.ru.

043810-6

https://doi.org/10.1051/anphys/192910120023
https://doi.org/10.1051/anphys/192910120023
https://doi.org/10.1051/anphys/192910120023
https://doi.org/10.1051/anphys/192910120023
https://doi.org/10.1063/1.1723743
https://doi.org/10.1063/1.1723743
https://doi.org/10.1063/1.1723743
https://doi.org/10.1063/1.1723743
https://doi.org/10.1364/OL.37.002835
https://doi.org/10.1364/OL.37.002835
https://doi.org/10.1364/OL.37.002835
https://doi.org/10.1364/OL.37.002835
https://doi.org/10.1364/JOSAA.35.001254
https://doi.org/10.1364/JOSAA.35.001254
https://doi.org/10.1364/JOSAA.35.001254
https://doi.org/10.1364/JOSAA.35.001254
http://adsabs.harvard.edu/abs/1993OptSp..74..551K
https://doi.org/10.1364/OL.37.003750
https://doi.org/10.1364/OL.37.003750
https://doi.org/10.1364/OL.37.003750
https://doi.org/10.1364/OL.37.003750
https://doi.org/10.1364/OPTICA.4.000064
https://doi.org/10.1364/OPTICA.4.000064
https://doi.org/10.1364/OPTICA.4.000064
https://doi.org/10.1364/OPTICA.4.000064
https://doi.org/10.1103/PhysRevA.78.033817
https://doi.org/10.1103/PhysRevA.78.033817
https://doi.org/10.1103/PhysRevA.78.033817
https://doi.org/10.1103/PhysRevA.78.033817
https://doi.org/10.1364/OL.34.002924
https://doi.org/10.1364/OL.34.002924
https://doi.org/10.1364/OL.34.002924
https://doi.org/10.1364/OL.34.002924
https://doi.org/10.1364/OL.43.000883
https://doi.org/10.1364/OL.43.000883
https://doi.org/10.1364/OL.43.000883
https://doi.org/10.1364/OL.43.000883
https://doi.org/10.1103/PhysRevB.93.241307
https://doi.org/10.1103/PhysRevB.93.241307
https://doi.org/10.1103/PhysRevB.93.241307
https://doi.org/10.1103/PhysRevB.93.241307
https://doi.org/10.1103/PhysRevB.70.035320
https://doi.org/10.1103/PhysRevB.70.035320
https://doi.org/10.1103/PhysRevB.70.035320
https://doi.org/10.1103/PhysRevB.70.035320
https://doi.org/10.1103/PhysRevX.5.031002
https://doi.org/10.1103/PhysRevX.5.031002
https://doi.org/10.1103/PhysRevX.5.031002
https://doi.org/10.1103/PhysRevX.5.031002
https://doi.org/10.1103/PhysRevB.80.195309
https://doi.org/10.1103/PhysRevB.80.195309
https://doi.org/10.1103/PhysRevB.80.195309
https://doi.org/10.1103/PhysRevB.80.195309
https://doi.org/10.1103/PhysRevLett.98.126405
https://doi.org/10.1103/PhysRevLett.98.126405
https://doi.org/10.1103/PhysRevLett.98.126405
https://doi.org/10.1103/PhysRevLett.98.126405
https://doi.org/10.1103/PhysRevLett.104.166402
https://doi.org/10.1103/PhysRevLett.104.166402
https://doi.org/10.1103/PhysRevLett.104.166402
https://doi.org/10.1103/PhysRevLett.104.166402
https://doi.org/10.1103/PhysRevLett.109.016404
https://doi.org/10.1103/PhysRevLett.109.016404
https://doi.org/10.1103/PhysRevLett.109.016404
https://doi.org/10.1103/PhysRevLett.109.016404
https://doi.org/10.1038/lsa.2015.123
https://doi.org/10.1038/lsa.2015.123
https://doi.org/10.1038/lsa.2015.123
https://doi.org/10.1038/lsa.2015.123
https://doi.org/10.1103/PhysRevB.88.041309
https://doi.org/10.1103/PhysRevB.88.041309
https://doi.org/10.1103/PhysRevB.88.041309
https://doi.org/10.1103/PhysRevB.88.041309



