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Optically trapped polariton condensates as semiclassical time crystals
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We analyze nonequilibrium phase transitions in microcavity polariton condensates trapped in optically
induced annular potentials. We develop an analytic model for annular optical traps, which gives an intuitive
interpretation for recent experimental observations on the polariton spatial mode switching with variation of the
trap size. In the vicinity of polariton lasing threshold we then develop a nonlinear mean-field model accounting
for interactions and gain saturation, and identify several bifurcation scenarios leading to formation of high
angular momentum quantum vortices. For experimentally relevant parameters we predict the emergence of
spatially and temporally ordered polariton condensates (time crystals), which can be witnessed by frequency
combs in the polariton lasing spectrum or by direct time-resolved optical emission measurements. In contrast
to previous realizations, our polaritonic time crystal is spontaneously formed from an incoherent excitonic bath
and does not inherit its frequency from any periodic driving field.
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I. INTRODUCTION

The idea of a time crystal, a state of matter characterized
with discrete translation symmetry in both space and time,
was recently proposed by Wilczek [1,2], shortly followed by
the establishment that the absence of thermodynamic equi-
librium is a necessary prerequisite for its realization [3–5].
Recently, two groups reported observation of time crystals
in periodically driven discrete trapped ion systems [6] and
dipolar interacting diamond impurities [7]. Physical systems
that support time crystal behavior include Bose-Einstein con-
densates of atoms [8], magnons [9], and photonic cavities [10]
(see Ref. [11] for review). The observation of time translation
symmetry breaking in time crystals extends the limits of
relativistic analogy between space and time and thus has a
huge fundamental significance.

The absence of thermodynamic equilibrium is naturally
fulfilled for exciton-polariton condensates in microcavities,
created by continuous incoherent optical or electric pumping
[12], as the typical polariton thermalization time is longer than
its lifetime. Although the Mermin-Wagner theorem forbids
two-dimensional bosonic condensation with long-range order
[13], trapped cavity polaritons may macroscopically populate
a size quantized single-particle state [14]. Among different
polariton trapping schemes, such as mechanical strain [14]
or cavity etching [15], optically created traps have recently
attracted significant attention due to extremely high tunability
[16–18]. The optical confining potential stems from polariton
repulsion off an inhomogeneous excitonic reservoir, typically
generated by a spatially modulated light beam. At the same
time, the reservoir provides an inflow of polaritons to compen-
sate for their decay, mainly governed by photon escape from
the cavity, and, above a certain threshold density, supports

a stationary condensate population [19,20]. Nonequilibrium
polariton condensates may thus occupy an excited trapped
single-particle mode should it have higher net gain than the
ground state.

Polariton-polariton interaction plays a crucial role here, as
it can lift occasional degeneracy of the state, occupied by
the driven condensate, and spontaneously break either trans-
lational [21], spatial inversion [22], or parity symmetry [23].
Moreover, polariton-polariton interaction, supplemented with
dissipative coupling, is sufficient for condensate stabilization
in the weak lasing regime [22]. Finally, parametric polariton-
polariton scattering out of the condensate may populate sev-
eral energy levels, resulting in a multimode condensation [24].

Polaritons repel through electron or hole Coulomb ex-
change interaction due to their excitonic component, governed
by the Hopfield coefficient [25,26]. However, in the presence
of a hot excitonic reservoir, condensed polaritons may also
effectively attract due to local reservoir depletion [27] and
lattice heating [28], resulting in condensate instability through
self-localization [29]. Destabilized resonantly driven polari-
ton condensates may follow limit cycles and chaotic dynamics
in both their density [30] and polarization [31,32]. The limit
cycle behavior is also inherent to the weak lasing regime [33].

In this work we focus on the properties of a single an-
nular optical trap, where a condensate occupies a quaside-
generate excited mode doublet. The natural basis of modes
in a rotational symmetric Hamiltonian are then the angular
harmonics. In such optical traps the formation of pinned
and stable quantum vortices was recently predicted [34] and
observed [18,35]. At the same time, polariton condensation
into spatially ordered high angular momentum modes was
observed in wider optical traps [36,37]. We demonstrate the
interrelation between these observations and point out that a
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spatially and temporally ordered phase has been missed so
far.

We derive the analytic model of optically trapped polariton
condensates in Sec. II, starting with the linear approximation
in Sec. II A and extending it above the polariton condensation
threshold in Sec. II B. We then address the case of spatially
and temporally ordered phase of the condensate in Sec. III,
where this phase is studied both within the two-mode model
in Sec. III A and by a direct numerical simulation of the
mean-field model in Sec. III B. We finally discuss the obtained
results and review the conclusions in Sec. IV.

II. ANALYTIC MODEL

We describe the condensate with the two-dimensional
(∇2 = ∂2

x + ∂2
y ) complex Gross-Pitaevskii equation (GPE),

i
∂�

∂t
=

[
− ∇2

2mp
+ N

2
(α + iβ ) + α1

2
|�|2 − i

�

2

]
�, (1)

coupled to the semiclassical Boltzmann equation describing a
reservoir of excitons sustaining the condensate,

∂N

∂t
= P(r) − (β|�|2 + γ )N. (2)

Here h̄ = 1, �, and N are the condensate order parameter and
the reservoir density, mp is the effective lower polariton mass,
α and α1 are the interaction constants describing the polariton
repulsion off the exciton density and polariton-polariton re-
pulsion, β governs the stimulated scattering from the reservoir
into the condensate, � and γ are the polariton and exciton
decay rates, and P(r) is the inhomogeneous reservoir pumping
rate [38]. Assuming that the hot excitonic reservoir dynamics
are fast on the time scale of the condensate evolution, its
stationary density obtained from Eq. (2) enters Eq. (1) as a
function of |�|2, supplementing it with additional nonlinear
terms [39].

Small optical traps of sizes comparable to the charac-
teristic reservoir variation scale are well approximated with
a harmonic trapping potential [40], although its rotational
symmetry is normally broken [41]. A potential created by an
elliptic paraboloid reservoir density profile lifts the degener-
acy of motion along the two principal axes, which explains the
formation of “ripple” polariton modes in small optical traps
[37]. To describe wider traps we rather employ a rotationally
symmetric box trap by assuming a sharp edge between the
reservoir r > R, and reservoir free region r < R, where r is
the radial coordinate of the planar microcavity system. The
former then corresponds to a uniform real potential and gain
region provided by the homogeneous reservoir of density
N . Although realistic traps have an outer radius, we neglect
polariton tunneling out of the trap governed by evanescent
tails of confined state wave function into the barrier, keeping
in mind that this approximation fails in the vicinity of confined
state transitions to the continuum.

A. Linear limit

In the linear regime (|�|2 � 0) and for a stationary reser-
voir (dN/dt = 0), solutions to Eq. (1) can be written in the
form �n,m(r, ϕ) = exp(imϕ)�n,m(r), with m and n being the

angular and the radial quantum numbers respectively. The
radial part �n,m(r) can be found in the two regions and has
a piecewise defined form

�n,m(r) =
{

An,mJm(r
√

2mp(En,m + i�/2)), r < R

Bn,mKm(r
√

2mp(U − En,m )), r > R
, (3)

where Jm and Km are the analytic continuations of the Bessel
function of the first kind and the Macdonald function of the
second kind respectively, with their arguments being unam-
biguously defined as the principal square-root values, and
U = (α + iβ )N/2 − i�/2. Here the complex energies En,m,
as well as the normalization constants An,m and Bn,m, are
defined from equating the values and the first derivatives of the
two wave-function parts at the trap edge r = R, which yields
the complex transcendental equation

−s2Jm(s1)K ′
m−1(s2) = s1Km(s2)J ′

m(s1), (4)

where the prime denotes differentiation, s1 =
R
√

2mp(En,m + i�/2), and s2 = R
√

2mp(U − En,m ).
A polariton lasing threshold is defined as a point of gain-

loss equilibrium of the linearized GPE (1), given by the
condition Im{En,m} = 0, which occurs at a certain thresh-
old reservoir density N = Nn,m

t in the region r > R. Among
the modes with a given angular momentum m the ground
radial state n = 0 has the lowest threshold, which explains
why only this type of mode is observed at the threshold in
large traps. The physical reason behind this is the centrifugal
force pushing a rotating condensate into the gain region. The
dimensionless gain in the barrier p0,m

t = βN0,m
t /�, obtained

by numerical solution of Eq. (4), is plotted in Fig. 1(a) for
the experimentally relevant relation α/β = 5 as a function of
the dimensionless trap radius ρ = R

√
2mp�. Every mode m

has a critical trap radius of transition to the continuum, where
E0,m

t = αN0,m
t /2. With increasing trap size ρ the angular

momentum of the polariton lasing threshold mode conse-
quently increases through a cascade of successive switchings,
as shown in Fig. 1(b). The angular momentum switching be-
havior, as well as the superlinear oscillating pumping thresh-
old dependence on the trap size, qualitatively reproduces the
experimental data in Ref. [37].

FIG. 1. Results of the linear non-Hermitian rectangular trap
model. (a) Reservoir pumping rate at the lasing threshold for states
with m = 0, 1, . . . , 8 as a function of the trap size ρ = R

√
2mp�.

Condensate switching points are marked with circles and dashed
lines. (b) Condensate angular quantum number m at the polariton las-
ing threshold as a function of the only two linear model parameters.
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Any disorder or asymmetry in the pump profile will lift the
degeneracy of the system and pin the orientation of the modes.
The angular dependence of the lasing threshold mode density
is therefore |�(ϕ)|2 ∝ 1 + cos(2mϕ), as shown in the insets
of Fig. 1(a).

B. Two-mode model

The role of the nonlinearity of Eq. (1) becomes increas-
ingly important for pumping powers above the lasing thresh-
old. Assuming small trap asymmetry we neglect all modes
except for the doublet ±m, corresponding to the condensation
threshold. We must also introduce the corresponding angular
harmonics of the reservoir density N (ϕ) = n0 + n1 cos(2ϕ) +
n2 sin(2ϕ) in the pumped region to account for the its coupling
to the condensate. Projecting Eq. (1) onto the basis �0,±m

(� = ψ+�0,m + ψ−�0,−m) we have in the rotating wave
frame:

i
dψ±
dt

= 1

2
(α + iβ )Icr

[
n0ψ± + n1 ∓ in2

2
ψ∓

]

+ 1

2
α1Icc[|ψ±|2 + 2|ψ∓|2]ψ±, (5)

where Icr = 2π
∫ +∞

R |�0,m|4rdr is the condensate wave-
function overlap with the resevoir, Icc = 2π

∫ +∞
0 |�0,m|4rdr

is the effective condensate overlap with itself, and the reser-
voir density angular harmonics, defined from the condition on
the stationary reservoir density dN/dt = 0, being

n0 = (
P − Icr p0,m

t �s
)
/γ ,

n1 = (
δP − Icr p0,m

t �sx
)
/γ , (6)

n2 = −Icr p0,m
t �sy/γ ,

and pseudospin components describing the condensate state
defined as

sx = Re{ψ∗
+ψ−},

sy = Im{ψ∗
+ψ−}, (7)

sz = (|ψ+|2 − |ψ−|2)/2,

P is the angle independent part of the reservoir pumping rate
variation from its threshold value P(r) − γ N0,m

t , while δP is
the amplitude of the cos (2mϕ) reservoir pumping harmonic,
assuming that the coordinates are chosen so that the corre-
sponding sin (2mϕ) harmonic has a zero amplitude. Note that
the introduced pseudospin s is not related to the polarization
degree of freedom of the exciton-polariton.

The evolution of the angular momentum pseudospin, ob-
tained from Eq. (5), is then governed by the equation

dS
dτ

= (P − S)S + (δP − S‖)
S

2
+ {[εδP − (ξ − ε)S⊥] × S},

(8)

with introduced dimensionless values τ = tγ , S =
β�Icr p0,m

t s/γ 2, S‖ and S⊥ being the projections of S onto
the xy plane and the z axis respectively, P = βP/γ , and
δP = βδP/γ ex with ex being the x axis unitary vector. Taking
into account that α1 ≈ |X |2α with X being the excitonic

Hopfield coefficient [42], the two interaction parameters read

ε = α

2β
, ξ = α

β

|X |2
pm

t

Icc

Icr

γ

�
. (9)

The first two bracketed terms of Eq. (8) represent gain-loss
competition in the inhomogeneous pumping, while the last
term describes absolute value conserving precession in the
effective field. The latter in turn has two contributions, one
of them stemming from the pumping asymmetry, quantified
by δP, and the other one being the self-induced Larmor field
[43] with the effective interaction prefactor ξ − ε. Depending
on the relation between the effective polariton-exciton (ε) and
polariton-polariton (ξ ) interaction parameters the condensate
is either in the repulsive (ξ > ε) or in the attractive (ξ < ε)
regime.

On the other hand, by introducing φ± = √
2βIcrψ± we

obtain the nondimensionalized version of Eq. (5):

i
dφ±
dτ

=
(

ε + i

2

)[
Pφ± + δP

2
φ∓

]

+
(

ξ − ε − i

2

)[
1

2
|φ±|2 + |φ∓|2

]
φ±. (10)

Again the physical meaning of the two terms is transparent.
The first term with prefactor ε + i/2 is linear in φ±; it provides
condensate gain and a non-Hermitian coupling of the two
vortex states, stemming from the asymmetry of the pumping,
governed by δP. The second nonlinear term has a prefactor
ξ − ε − i/2, which stems from the fact that the polariton
repulsion strength ξ is partly compensated by reduction of
repulsion off the reservoir through reservoir depletion. It
also provides a pumping saturation stemming from angular
inhomogeneous reservoir depletion.

Equation (8) has a pair of trivial stationary solutions, for
which Sy = Sz = 0 and Sx = ±S corresponding to a petal
state [e.g., shown in the inset of Fig. 1(a)] where the two
counter-rotating harmonics �0,±m are phase locked with 0
and π phase shifts. The pumping power dependence of these
trivial solutions reads S±(P ) = (2P ± δP)/3. There exists
also another pair of stationary solutions, characterized by
spontaneous parity symmetry-breaking and nonzero Sz and
Sy pseudospin components. These two stationary pseudospins
have the same absolute values and Sx components, but the
opposite signs of both Sy and Sz, thus corresponding to
the opposite directions of vorticity. The transition between the
two types of solutions explains the spontaneous formation of
pinned quantum vortices in optical traps [44]. For these parity
symmetry breaking solutions the fixed pseudospin positions
are given by

Sy = −P − S

εδP
Sz, Sx = 3S − 2P

2a

P − S

εδP
+ εδP

ε − ξ
,

S2
z = ε

a

δP2

2

S

P − S
− 1

2

(
εδP

a

)2 2P − 3S

P − S
−

(
2P − 3S

2a

)2

.

(11)
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Equation (10) yields a pair of equations on the common
and relative phases of the spinor [φ+, φ−]T ,

� = 1

4i
ln

(
φ+φ−
φ∗+φ∗−

)
, φ = 1

4i
ln

(
φ∗

+φ−
φ+φ∗−

)
. (12)

The time derivative of the common phase � yields the energy
of a condensate at a fixed point state S:

� = εP + 3

2
aS + δP

2

[
εSxS + SySz/2

S2 − S2
z

]
, (13)

and equating the time derivative of the relative phase to
zero we get the quadratic equation on the nontrivial state
population S(P ):

2ξ (ε2δP2 + P2) − PS[4ξ + ε + 4εa2]

+ S2[2ξ + ε + 4εa2] = 0, (14)

which yields

S(P ) = P
2

[
1 + 2ξ

2ξ + ε + 4εa2

]
± ε

2

√
D(P ), (15)

where

D(P ) = P2

(
1 + 4a2

2ξ + ε + 4εa2

)2

− 8ξδP2

2ξ + ε + 4εa2
. (16)

The pair of nontrivial solutions (15) appears at a saddle-node
bifurcation PSN in the effective repulsion regime (ξ > ε),
or develops at a pitchfork bifurcation PP2 from the trivial
solution in the effective attraction regime (ξ < ε). The saddle-
node bifurcation point may be found from the condition
D(PSN ) = 0, which yields

PSN = δP
√

8ξ (2ξ + ε + 4a2)/(1 + εa2). (17)

The stability of a stationary solution is characterized
by the Lyapunov exponents, which may be obtained from
the Jacobian of the pseudospin evolution equation (8). The
lower trivial branch S−(P ) is unstable, while the higher
S+(P ) evolves either to a limit cycle at the Andronov-
Hopf bifurcation point PAH = 5δP/2 or to a pair of
symmetry-breaking fixed points at the pitchfork bifurcation
PP1 = δP[12ε(a +

√
a2 + 1/4) − 1/2] provided PP1 < PAH

with a = ξ − ε. The latter condition may be expressed as
4ε(a +

√
a2 + 1/4) < 1. Figure 2(a) shows the regions of two

interaction parameters, corresponding to these two scenarios
of the trivial solution evolution with increasing pumping
power P . The stable vortex solutions, on the contrary, appear
at a saddle-node bifurcation PSN in the condensate repulsion
regime and at a pitchfork bifurcation PP2 in the attraction
regime.

Interestingly, both in the repulsive and attracting regimes
there is a region of parameters where the only stable solution
is a limit cycle. In the attraction regime (ξ < ε), where the
trivial solution evolves according to Andronov-Hopf scenario
with increasing P , this is a region of pumping powers between
PAH and the vortex pitchfork bifurcation, where the limit
cycle loop closes back to a stationary point and transforms
to the vortex. In the repulsion regime (ξ > ε) the condi-
tion on the presence of such a region reads PAH < PSN .
The range of pumping powers corresponding to the limit

FIG. 2. (a) Phase diagram of polariton condensate bifurcations.
Areas of parameters corresponding to Andronov-Hopf (pitchfork)
bifurcation type of the trivial stable solution branch S+(P ) are
shown in green (yellow) color. The dashed line separates the re-
pulsion (above) and attraction (below) regimes. The hatched blue
area corresponds to the regime where limit cycles are the only
orbitally stable solutions. The unhatched blue area corresponds to
bistability between the trivial and the symmetry breaking solution.
(b) Stationary condensate population dependence on pumping power.
Stable (unstable) fixed points are plotted with solid (dashed) lines.
Trivial S+(P ) and S−(P ) and the symmetry-breaking solutions are
plotted with red (upper straight), blue (lower straight), and black
(curved) lines. The gray area highlights the instability range, and the
frequency of limit cycles is plotted with the green dash-dotted line.

cycles reaches its maximum width at the separation between
the repulsion and attraction regimes, where two competing
nonlinear mechanisms compensate each other (ξ = ε). The
region of parameters, where PP1 > PAH > PSN , on the other
hand, corresponds to a bistability between the limit cycle and
vortex solutions at some range of pumping powers. These
periodically evolving condensate states are discussed in detail
in the following section.

III. SPACE-TIME ORDERED PHASE

In the following we discuss the nature of the periodic limit
cycles, which is the only orbitally stable solution of Eq. (5)
in the intermediate range of pumping powers between the sta-
bility regions of the trivial petal state and the parity breaking
vortical state, as shown in Fig. 2(b). This range is only present
in the Andronov-Hopf bifurcation scenario and if PAH <

PSN (PP2) in the repulsion (attraction) regime. This condition
is satisfied in a certain region of interaction parameters ξ and
ε, which is highlighted with hatching in Fig. 2(a). Note that
orbitally stable limit cycles are also present in the unhatched
blue area in Fig. 2(a), where bistability between the petals and
vortical states exists, and generally in the symmetry-breaking
state region of stability. However, in this case the competition
between the limit cycles and the symmetry-breaking fixed
points, mostly governed by the volumes of corresponding
basins of attraction, complicates reliable realization of the
space-time ordered state.

A. Two-mode model

Linearization of Eq. (8) in the vicinity of the bifurcation
PAH yields elliptic precession in the yz plane with the fre-
quency ω0 = δP

√
ε(2ξ − ε). For P > PAH it transforms into
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FIG. 3. Limit cycles of the condensate evolution. (a) Pseu-
dospin trajectories for pumping power spanning the instability range.
(b) Spectral and temporal (inset) dependence of the pseudospin
projections in the anharmonic limit cycle regime, corresponding to
the blue line in panel (a).

anharmonic periodic rotation of the pseudospin, characterized
with frequency combs, shown in Fig. 3(b). The equation on
the evolution of the pseudospin S(τ ) (8) has been numerically
solved within the Runge-Kutta (fourth-order) method. The
initial conditions were set to S(τ = 0) = (0, 0, 1). The param-
eters used are ε = ξ = 2.5, δP = 0.01. There was taken the
equidistantly spaced range of 4 P values within the 0.025 �
P � 0.1225 domain in order to span the area of unstable
limit cycles. Figure 3(a) shows the limit cycle trajectories
in the pseudospin space, corresponding to pumping powers
increasing within the instability range, and oscillations of
the pseudospin projections, similar to the polarization pseu-
dospin oscillations recently observed in the pulsed excita-
tion regime [45]. The inverse period of anharmonic periodic
rotation T −1, calculated as the main harmonic frequency
of the Fourier transform S(τ−1) of the Eq. (8) numerical
solution S(τ ), decreases from ω0/2π to zero, as shown in
Fig. 2(b).

B. GPE simulation

We have also performed direct numerical integration of
Eqs. (1) and (2) and demonstrated the destabilization of a petal
state (wave-function harmonic of zero net angular momenta)
and its subsequent evolution into a giant quantized vortex
state (see Fig. 4). This mechanism corresponds either to a
saddle-node (PSN ) or a pitchfork (PP2) bifurcation scenario
depending on whether one is in the repulsive (ξ > ε) or
attractive (ξ < ε) regime respectively. For Fig. 4 we have
α/β = 1.5, γ /� = 10, and a pump shape,

P(r) = P0 exp

[
r − r0

w

]6

, (18)

where r =
√

x2 + (y/1.1)2, w = 3 μm and r0 = 8 μm. The
factor 1.1 introduces geometric ellipticity to the pump shape
which breaks the twofold degeneracy of the standing-wave
(petal) states and allows stable petal state formation [35] [see
Figs. 4(a) and 4(d)].

In order to determine whether we are in the attractive or
repulsive regime we use Eq. (9). For a m = 10 harmonic it
was estimated that 2Icc/(p0,m

t Icr ) ∼ 10. In Fig. 4 we show a
m = 5 harmonic which will have a lower overlap with the
reservoir (Icr) because of a smaller centrifugal force, stronger

FIG. 4. (a)–(c) Spatial density profiles of an elliptically pumped
polariton condensate and (d)–(f) corresponding phase profiles. In
(a) and (d) the pump power is 5% above threshold and a stable petal
pattern forms due to the geometric ellipticity of the pump. At 10%
above threshold (b),(e) the petal pattern bifurcates (loses stability)
and evolves into one of two counter-rotating vortex states (c),(f) with
equal probability. The slight modulation in the density and finite
distance between phase singularities in the vortex center (c),(f) stems
from the elliptic profile of the pump.

overlap with itself (Icc) due to higher localization, and a
lower threshold pump intensity p0,m

t [see Fig. 1(a)]. This
tells us that 2Icc/(p0,m

t Icr ) > 10 for lower modes. Using an
exciton Hopfield coefficient of |X |2 = 0.01, straightforward
calculation gives ε = 0.75 and ξ = 3 which tells us that the
current results in Fig. 4 are in the repulsive regime and that a
saddle-node bifurcation is taking place in Figs. 4(b) and 4(e).

We have demonstrated periodic evolution of the conden-
sate, corresponding to limit cycles in the two-mode model,
with direct numerical simulation. The condensate density time
shots, obtained from the full numerical solution of GPE (1)
and demonstrating its periodic evolution, are shown in Fig. 5.
Numerics were performed using spectral methods in space
and a variable-step, variable-order Adams-Bashforth-Moulton
solver. In order to avoid gain at the boundaries we use ad hoc

FIG. 5. Numerical solution of GPE in the time crystal regime.
(a) Polariton density time shot. (b) Evolution of instantaneous polari-
ton density and current (shown with arrows) throughout the period T .
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finite pump shape (18). The parameters were set to h̄mp =
5 × 10−5m0 where m0 is free electron mass, � = 0.05 ps−1,
γ /� = 0.05, β = 5 × 10−4 ps−1 μm−2, α/β = 1.6, α1/β =
6, P0/β = 2000, r0 = 25 μm, and w = 6 μm. The wave
function is initially seeded by stochastic white noise to mimic
the incoherent uncondensed state.

IV. DISCUSSION AND CONCLUSION

The experimental conditions for the realization of the
space-time crystal regime are twofold. The spatial order is
inherent for the linear limit of the GPE (1) and requires
R
√

2mp� > 1 so that m > 1, as follows from Fig. 1(b).
The temporal order in turn emerges in the nonlinear
regime above the condensation threshold provided ξ ≈ ε [see
Fig. 2(a)]. Estimating 2Icc/(p0,m

t Icr ) ∼ 10 for m ∼ 10, and
γ /� ∼ 10 [46,47], the condition on the interaction parame-
ters transforms to the condition on the Hopfield coefficient
|X |2 ∼ 0.01.

In contrast to existing realizations of space-time crystals,
the periodicity of the condensate oscillations is governed by
the optical trap parameters rather than the optical pumping fre-
quency. The inverse oscillation period scales from αδP/h̄γ to
zero while the pumping power spans the limit cycle instability
range [see Fig. 2(b)], suggesting that the time crystal regime
may be observed with time resolution of polariton emission
by fine tuning the optical trap parameters.

The mean-field model studied in this work is valid above
the polariton lasing threshold, where the condensate oc-
cupation number is macroscopic. One should note, how-
ever, that the fluctuations of the occupation, supplemented
with polariton-polariton interactions, result in the condensate
wave-function decoherence [48]. The temporal ordering of the
condensate evolution is thus limited with the coherence time,
which is typically long compared to polariton lifetime, and
the spatial ordering is in turn limited by the coherence length,
which by far exceeds the characteristic optical trap size [12].

The oscillating character of the condensate evolution is
reminiscent of the Josephson oscillations of coupled Bose-
Einstein condensates [49,50]. However, in contrast to con-
densates with conserved number of particles, where the ex-
act form of wave function evolution depends on the initial
conditions, here the dynamically stable oscillations of the
open polariton system are only governed by the optical trap
parameters. This limit cycle motion is strongly anharmonic,
as is seen from the inset of Fig. 3(b). One should also note
that the spatial ordering, which is present in trapped high
angular momentum polariton condensates, is an important
prerequisite of time crystallization [5].

In conclusion, we predict a space-time ordered phase
of polariton condensates, created and trapped by excitonic
reservoirs of annular shapes, which has the properties of a
time crystal. This phase arises from limit cycle instability in
the vicinity of spontaneous parity breaking transition from
petals to quantum vortices and can be described in terms of
the condensate pseudospin rotation. The physical origin of
the emerging space-time order is in the interplay of strong
interactions and driven-dissipative nature of exciton-polariton
condensates.
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