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The electron-nuclei hyperfine interaction of electrons in indirect band gap (In,Al)As/AlAs quantum dots
with type-I band alignment has been experimentally studied by measuring the polarization degree of the
photoluminescence in a transverse magnetic field (Hanle effect) and the polarization recovery in a longitudinal
magnetic field. The different symmetries of the X valley electron Bloch amplitudes at the As, In, and Al
nuclei strongly affect the hyperfine interaction. The hyperfine constants corresponding to these nuclei have been
determined.
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I. INTRODUCTION

Active manipulation of the spin degrees of freedom in
solid-state systems is attractive for the development of future
spintronics and quantum devices for storing and processing
information [1]. Heterostructures on the basis of group-III-
V compound semiconductors are of particular interest since
they may benefit from well-developed epitaxial technologies
and possibilities of single-photon addressing for precise data
writing and reading [2,3]. However, one of the hard challenges
on the way to constructing such spintronic devices is the fast
decoherence of electron spins due to their interaction with
the dense nuclear spin environment [4–6]. Due to the s type
character of the electron Bloch wave function, its hyperfine
interaction is described by a single hyperfine constant A, pro-
portional to the electron density at the nucleus [6,7]. Valence-
band holes are more robust against spin decoherence owing
to their weaker hyperfine coupling compared to electrons [5].
Since this robustness is a result of the different symmetries
of the Bloch amplitudes [8], it is interesting to study the
hyperfine interaction for electrons in indirect gap minima of
the Brillouin zone, where the wave functions are not of a
pure s type. Convenient objects for studying the hyperfine
interaction of such electrons are indirect band gap quantum
wells (QWs) and quantum dots (QDs) [9]. In the scarce
experimental studies of the hyperfine interaction of electrons
in AlAs QWs published so far, an electron spin resonance
technique was used [10], which is difficult to apply to QDs.

A useful method for creating spin polarization of electrons
that interact with nuclei is optical orientation [11]. However,
the weak coupling of electronic states with light hampers
using this technique for indirect band gap heterostructures.
Recently, we demonstrated that effective optical orientation
can be reached in the (In,Al)As/AlAs QD system [12].

In these (In,Al)As/AlAs QDs the electron ground state
shifts from the � to the X valley with decreasing dot diameter,

while the heavy-hole (hh) ground state remains at the � point.
This corresponds to a change from a direct to an indirect band
gap in momentum space, while the type-I band alignment is
preserved [13,14]: the lowest electron level in small-diameter
QDs with strong quantum confinement along the growth di-
rection belongs to the X valley. With increasing dot diameter,
the � valley level shifts to lower energies more rapidly than
the X level due to the smaller effective mass of the � valley
electrons [15]. The complicated energy spectrum of indirect
band gap (In,Al)As/AlAs QDs allows one to populate the
indirect electron states in a quasiresonant optical excitation
regime [12].

In this paper, the electron-nuclear hyperfine interaction in
(In,Al)As/AlAs QDs with type-I band alignment and indi-
rect band gap structure is studied. The circular polarization
of the photoluminescence excited using optical orientation
with a transverse (Hanle effect) or a longitudinal (polariza-
tion recovery effect) magnetic field applied is measured. We
demonstrate that at low temperatures the half width at half
maximum (HWFM) of the Hanle curve does not depend on
the spin relaxation time. Instead, it is determined by the
hyperfine interaction with the nuclear field fluctuations. We
develop a microscopic theory of the hyperfine interaction for
electrons in the conduction band X valleys using a symmetry
analysis and density functional theory (DFT) calculations.
The constants of hyperfine interaction for these X valley
electrons with the As, In, and Al nuclei are determined.

II. EXPERIMENTAL DETAILS

The studied self-assembled (In,Al)As QDs, embedded in
an AlAs matrix, were grown by molecular-beam epitaxy on a
semi-insulating (001)-oriented GaAs substrate. The structure
contained one QD sheet sandwiched between 70-nm-thick
AlAs layers grown on top of a 400-nm-thick GaAs buffer
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FIG. 1. (a) TEM plane-view image and (b) the correspond-
ing histogram of the QD-diameter distribution for the studied
(In,Al)As/AlAs QDs. The size dispersion fitted by a Gaussian
distribution is shown by the blue line. The average diameter is
Dav = 16.7 nm.

layer. The nominal amount of deposited InAs was about
2.7 monolayers. A 20-nm-thick GaAs cap layer protects the
top AlAs barrier from oxidation. In order to increase the
light emission output from the QDs, the sample was covered
by a SiO2 antireflection coating layer with a thickness of
150 nm. The growth axis coincides with the crystallographic
(001) direction and is taken as the z axis. Note that the band
gap energy of the GaAs substrate is 1.52 eV, while that of the
AlAs barrier is 2.30 eV [16]. Further growth details are given
in Ref. [13].

The QD size and density were studied by transmission
electron microscopy (TEM) using a JEM-4000EX system
operated at an acceleration voltage of 200 keV. A TEM plane-
view image and the corresponding histogram of the QD-
diameter distribution are shown in Fig. 1. The density of lens-
shaped QDs is about 1.2 × 1010 cm−2. The average dot di-
ameter is Dav = 16.7 nm, while at the upper and lower wings
of the distribution function the half maximum corresponds to
DL = 20.5 nm and DS = 13 nm, respectively. The aspect ratio
of the diameter to height of the QDs is 3:1, and the average
volume of a QD is Vav = 1.18 × 103 nm3. The accuracy of the
QD size determination does not exceed 25% [14]. The span
of the QD size distribution is SD = 100 × (DL − DS )/Dav

≈ 50%. Since the shape of the photoluminescence (PL) emis-
sion reflects the distribution of QD sizes and chemical compo-
sition practically does not change with quantum dot diameter,

FIG. 2. (a) Band diagrams of (In,Al)As/AlAs QDs with different
band structures. Vertical arrows illustrate excitation, energy relax-
ation, and recombination processes of electrons in QDs under se-
lective excitation. (b) Photoluminescence spectra of (In,Al)As/AlAs
QDs measured under nonresonant excitation: time integrated (black
line) as well as time resolved for tdelay = 0 ns and tgate = 10 ns (red
line) and for tdelay = 500 ns and tgate = 450 μs (blue line). T = 1.8 K.
QD diameters corresponding to PL emission energies are given on
the top axis.

as shown in Ref. [13], we can establish the relation between
the parameters characterizing the spectra and the geometric
quantities. For the studied structure, the average QD composi-
tion is determined to be In0.64Al0.36As. The dispersion of size,
shape, and composition within the QD ensemble results in the
simultaneous presence of (In,Al)As/AlAs QDs with type-I
band alignment and with the lowest conduction-band states at
either the � or XXY minima of the (In,Al)As conduction band
[14] [see Fig. 2(a)].

Weak magnetic fields (in the millitesla range) were gener-
ated by an electromagnet with accuracy better than 0.01 mT.
The magnetic field was applied either parallel to the structure
growth axis (B ‖ z) in Faraday geometry or perpendicular to
it (B⊥z) in Voigt geometry.

The photoluminescence was excited either nonresonantly
with the photon energy of the laser exceeding considerably
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the emission energies of the QD ensemble or selectively with
the laser energy tuned resonantly within the inhomogeneously
broadened exciton emission band of the QDs. The
nonresonant excitation was provided by the third harmonic
of a Q-switched Nd:YVO4 pulsed laser with photon energy
of 3.49 eV, pulse duration of 5 ns, and repetition rate of
2 kHz [17]. The excitation density was kept below
100 nJ/cm2. For selective excitation in the energy range
of 1.50–1.79 eV, a tunable continuous-wave Ti:sapphire laser
was used.

The PL emission was dispersed by a 0.5-m monochroma-
tor. For the time-integrated measurements under nonresonant
excitation, the PL was detected by a liquid-nitrogen-cooled
charge-coupled-device (CCD) camera. For the time-resolved
PL at nonresonant excitation we used a gated CCD camera
synchronized with the laser via an external trigger signal.
Here, tdelay is the time between the laser pulse and the start
of the exposure. It could be varied from 0 ns up to 500 μs.
The duration of the exposure, the gate window tgate, could
be extended from 1 ns to 500 μs. Signal intensity and time
resolution depend on the choice of tdelay and tgate. The highest
resolution of the detection system was 1 ns.

We investigate the electron spin dynamics by measuring
the polarization degree of PL in transverse magnetic field
(Hanle effect) and restoration of the polarization in longi-
tudinal magnetic field [polarization recovery curve (PRC)].
The PL was detected with a silicon avalanche photodiode.
For the optical orientation measurements, circular polarizers
(Glan-Thompson prism and a quarter-wave plate) were in-
stalled in both the excitation and detection optical pathways.
The circular polarization degree was determined as ρc =
(I++ − I+−)/(I++ + I+−), where I++ (I+−) stands for the PL
intensity in co- (cross-) circular polarization relative to that of
excitation.

Time-resolved photoluminescence
under nonresonant excitation

Photoluminescence spectra of an (In,Al)As/AlAs QD
ensemble measured under nonresonant excitation are shown
in Fig. 2(b). The time-integrated spectrum (black line) has a
maximum at 1.67 eV and extends from 1.55 up to 1.9 eV, hav-
ing a full width at half maximum (FWHM) of 140 meV. Since
the shape of the PL emission reflects the distribution of QD
sizes, we can establish the relation between the parameters
characterizing the spectra and the geometric quantities. The
top axis in Fig. 2(b) gives the QD diameters that correspond
to particular PL emission energies. The large width of the
emission band is due to the dispersion of the QD parameters
since the exciton energy depends on the QD size, shape, and
composition [13]. The PL band is contributed by the emission
of direct and indirect QDs, which becomes evident from time-
resolved PL spectra [12]. As measured immediately after the
laser pulse (tdelay = 0 ns and tgate = 10 ns) excitation, the PL
band has a maximum at 1.61 eV and a FWHM of 80 meV (red
line). For longer delays (tdelay = 500 ns and tgate = 450 μs) the
emission maximum shifts to 1.67 eV, and the line broadens
up to 130 meV (blue line), similar to the time-integrated PL
spectrum. The low intensity of PL of the direct band gap
QDs is a result of small concentration of big-size QDs in the
ensemble.

FIG. 3. PL spectra measured for σ+ excitation at Eexc =
1.727 eV using co- and cross-polarized detection as well as the corre-
sponding circular polarization degree. T = 1.8 K. Crossing energies
of the PL lines from direct and indirect QDs are E low

�X = 1.619 eV and
E high

�X = 1.666 eV, as marked by the vertical dashed lines.

The strong modification of the time-resolved spectra with
time delay is a result of very different exciton recombination
dynamics in direct and indirect QDs [14,17]. In indirect band
gap materials, the momentum conservation law suppresses
radiative recombination of electrons and holes separated in
the momentum space. The radiation becomes possible due
to mixing of states of different valleys of the conduction
band (such as the � and X valleys [18]). In ideal bulk
semiconductors the electron states from the � and X valleys
do not mix with each other. However, � − X mixing does take
place in low-dimensional heterostructures due to scattering
of the electron at the interfaces. In (In,Al)As/AlAs QDs the
lowest electronic level is located at the XXY minimum of
the conduction band, independent of the composition [13].
Thus � − XXY mixing can be induced only by violation of
the translational symmetry in the XY plane, which results in
a very long exciton recombination time, reaching hundreds
of microseconds [17]. We demonstrated recently that after
photoexcitation in the AlAs barriers electrons and holes are
captured in the QDs within several picoseconds, and the
capture probability does not depend on the QD size and com-
position [19]. Therefore, all QDs in the ensemble (direct and
indirect) become equally populated shortly after the excitation
pulse. The exciton recombination dynamics is fast for direct
QDs emitting mainly in the spectral range of 1.50–1.73 eV.
On the other hand, the dynamics is slow for the indirect QDs
emitting in the 1.55–1.90 eV range. The emission bands of the
direct and indirect QDs overlap in the range of 1.55–1.73 eV.

In order to distinguish between direct and indirect band gap
QDs within an inhomogeneously broadened PL line, we use
selective excitation [12]. PL spectra measured for excitation
at Eexc = 1.727 eV are shown in Fig. 3. They comprise several
lines. As we showed in Ref. [12] the lines marked Ilow and Ihigh

are provided by exciton recombination in the indirect QDs,
while line S arises from a transition in QDs with �-X mixing
of the electron states. Tuning the excitation energy in the
range of Eexc = 1.56–1.79 eV allows us to selectively excite
different subensembles of QDs. The energies of different PL
lines as functions of Eexc are presented in Fig. 4. One can
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FIG. 4. Parameters of the PL lines resolved under selective exci-
tation as a function of the excitation energy. T = 1.8 K. The shift
of the laser is shown by the red line. Symbols give the energies
of the PL lines corresponding to excitons in direct QDs (orange
squares) and excitons in indirect QDs for the low-energy line (cyan
triangles) and high-energy line (green triangles); the S line (black
squares) does not move with varying laser energy. Crossing energies
of the PL lines from direct and indirect QDs are E low

�X = 1.619 eV and
E high

�X = 1.666 eV, as marked by the vertical dashed lines.

see that the ensemble has a bimodal distribution of QDs with
� − X transitions at energies E low

�X = 1.619 eV and Ehigh
�X =

1.666 eV, shown in Fig. 4 by vertical dashed lines.
The vertical dashed lines in Figs. 3 and 4 shows the

crossing energies of the PL lines from the direct and indirect
exciton transitions which correspond to emission from QDs
with equal energies of the � and X electron levels. The rela-
tively broad line S, whose energy does not depend on the exci-
tation energy, appears in the spectra at the low-energy � − X
intersection point. The origin of the S line is still unknown and
is beyond the scope of this study. The PL polarization degree
across the PL spectrum measured using optical orientation
for excitation at Eexc = 1.727 eV is shown in Fig. 3 on the
right axis. The PL in the low-energy spectral region, which
corresponds to exciton recombination in direct band gap QDs
(below E low

�X ), has practically no circular polarization due to
breaking of the axial symmetry in the QDs, which results in
a strong anisotropic electron-hole exchange interaction and
mixing of the bright exciton states [20]. For indirect band
gap QDs, the effect of the anisotropic electron-hole exchange
interaction is negligible, and the pure exciton spin states
|±1〉 provide circularly polarized PL [12]. In zero magnetic
field, the polarization degree for the indirect band gap QD
emission is determined by three factors: (i) depolarization
of the excitons caused by their scattering from the direct to
the indirect state (since the photon absorption takes place via
excited direct band gap QD states), i.e., by electron scattering
from the � to the X valley before exciton recombination, (ii)
exchange-induced depolarization due to � − X mixing of the
direct and indirect exciton states, and, finally, (iii) precession
of the electron spin in the effective magnetic field of frozen
fluctuations of the nuclear spins [12]. In this study we focus

FIG. 5. Hanle curve and polarization recovery curve measured
for the indirect QDs at 1.694 eV with excitation energy of 1.740 eV,
T = 4 K.

on indirect QDs which are not affected by the � − X mixing
effect. As shown recently, these QDs emit at the Ihigh line in
the PL spectra [12].

III. ELECTRON-NUCLEI INTERACTION
IN THE X VALLEY

A. Experiment

For selective excitation (Eexc = 1.740 eV), the PL polariza-
tion degree in the Ihigh line at zero magnetic field is ρ0

c ≈ 0.04.
ρ0

c is determined by the ratio of the exciton spin relaxation
time to its lifetime. The optical excitation of the QDs takes
place quasiresonantly via excited direct band gap � states [see
Fig. 2(a)]. The lifetime of the excited size-quantized states of
direct excitons is short. As a result, the spin polarization of
direct excitons has no time to change. Further depolarization
of the excitons is caused by their scattering from the direct to
the indirect states, i.e., by electron scattering from the � to the
X valley before exciton recombination, as shown in Ref. [12].

Already in weak magnetic fields of a few milliteslas, ρc(B)
demonstrates strong changes (see Fig. 5). In Voigt geometry
(B⊥z) the Hanle effect is observed. The circular polarization
degree is reduced down to zero with increasing field. The
shape of the Hanle curve is well described by a Lorentzian,
ρc(Bx ) = ρ0

c /(1 + B2
x/�

2
H ), with HWHM �H = 1.25 mT. In

Faraday geometry (B ‖ z), the circular polarization degree
is gradually recovered with increasing magnetic field and
saturates at a value ρsat that is approximately 2.5 times
larger than ρ0

c . The shape of the PRC is also described by
a Lorentz curve, ρc(Bz ) = ρ0

c + (ρsat − ρ0
c )/(1 + �2

PRC/B2
z ),

with the same HWHM value as for the Hanle curve, �PRC =
1.25 mT.

The temperature dependence of �H is shown in Fig. 6
by open black circles. One can see that �H does not change
with temperature up to T = 30 K. With a further increase of
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FIG. 6. Hanle curve half width (open black circles) and Ts calcu-
lated as h̄/(gμB�H ) (solid red circles) as functions of temperature.
The dashed line is the linear extrapolation in the low-temperature
region. Dotted lines are guides for the eye.

temperature, �H increases linearly. Note that the relation
�PRC = �H holds throughout the studied temperature range.
It is common practice to determine the spin lifetime Ts

from the Hanle contour width by use of the equation Ts =
h̄/(gμB�H ), where g is the electron g factor [11]. Taking into
account that g = 2 [21,22] in these QDs, we calculated the
dependence of Ts(T ), which is presented in Fig. 6. Theory [23]
predicts a linear or a quadratic decrease of the spin lifetime
with increasing temperature due to the increasing density of
states involved in scattering. Actually, a linear decrease of
Ts(T ) with increasing temperature occurs only above 30 K.
Below 30 K, Ts(T ) is constant within the experimental accu-
racy. This unusual behavior suggests that at low temperatures
�H is limited by another factor. The only feasible candidate
is the electron spin precession in the local magnetic fields
created by the nuclear spin fluctuations [7,12], which can
govern the electron spin dynamics in weak magnetic fields
B < �H . This model will be considered in more detail in the
next section.

In conclusion of this section, let us summarize the most im-
portant experimental findings: (i) The very weak anisotropic
e-h exchange interaction and the quasiresonant excitation
allow us to populate the X valley of indirect band gap QDs
with spin-polarized electrons. (ii) At low temperatures, the
relaxation of this spin polarization is determined by the hy-
perfine interaction with nuclear field fluctuations. This allows
us to obtain the parameters of the hyperfine interaction from
our experimental data.

B. Theory

In order to calculate the hyperfine coupling constants in the
X valley of the conduction band of (In,Al)As the microscopic
Hamiltonian of the hyperfine interaction has to be considered.
Here, we derive the tensors of the hyperfine interaction with
In, Al, and As atoms using the approach proposed by Gryn-
charova and Perel [24]. The general form of the hyperfine
interaction Hamiltonian with the given nucleus is [25]

Hhf = 2μBμI I
[

8π

3
sδ(r) + l

r3
− s

r3
+ 3

r(sr)

r5

]
, (1)

where I is the nuclear spin; μB is the Bohr magneton;
μI = gIμN is the magnetic moment of the nucleus, with gI

being its g factor and μN being the nuclear magneton; s is the
electron spin; r is the vector from the nucleus to the electron;
and h̄l = r × p is the angular momentum, with p being the
linear momentum. The first term of the Hamiltonian describes
the Fermi contact interaction, and the rest take into account
the dipole-dipole interaction of the nuclear spin with orbital
and spin magnetic moments of the electron.

In QDs the three equivalent X valleys are split due to
size quantization, anisotropy of the QD shape, and strain. For
this reason we neglect mixing of the valleys [26] and focus
on the intravalley hyperfine interaction. The corresponding
Hamiltonian was derived in the Supplemental Material of
Ref. [10]. Below we briefly recapitulate the results.

The spin-orbit interaction in the conduction band of
(In,Al)As is weak due to the large band gap at the X point
[27,28], and therefore, the electron Bloch wave function is a
product of a spinor and a real-valued orbital wave function.
In the vicinities of a cation c and an anion a the latter can be
decomposed in spherical harmonics. For the Xz valley oriented
along the z axis the decomposition reads [10]

�c(r) = αPPz(r) + αTDxy(r), (2a)

�a(r) = αSS (r) + αDDz2 (r). (2b)

Here, the functions S (r), Pi(r) (i = x, y, z), and Di(r) (i =
xy, yz, xz, x2 − y2, z2) transform as the corresponding tesseral
harmonics, and αS , αP, αD, and αT are real coefficients. This
form of the wave functions can be derived from the symmetry
analysis. It is important to note that the S (r) function can
contribute to the electron wave function only in the vicinity
of the As atoms. Indeed, the point symmetry group of the
wave functions with the center of the transformations at the
cation is �7 (in the D2d group) [10], which is inconsistent
with the s type Bloch wave functions. The wave functions in
the Xx and Xy valleys can be obtained from these expressions
by symmetry transformations. We note that the hyperfine
interaction is short range, so that the cross contributions to
the Hamiltonian from orbitals of two different atoms are
negligible [24].

In the Xz valley, the Hamiltonian of the hyperfine interac-
tion of the localized electron can be written as

Hhf = [A⊥
α (Ixsx + Iysy) + A‖

αIzsz]|ψ (ri )|2, (3)

where A⊥
α and A‖

α are the constants of the hyperfine interaction
with the nucleus at ri perpendicular and parallel to the valley
and ψ (r) is the localized electron envelop wave function. The
index α = Al, In, As labels the different nuclear species, and
we assume averaging over the two very similar isotopes of In.
Note that all the nuclear isotopes in (In,Al)As have nonzero
spin. The constants can be calculated using the Bloch wave
functions (2) and the general Hamiltonian (1). For the
calculation we use hydrogenlike functions with the orbital
exponents calculated in Refs. [29,30]. We find

A⊥
Al = ( − 0.4α2

P + 0.1α2
T

)
A0, A‖

Al = −2A⊥
Al, (4a)

A⊥
In = ( − 0.7α2

P + 1.6α2
T

)
A0, A‖

In = −2A⊥
In, (4b)

A⊥
As = (

25.7α2
S − 3.2α2

D − 1.4αSαD
)
A0, (4c)

A‖
As = (

25.7α2
S + 6.4α2

D + 2.7αSαD
)
A0, (4d)
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TABLE I. The values of the electron intravalley hyperfine cou-
pling constants in the X and � valleys of In0.7Al0.3As and in the �

valley of GaAs with respect to A‖
As in In0.7Al0.3As.

As In Al Ga

A‖
I /A‖

As 1 0.032 0.023
A⊥

I /A‖
As 0.61 −0.016 −0.012

A�
I /A‖

As 1.6 1.2 0.44
A�

I /A‖
As (GaAs) 1.5 1.18

where A0 is a constant [31]. Note that the term ∝αSαD was
omitted in Ref. [10]. The qualitatively different expressions
for the hyperfine interaction constants with the cations and the
anion are related to the different orbitals at these atoms, which
contribute to the electron Bloch wave function [see Eq. (2)].

The coefficients of the decomposition in the orbital har-
monics can be calculated for bulk InAs and AlAs crystals. We
performed DFT calculations using the WIEN2K package [32]
with the modified Becke-Johnson exchange-correlation poten-
tial [33] (we have checked that PBEsol generalized gradient
approximation gives almost the same results). For AlAs we
obtained αP = 0.51, αT = −0.29, αS = 0.50, and αD = 0.63.
For InAs we obtained αP = 0.69, αT = −0.35, αS = 0.49,
and αD = 0.41. The signs of these coefficients were found
from additional tight-binding calculations.

For comparison, we perform similar calculations for the
� valley of the conduction band. Here, the Bloch ampli-
tude consists, by more than 98%, of s type functions, so
the contributions of the other orbitals can be neglected, and the
hyperfine interaction in the � valley is isotropic. As a result
the wave function is described by the two amplitudes αc and
αa of the S orbitals at the cation and anion, respectively. Using
the hydrogenlike functions, as described above, we obtain the
hyperfine coupling constants

A�
Al = 9α2

AlA0, A�
In = 20.2α2

InA0, A�
As = 25.7α2

AsA0. (5)

These expressions are analogous to Eq. (4), and the constant
A0 here is the same. Further, the DFT calculations of the
wave functions in the � valley of the conduction band of the
bulk crystals yield the coefficients αAl = 0.64, αAs = 0.76 for
AlAs and αIn = 0.72, αAs = 0.70 for InAs.

Finally, we represent the alloy In0.7Al0.3As as a mixture of
InAs and AlAs with the corresponding weights. The relative
values of the hyperfine coupling constants for the (In,Al)As
and GaAs are given in Table I. Here, for the sake of conve-
nience, we normalize all the constants by the A‖

As value of
In0.7Al0.3As. In the X valley the hyperfine interaction is by
far the strongest for the As nuclei, and for cations In and Al
exchange coupling constants in the X valley are very small.
This is due to the Fermi contact interaction of the s shell
of the arsenic atom, which is stronger than the dipole-dipole
interaction. The latter, however, results in an anisotropy of the
hyperfine interaction, which is characterized by the parameter
ε = A⊥

As/A‖
As = 0.61. In the � valley the hyperfine interaction

is isotropic and stronger than in the X valley due to the
completely s type of the Bloch amplitude.

The significant disadvantage of our approach is that it
yields reliably only the relative values of the hyperfine cou-

TABLE II. Hyperfine constants for the X and � valleys of the
In0.7Al0.3As conduction band. The values are given in μeV.

As In Al

A‖ 29 0.93 0.67
A⊥ 17.69 −0.46 −0.35
A� 43.5 [35] 56 [37] 16 [38]

pling constants [10,34]. To find the absolute values, we
performed a similar DFT calculation for bulk GaAs and
obtained expressions similar to Eq. (5): A�

Ga = 9.88A0 and
A�

As = 12.6A0. The relative values of these constants with
respect to A‖

As in In0.7Al0.3As are given in the last row in
Table I. These constants were measured to be A�

Ga = 50 μeV
and A�

As = 43.5 μeV [35,36]. The latter was measured with
better precision, so we use it to find A0 = 3.5 μeV. Note that
this value corresponds to A�

Ga in GaAs that is 7% larger than
the one measured experimentally, and this can be considered
an estimation of the accuracy of our approach.

With A0 at hand, we calculate all the hyperfine coupling
constants in In0.7Al0.3As and collect the results in Table II. In
particular, we find A⊥

As = εA‖
As = 17.69 μeV, with ε = 0.61.

C. Modeling of experimentally measured Hanle
and polarization recovery curves

The finite number of nuclear spins in a QD results in nu-
clear spin fluctuations. Their spin dynamics is very slow com-
pared to the electron spin dynamics, and therefore, the nuclei
effectively create the frozen Overhauser magnetic field, BN .

At low temperatures, as follows from Fig. 6, both the
electron spin relaxation time and the exciton lifetime are much
longer than the precession period of the electron spin in the
effective field of the nuclear spin fluctuation. For this reason,
only the component of the electron spin along the total field
(external magnetic field plus effective Overhauser magnetic
field) survives. By the time moment of recombination, the
projection of the mean electron spin on the z axis equals

Sz = S0〈cos2 θ〉, (6)

where S0||z is the mean spin of the electrons just when
they arrive at the X valley state, θ is the angle of the total
field relative to the z axis, and the averaging is performed
over the distribution function of nuclear spin fluctuations.
Since the number of nuclear spins in the QD is large and
they are, on average, unpolarized, the x, y, and z compo-
nents of the hyperfine field are independent random variables
characterized by a Gaussian distribution with the variance

〈(
Bα

N

)2〉 = I (I + 1)

3

V0

V

(
Aα

As

geμB

)2

= �2
αB2

N , (7)

i.e., mean-square hyperfine field created by one nucleus mul-
tiplied by the number of nuclei in the QD. Here, α ∈ {x, y, z},
V0 = 45.1 × 10−24 cm3 is the primitive cell volume, V is the
QD volume, and I = 3/2, with ge being the electron g factor
in the X valley. We neglected here the hyperfine interaction
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with the cations. Here, �α = Aα
As/A‖

As, and

BN = A‖
As

geμB

√
I (I + 1)

3

V0

V
(8)

is the rms nuclear fluctuation field along the axis of the X
valley.

The square cosine of the inclination angle of the total field
B∗ = B + BN equals

cos2 θ = B∗2
z

B∗2
x + B∗2

y + B∗2
z

= b2
z

b2
x + b2

y + b2
z

, (9)

where b ≡ B∗/BN . By averaging Eq. (6) over the Gaussian
distribution of nuclear fluctuation field we obtain an expres-
sion for Sz:

Sz(B/BN ) = S0√
8π3�x�y�z

∫∫∫
b2

z

b2
x + b2

y + b2
z

exp

[
− b2

x

2�2
x

− b2
y

2�2
y

− (bz − B/BN )2

2�2
z

]
dbxdbydbz (10)

in the case of the PRC, and

Sz(B/BN ) = S0√
8π3�x�y�z

∫∫∫
b2

z

b2
x + b2

y + b2
z

exp

[
− (bx − B/BN )2

2�2
x

− b2
y

2�2
y

− b2
z

2�2
z

]
dbxdbydbz (11)

in the case of the Hanle effect.
The numeric solution of the integrals in Eqs. (10) and (11)

yields Sz/S0 as a function of B/BN . For a given anisotropy
of the hyperfine interaction and orientation of the magnetic
field, the curves can be fitted to the experimentally measured
Hanle and polarization recovery curves by changing the single
parameter BN .

In Figure 7 the experimental curves are shown along with
the fits by the numerical solution of the integrals in Eqs. (10)
and (11) for the cases when the axis of the X valley is directed
along the structural axis z [Fig. 7(a)], along x [Fig. 7(b)], and
along y [Fig. 7(c)] and for mixing of the x and y directions
[Fig. 7(d)]. The mixing of x and y means that the electron
rapidly hops between the Xx and Xy valleys. This hopping can
lead to the spin relaxation; thus, we implicitly assume that the
hopping time is shorter than h̄2/(g2

eμ
2
BB2

Nτ0), where τ0 is the
exciton lifetime.

One can see that full agreement between both experimen-
tally measured curves and theoretical calculations is obtained
only when the X valley axis is directed along the z direction.
However, for all four variants of the X valley directions the
Hanle curves are well fitted assuming BN = 1.25 mT.

FIG. 7. Experimental Hanle (red circles) and PRC (blue circles)
curves measured at T = 4 K fitted with Eqs. (10) and (11) (lines) for
the cases when the X valley is directed along (a) the z axis �x =
�y = 0.61, �z = 1; (b) the x axis �x = 1, �y = �z = 0.61; (c) the
y axis �x = �z = 0.61, �y = 1; and (d) the x axis and y axis with
equal probabilities with rapid electron transitions between the two
valleys (xy mixing) �x = �y = 0.805, �z = 0.61.

As we mentioned above, the hyperfine interaction in the X
valley is the strongest for the As nuclei and negligibly small
for the In and Al nuclei. Using BN = 1.25 mT, we can find
from Eq. (8) the constant A‖

As for the given QD volume. Since
we do not know the volume exactly, we plot in Fig. 8 A‖

As as a
function of the QD volume V .

0.5 1 1.5 2 2.5
10

15

20

25

30

V×103 (nm3)

A
|| A

s (µ
eV

)

2 4 6 8 10
N(×104)

FIG. 8. The hyperfine constant in the X valley for As as a
function QD volume (blue curve). The red point corresponds to Vav;
the blue point is the theoretically calculated hyperfine constant of
A‖

As. Dashed lines show the limits of the QD volumes. The numbers
of nuclei in the QD corresponding to QD volume are given on the
top axis.
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The two dashed lines in Fig. 8 show the margins for
the QD volume found from the TEM measurements [V =
(0.5 − 2.3) × 103 nm3] and the corresponding margins for
the hyperfine coupling constant: A‖

As = 13.7–29.3 μeV. The
average QD volume is Vav = 1.18 × 103 nm3, which corre-
sponds to A‖

As = 20.3 μeV (red dot). The theoretical value
A‖

As = 29 μeV lies within the margins. Note that the number
of nuclei in the QD N = 2Vav/V0 = 5 × 104 is large, which
justifies our effective mass and mean-field approximations.
The obtained estimations for the hyperfine coupling constants
in Table II are the main result of the present study.

IV. DISCUSSION AND CONCLUSIONS

In our description of the PL polarization we assumed that it
equals the electron spin polarization. Thus, we neglected the
hole spin polarization. Indeed, if the polarization of the PL
were determined by the hole spin, it would be independent of
the transverse magnetic field because of the negligible heavy-
hole transverse g factor. In our experiments, by contrast, the
polarization degree is equally sensitive to the longitudinal and
transverse magnetic fields, �H = �PRC (see Fig. 5). This in-
dicates that the polarization of the PL is indeed determined by
the electron spin polarization. We note also that we neglected
the electron-hole exchange interaction, which is known to be
weak for the indirect band gap (In,Al)As QDs [12].

From Fig. 7 it is seen that the best agreement of the theoret-
ical calculations with the experimental data is observed when
the X valley is directed along the z axis. This is surprising
since it is believed that this valley is pushed up from the
two Xx and Xy valleys. One possible explanation is that it
is the z-oriented X valley that is populated by the electron
transfer from the � minimum under the excitation conditions
used in our experiments. Another explanation is that it is an
effect of the electron-hole exchange interaction, which might
be not as weak as generally believed. Indeed, the exchange
interaction effectively acts as a magnetic field along the z
axis and increases the electron spin polarization in zero field
relative to its value in strong longitudinal magnetic field. The
detailed analysis of the total intensity of the PL can help
to clarify this issue in future works. In any case, fitting the
experimental curves with models assuming that the X valley
is directed along x, y, or both axes shows good agreement for

the Hanle curves and gives the same value of BN = 1.25 mT.
This fact allows us to calculate the hyperfine constants for
the As, In, and Al nuclei in the X valley. From Table II it is
seen that only the As nuclei have a strong interaction with the
electron spin in the X valley. This fact results in a considerable
narrowing of the Hanle curve compared to that of � excitons,
in spite of the modest difference in As hyperfine constants for
the X and � points. The width of the Hanle curve is further
narrowed due to the relatively large g factor in the X valley.

In conclusion, experiments on the optical spin orientation
of indirect excitons formed by � valley holes and X valley
electrons in (In,Al)As/AlAs QDs reveal magnetic field de-
pendences of the PL polarization that are typical of electrons
interacting with nuclear spin fluctuations. With the knowledge
of the electron g factor in the X valley, g ≈ 2, the measured
magnetic field scales of the polarization suppression in the
transverse magnetic field (Hanle effect) and its recovery in the
longitudinal field give an estimate of the strength of the hyper-
fine interaction of the X valley electron with all the nuclear
spins in the quantum dot. The comparison with theory based
on symmetry considerations and DFT calculations yields the
values of the hyperfine constants for each of the three nuclear
species (As, In, and Al) present in the structure.
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