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Exciton-exciton and exciton–charge carrier interaction and exciton
collisional broadening in GaAs/AlGaAs quantum wells
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Exciton-quasiparticle interactions govern the optical nonlinear response of heretostructures at the exciton
transitions. We theoretically analyze the exciton-exciton, exciton-electron, and exciton-hole interactions in
heterostructures with GaAs/AlGaAs quantum wells (QWs), however, our theoretical approach can be applied to
other types of heterostructures. The exciton-quasiparticle scattering amplitudes are calculated in the framework
of the two-particle Hartree-Fock approximation. The exchange interaction, which is mainly responsible for the
scattering, is modeled using microscopically calculated exciton wave functions. The corresponding exchange in-
teraction constants are determined as a function of quantum well width. The spin-dependent exciton-quasiparticle
elastic scattering matrix elements are used to obtain the collisional broadening of the exciton transition within
the Born approximation as a function of the areal density of the respective quasiparticles for QWs of various
widths. The obtained density dependences of the collisional nonradiative broadening can be used to estimate the
exciton and charge carrier densities in optical experiments.
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I. INTRODUCTION

At low temperatures, the optical spectra of high-quality
semiconductor nanostructures are dominated by excitonic
transitions, which are observed as homogeneously broadened
resonances. The energies of these resonances are generally
well predicted by modern theoretical approaches [1,2]. How-
ever, another important characteristic of such resonances is the
broadening, which consists of the radiative and nonradiative
contributions. While the radiative broadening of a given exci-
tonic resonance may be calculated with reasonable accuracy if
the wave function is known [2–6], modeling the nonradiative
broadening is a more difficult problem to tackle, because
many possible interactions may contribute to it.

The nonradiative broadening of an exciton resonance is
determined by the interactions between the exciton and other
quasiparticles present in a high-quality heterostructure, such
as other excitons, charge carriers or phonons. The study of
the nonradiative broadening is one of the possible routes
to understanding these interactions. In general, interparticle
interactions give rise to optical nonlinearities. These non-
linearities allow the photons to interact, making it possible
to use photons for nonlinear quantum computing. The var-
ious exciton-quasiparticle interactions are widely studied in
heterostructures with quantum wells (QWs) [7–10], microcav-
ities [11], two-dimensional (2D) structures [12–14], and many
other systems [15–17].

A common and well studied interaction is the exciton-
phonon interaction [18–24]. In this case, the concentration of
phonons is determined by the sample’s temperature. However,
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at low temperatures the most important types of quasipar-
ticles interacting with optically active excitons are the free
carriers and other excitons, especially nonradiative excitons
with large in-plane wave vectors exceeding the wave vector of
light. Although experimental studies of these interactions have
been conducted for already three decades [25–33], impor-
tant characteristics of these interactions, such as the physical
mechanisms and the scattering cross section, are still not
uniquely determined. The problem lies in the densities of
the quasiparticles, which cannot be determined directly from
experiments with sufficient accuracy. Indeed, when measuring
concentrations through absorption one is faced with uncertain-
ties in the absorption coefficient and more importantly in the
efficiency of quasiparticle generation. When using lumines-
cence to determine the exciton concentrations, uncertainties
in the efficiency of photon emission get in the way [8].

Then there is also the problem of nonradiative excitons
with large in-plane wave vectors [31,33,34]. In heterostruc-
tures, the density of the nonradiative excitons strongly
depends not only on the experimental conditions of optical
excitation, but also on the quality of the heterostructure. In
high-quality structures with quantum wells, the lifetime of
the nonradiative excitons reaches tens of nanoseconds [31],
therefore their areal density can exceed that of radiative exci-
tons by orders of magnitude [33]. Apart from these excitons,
free carriers may also be created. As a result, a reservoir
with a mixture with nonradiative excitons and free carries is
formed. The rich dynamics of quasiparticles in this reservoir
with exciton formation and dissociation further complicate the
problem [29,33,35].

It should be noted that interactions between quasiparti-
cles produce not only homogeneous broadening, but also
lineshifts. However, experiments show that the magnitude of
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the lineshift corresponding to, e.g, the exciton-exciton interac-
tion, is smaller than the broadening, and is not as sensitive to
the concentration [8,36,37]. Therefore we consider the colli-
sional broadening a more convenient quantity in experiments,
and do not discuss the lineshifts in this work.

There exists a large amount of theoretical works dedicated
specifically to exciton-exciton and exciton-carrier interactions
in semiconductor nanostructures. In the early works, the spin
degrees of freedom were neglected entirely [38,39]. Later
works treated excitons as elementary bosons [40], which
also proved to be an incomplete treatment. Some of the first
works to incorporate the composite character of excitons
were conducted by May, Boldt and Henneberger [41,42]. The
importance of interexciton exchange interactions was first
suggested in the work [43], which is mostly experimental, but
also contains a theoretical section. The collisional broadening
of 2D heavy-hole excitons due to exciton-exciton interactions
was calculated by Ciuti et al. [44]. The broadening of neutral
and charged excitons due to collisions with electrons was
calculated by the group of Cohen [45], although a somewhat
different approach was used. Both of these works accounted
for the spin degrees of freedom and also reported on the dom-
inant role of exchange interactions. Exciton-carrier scattering
was also studied in [46], however their study was focused
on carrier-assisted radiative recombination. Some attempts
were also made to introduce an effective potential which
would account for the exchange interaction [47]. Through
these works it became clear that, when discussing exci-
ton interactions, excitons must not be treated as elementary
bosons.

However, as first pointed out by Okumura and Ogawa
[48], the previous attempts at this type of treatment were
incomplete. They have discovered that in approaches such
as in [44] (i.e., the Hartree-Fock approximation), although
the fermion composition of the exciton is taken into account,
some terms are missed, which leads to an underestimate of
the interaction strength, and hence of the broadening as well.
Combescot and colleagues have stressed the importance of
a proper treatment of the exciton-exciton interaction, and
have built a new “coboson” theory to describe it (see, for
example [49]). Their work was expanded upon in a paper
by Glazov et al. [50], in which they have shown a simpler
way to obtain the same results as in Ref. [49] by means of
orthogonalizing the initial and final scattering states in the
boson approach.

In this work, we present a theoretical study of exciton-
exciton and exciton-carrier scattering in GaAs/AlGaAs rect-
angular QWs and their effect on the nonradiative broadening
of the heavy-hole exciton resonance. The QWs are assumed
to be ideal and finite in depth. Microscopic calculations of the
exciton wave functions are carried out. Using these wave func-
tions, we determine the exciton-exciton, exciton-electron, and
exciton-hole exchange constants with respect to QW width.
The wave functions are used to calculate the broadening due
to excitons colliding with other excitons, as well as charge
carriers. We exploit the relatively simple model introduced
in the paper by Ciuti et al. [44], which does not account for
exciton correlation effects and misses some interaction terms
[48], but nevertheless gives reliable estimates for exciton-
exciton collisional broadening and correctly reproduces the

spin scattering channels. In its original form, the model of
Ref. [44] is limited to the treatment of strictly 2D exci-
tons. We generalize it for 3D excitons in ideal rectangular
GaAs/AlGaAs finite QWs, the wave functions of which are
calculated by the numerical solution of the corresponding
Schrödinger equations according to Refs. [2,6]. The usage
of such numerical wave functions allows us to study the
behavior of the broadening with respect to the width of the
QW, which has not been studied previously to the authors’
knowledge. We calculate the exciton line broadening for sev-
eral QW widths for two limiting cases of spin polarization,
and analyze the QW width dependency of the broadening
using two-parameter functions. We also modify the model
for the case of exciton-carrier scattering. The comparison
with Refs. [44,45] allows us to see how the usage of more
precise wave functions affects the calculations. The lack of
any fitting parameters in our model allows the results to be
directly compared to experiments, and also provides a way of
estimating exciton and carrier concentrations from the broad-
ening.

The paper is organised as follows. In Sec. II we describe the
general theoretical framework used in our study of exciton-
electron, exciton-hole, and exciton-exciton interactions. In
Sec. III we elaborate on the numerical methods we used.
Section IV is devoted to the problem of density-dependent
collisional broadening of the exciton resonance in the three
cases discussed. Finally, in Sec. V we draw conclusions and
compare our results to literature.

II. THEORETICAL MODEL OF EXCITON-CARRIER
AND EXCITON-EXCITON SCATTERING

A. Wave functions of excitons and carriers

We assume an ideal rectangular GaAs/AlGaAs QW with
no defects. We restrict ourselves to the 1s-like ground state
of the heavy-hole exciton, the wave functions of which are
numerically obtained according to Ref. [2]. The numerical
wave functions obtained in this way have no fitting param-
eters, and generally model experiments very well when the
effective mass approximation is valid [2,5,6]. An exciton
Hamiltonian is constructed, with the hole in the valence band
being described by a Luttinger Hamiltonian. In these calcu-
lations, the heavy-hole/light-hole coupling is not taken into
account, however for QWs with width L < 50 nm the ef-
fects of hole subband mixing on exciton wave functions may
be neglected for our purposes. Our estimates reveal that the
heavy-hole/light-hole splitting is close to 0.7 meV in the
L = 50 nm case and quickly grows with decreasing L. In
wider QWs, our results must be treated as estimates. The
calculations below were carried out for a 30% concentration
of Al in the barriers, but we remark that changes in the con-
centration do not affect the results significantly. In a narrow
QW with lower Al content in the barrier, the wave functions
would exhibit more significant barrier penetration, equivalent
to a wider GaAs/Al0.3Ga0.7As QW. For 15% Al barriers, this
QW width difference is around 1.5 nm, and for 3% Al barrier
concentration it is closer to 6–8 nm.

In the absence of heavy-hole/light-hole coupling, the Lut-
tinger Hamiltonian is diagonal. The corresponding exciton
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Hamiltonian can be written as [2]

ĤX = h̄2k̂2
e

2me
+ h̄2

2m⊥
h

(
k̂2

h,x + k̂2
h,y

) + h̄2k̂2
h,z

2m‖
h

+ Veh(re, rh) + Ve(ze) + Vh(zh), (1)

where k̂e is the electron wave vector operator, k̂h,x(y,z) are the
hole wave vector operators, re(h) is the electron (hole) coordi-
nate vector, me is the electron effective mass, m‖

h is the hole
mass in the growth direction, m⊥

h is the in-plane hole mass.
Finally, Veh is the electron-hole Coulomb attraction potential,
and Ve(h) is the electron (hole) rectangular QW potential, the
depth of which is determined by the Al concentration in the
barriers.

Due to the axial symmetry, the Schrödinger equation
for the six-dimensional Hamiltonian (1) is reduced to three
dimensions. Then the equation is discretized with a finite-
difference scheme. Finally, the eigenvalue problem is solved
using the Krylov-Schur algorithm [51], yielding the numerical
1s-like wave function φ(ρeh, ze, zh), which depends on the in-
plane distance between the electron and the hole ρeh and their
coordinates in the growth direction ze and zh. The complete
wave function has the form

ψQX (re, rh) = 1√
A

eiQX ·R⊥
eh · φ(ρeh, ze, zh), (2)

where the exponential factor eiQX ·R⊥
eh describes the in-plane

free motion of the exciton as a whole. It is characterized by the
in-plane 2D wave vector QX and depends on the 2D in-plane
center of mass vector R⊥

eh = (mer⊥
e + mhr⊥

h )/M, where me

and m⊥
h are the electron and hole effective masses in the plane

of the QW, and M = me + m⊥
h . Finally, A is the normalization

area.
For the carrier wave functions, we use the finite square

well model as a reasonable approximation of an ideal QW.
For electrons and holes, the Hamiltonians are, respectively,

Ĥe = h̄2k̂2
e

2me
+ Ve(ze), (3)

Ĥh = h̄2

2m⊥
h

(
k̂2

h,x + k̂2
h,y

) + h̄2k̂2
h,z

2m‖
h

+ Vh(zh). (4)

The total wave function of a free electron (hole) ψ
Qe(h)

e(h) (re(h) )
may be written as

ψ
Qe(h)

e(h) (re(h) ) = 1√
A

eiQe(h)·r⊥
e(h) · φe(h)(ze(h) ), (5)

where φe(h)(ze(h) ) is the wave function of the first quantum-
confined state of the electron (hole), which depends on the
carrier’s coordinate in the growth direction ze(h). These wave
functions have the well-known “exp-cos-exp” form (see, e.g.,
Ref. [52]). The exponential factor describes the in-plane free
motion of the particles, and is characterized by the carrier’s
in-plane 2D wave vector Qe(h) and depends on its coordinate
in the QW plane r⊥

e(h). A is the same normalization area as
before.

Apart from the spatial components of the exciton and car-
rier wave functions, we consider also the spin components.
Let the growth axis be the quantization axis for the angular

momentum. The conduction band is assumed to be isotropic,
and is characterized by just two spin projections, se = ±1/2.
Neglecting hole subband mixing, two projections of angular
momentum may be ascribed to the heavy-hole band, jh =
±3/2. Therefore, a heavy-hole exciton has four independent
states: the dipole-active (bright) excitons with total angular
momentum Jz = ±1, and the dipole-forbidden (dark) excitons
with Jz = ±2.

As in Ref. [44], we define the spin wave functions of
such excitons in spin state SX as |SX 〉 = χS (se, jh). For
example, |+1〉 = χ+1(se, jh) = δse,−1/2δ jh,+3/2 and |+2〉 =
δse,+1/2δ jh,+3/2, where δ is the Kronecker delta. In the general
case of elliptically polarized light, excitons are created in the
coherent spin superposition

|Eα〉 = sin α |+1〉 + eiφ cos α |−1〉 . (6)

The orthogonal state is |Eα+π/2〉 = cos α |+1〉 − sin α |−1〉.
Circular polarization of excitation corresponds to α = 0, π/2,
while linear polarization corresponds to α = π/4, 3π/4. We
note that the phase φ describes the orientation of the main
axis of the elliptically polarised light and has no effect on
the following calculations, and so we will assume φ = 0 for
simplicity.

For electrons we define the spin wave functions |Se〉 =
χSe (se) = δse,Se , and similarly for holes. The considered basis
states for carriers are the spin states corresponding to the z
projection of spin:

|S±
e 〉 = |±1/2〉 , (7)

|S±
h 〉 = |±3/2〉 . (8)

The total wave function of an exciton or carrier is taken as the
product of the spatial and spin wave functions, i.e.,

	
SX
QX

(e, h) = ψQX (re, rh) · χSX (se, jh) (9)

for excitons, and similarly for electrons and holes. Here the
symbol e (h) denotes both the spatial and spin components of
the electron (hole).

B. Scattering amplitudes

In this section, we will derive the scattering amplitudes for
elastic scattering of 1s-like excitons by 1s-like excitons (X-
X), and also by free electrons (X-e) and holes (X-h) in their
respective ground state subbands. We consider the following
scattering channels:

X−X : (QX , SX ) + (QX ′ , SX ′ ) → (
Q f

X , S f
X

) + (
Q f

X ′ , S f
X ′

)
,

X−e : (QX , SX ) + (Qe′ , Se′ ) → (
Q f

X , S f
X

) + (
Q f

e′ , S f
e′
)
,

X−h : (QX , SX ) + (Qh′ , Sh′ ) → (
Q f

X , S f
X

) + (
Q f

h′ , S f
h′
)
.

(10)

Here (QX , SX ) is the 1s-like exciton state with in-plane
wave vector QX and spin SX , and (Qe′(h′ ), Se′(h′ ) ) is the electron
(hole) ground confined state with in-plane wave vector Qe′(h′ )
and spin Se′(h′ ). In the above expressions, the scattering is
elastic in the sense that the quasiparticles remain in their initial
subbands after scattering. Because the total momentum must
be conserved, we may rewrite the scattering channels in terms
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(a) X-X scattering

(b) X-e scattering
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FIG. 1. The X-X and X-e scattering processes and the definitions
of the final wave vectors. For simplicity, in the figure all wave vectors
are directed along the same line. The quantities 
QX -e, 
QX -X are
defined in Eqs. (22), (31).

of the transferred momentum q:

X−X : Q f
X = QX + q; Q f

X ′ = QX ′ − q,

X−e : Q f
X = QX + q; Q f

e′ = Qe′ − q, (11)

X−h : Q f
X = QX + q; Q f

h′ = Qh′ − q.

An illustration of the scattering processes in the X-X and X-e
cases is shown in Fig. 1.

It is enough to consider only the channels (10) when the
energy splittings between the ground and nearest excited sub-
bands of the quasiparticles are greater than the calculated
broadening and the average kinetic energies of the particles.
At liquid helium temperatures the kinetic energies of ther-
malized quasiparticles are in the order of 0.5 meV. Then,
assuming the broadening to be in the order of 1 meV (as
we will actually find), we must limit our treatment to QWs
narrower than approximately 50 nm. In such QWs, the heavy-
hole/light-hole splitting is larger than 1 meV, which allows
us to neglect the scattering events in which a heavy-hole
exciton transforms into a light-hole exciton. Conveniently,
this also allows us to neglect the scattering of heavy-hole
excitons by light-hole excitons, since in equilibrium at low
temperatures they are practically absent from the sample, and
quickly become heavy-hole excitons if created with resonant
excitation. Another possible scattering channel is formed by
transitions of heavy-hole excitons into their first excited 2s-
like state, however, for a strictly 3D hydrogenlike exciton,
the binding energy of the first excited state (2s) is only 1/4
of that of the ground state. In GaAs QWs, this implies an
energy splitting greater than 3 meV, which effectively forbids
such scattering events. Transitions with electrons/holes being
excited into their second quantum-confined subbands may
also be neglected, as the corresponding energy splittings are
greater than those for excitons.

We note that in this and the following sections, expressions
for the exciton-carrier scattering will mostly be written for
electrons, as they are easily modified for the exciton-hole case.

In the two-particle Hartree-Fock approximation, the prop-
erly symmetrized wave function of an exciton-electron system
has the form

�
S,Se′
QX ,Qe′

= 1√
2

[
	

SX
QX

(e, h)·	Se′
Qe′

(e′)

−	
SX
QX

(e′, h)·	Se′
Qe′

(e)
]
. (12)

Similarly, the wave function of the two-exciton system is
defined as

�
SX ,SX ′
QX ,QX ′ = 1

2

{[
	

SX
QX

(e, h) · 	
SX ′
QX ′ (e

′, h′)

+ 	
SX
QX

(e′, h′) · 	
SX ′
QX ′ (e, h)

]
− [	SX

QX
(e′, h) · 	

SX ′
QX ′ (e, h′)

+ 	
SX
QX

(e, h′) · 	
SX ′
QX ′ (e

′, h)
]}

. (13)

Here we must note that the wave functions (12) and (13) form
overcomplete nonorthogonal bases. This matter was studied
by Combescot et al. and is dealt with in the framework of
their “coboson” theory [49]. Similar results were obtained
in Ref. [50] by Glazov et al., who have pointed out that
the nonorthogonality corrections are actually quite small. We,
therefore, do not account for this nonorthogonality to simplify
the calculations. In Ref. [47] it has been pointed that in this
case, a normalizing denominator is left out. However, our
estimates suggest that only a ∼1% error is induced by this
approximation. We believe that these simplifications do not
lead to significant errors in our calculations of the broadening.
We also note that electron-hole exchange effects are neglected
in the employed model. The corresponding energy splitting
between the bright and dark exciton states reaches around 200
μeV in a 5 nm QW and quickly decreases in wider QWs [53].
In this work, we neglect this splitting for simplicity.

The Hamiltonian of the exciton-electron system contains
the kinetic energies of the three particles and all possible
Coulomb interactions:

ĤX -e = T̂X -e − V (|re − rh|) + V (|re − re′ |) − V (|re′ − rh|).
(14)

In the two-exciton case:

ĤX -X = T̂X -X − V (|re − rh|) − V (|re′ − rh′ |)
+ V (|re − re′ |) + V (|rh − rh′ |)
− V (|re − rh′ |) − V (|re′ − rh|). (15)

In these expressions T̂X -X and T̂X -e contain the necessary ki-
netic energy operators, and V (r) = e2/(ε0r) is the Coulomb
potential. The scattering amplitudes corresponding to the
channels (10) have the basic form [44]

H
S f

1 S f
2

S1S2
(Q1, Q2, q) = 〈

�
S f

1 S f
2

Q1+q,Q2−q

∣∣ Ĥ
∣∣�S1,S2

Q1,Q2

〉
, (16)

where Q1 and S1 describe the exciton state, while Q2 and S2

stand for the state of the carrier Qe′(h′ ), Se′(h′ ) or the state of the
other exciton QX ′ , SX ′ .

Let us first consider the exciton-electron case. The scatter-
ing amplitudes (16) are split into two terms:

H
S f

X S f
e′

SX Se′
(QX ,Qe′ ,q) = 〈

SX |S f
X

〉〈
Se′ |S f

e′
〉
HX -e

dir (QX ,Qe′ ,q)

+ SX -e
exch

(
SX , Se′ , S f

X , S f
e′
)
HX -e

exch(QX ,Qe′ ,q).
(17)
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TABLE I. Nonzero spin exhange matrix elements for exciton-
electron scattering. The considered bases are |±1/2〉 for electrons
and (|Eα〉 , |Eα+π/2〉 , |±2〉) for excitons (see Sec. II). For channels
not indicated in the table, the factors can be obtained by using
Eq. (18). Similar results are easily obtained for holes with the basis
|±3/2〉.

SX Se′ S f
X S f

e′ SX -e
exch

(
SX , Se′ , S f

X , S f
e′
)

Eα +1/2 Eα +1/2 cos2 α

Eα −1/2 Eα −1/2 sin2 α

Eα ±1/2 Eα+π/2 ±1/2 ∓ 1
2 sin 2α

Eα +1/2 +2 −1/2 sin α

Eα −1/2 −2 +1/2 cos α

±2 ±1/2 ±2 ±1/2 1

The first term (HX -e
dir ) corresponds to the classical electrostatic

interaction between the exciton and electron, and the second

one (HX -e
exch) arises from an exchange of electrons. The spin

factor is the spin exchange sum

SX -e
exch

(
SX , Se′ , S f

X , S f
e′
) =

∑
se, jh,se′

χ∗
S (se, jh)χ∗

Se′
(se′ )

× χS f (se′ , jh)χS f
e′

(se). (18)

As excitons are in the general case created by elliptically
polarized light, on a short timescale the proper basis to con-
sider for excitons is (|Eα〉 , |Eα+π/2〉 , |±2〉) [see Eq. (6)]. For
carriers, it is more practical to deal with the bases |±1/2〉 and
|±3/2〉. The spin factors are easily calculated and are func-
tions of α. For a list of allowed exciton-carrier spin-scattering
channels, see Table I.

The direct Coulomb and electron exchange terms are the
nine-dimensional integrals

HX -e
dir (QX , Qe′ , q) =

∫
d9 ψ∗

QX
(re, rh)ψ∗

Qe′
(re′ )VX -e(re, rh, re′ )ψQX +q(re, rh)ψQe′−q(re′ ), (19)

HX -e
exch(QX , Qe′ , q) =

∫
d9 ψ∗

QX
(re, rh)ψ∗

Qe′
(re′ )VX -e(re, rh, re′ )ψQX +q(re′ , rh)ψQe′−q(re), (20)

where d9
def= d3red3rhd3re′ , and VX -e is the interaction between the exciton and the electron:

VX -e(re, rh, re′ ) = V (|re − re′ |) − V (|rh − re′ |). (21)

Considering the four exponential factors in Eq. (19), we obtain a useful relation for the X-e fermion exchange integral HX -e
exch:

HX -e
exch(QX , Qe′ , q) = HX -e

exch((me/M )QX − Qe′ , q) def= HX -e
exch(
QX -e, q). (22)

A similar expression is true in the X-h case, with 
QX -h = (mh/M )QX − Qh′ .
We will now consider exciton-exciton scattering. In this case we have four contributions to the scattering amplitude:

H
S f

X S f
X ′

SX SX ′ (QX , QX ′ , q) = 〈
SX |S f

X

〉 〈
SX ′ |S f

X ′
〉
Hdir (QX , QX ′ , q) + 〈

SX |S f
X ′

〉 〈
SX ′ |S f

X

〉
HX

exch(QX , QX ′ , q)

+ Se
exch

(
SX , SX ′ , S f

X , S f
X ′

)
He

exch(QX , QX ′ , q) + Sh
exch

(
SX , SX ′ , S f

X , S f
X ′

)
Hh

exch(QX , QX ′ , q). (23)

These contributions correspond, respectively, to the classic electrostatic interaction between the two excitons (Hdir), exciton-
exciton exchange (Hexch), and fermion exchange related to the exchange of only electrons and holes (He

exch, Hh
exch). The spin

factors are the spin-exchange sums

Se(h)
exch

(
SX , SX ′ , S f

X , S f
X ′

) =
∑
se, jh,
se′ , jh′

χ∗
S (se, jh)χ∗

S′ (se′, jh′ )χS f (se′(e), jh(h′ ))χS′
f
(se(e′ ), jh′(h)). (24)

We remind that (|Eα〉 , |Eα+π/2〉 , |±2〉) is the appropriate spin-state basis to consider for excitons. The allowed exciton-exciton
spin scattering channels as reported in [44] are listed in Table II.

The direct Coulomb and the three exchange integrals are the 12-dimensional integrals

Hdir (QX , QX ′ , q) =
∫

d12 ψ∗
QX

(re, rh)ψ∗
QX ′ (re′ , rh′ )VX -X (re, rh, re′ , rh′ )ψQX +q(re, rh)ψQX ′ −q(re′ , rh′ ), (25)

HX
exch(QX , QX ′ , q) =

∫
d12 ψ∗

QX
(re, rh)ψ∗

QX ′ (re′ , rh′ )VX -X (re, rh, re′ , rh′ )ψQX +q(re′ , rh′ )ψQX ′−q(re, rh), (26)

He
exch(QX , QX ′ , q) =

∫
d12 ψ∗

QX
(re, rh)ψ∗

QX ′ (re′ , rh′ )VX -X (re, rh, re′ , rh′ )ψQX +q(re′ , rh)ψQX ′ −q(re, rh′ ), (27)

Hh
exch(QX , QX ′ , q) =

∫
d12 ψ∗

QX
(re, rh)ψ∗

QX ′ (re′ , rh′ )VX -X (re, rh, re′ , rh′ )ψQX +q(re, rh′ )ψQX ′ −q(re′ , rh), (28)

where d12
def= d3red3rhd3re′d3rh′ and VX -X is the interaction between the two excitons:

VX -X (re, rh, re′ , rh′ ) = V (|re − re′ |) + V (|rh − rh′ |) − V (|re − rh′ |) − V (|re′ − rh|). (29)
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TABLE II. Allowed spin channels for exciton-exciton scattering and their respective spin exchange factors as reported in Ref. [44]. The
considered basis is (|Eα〉 , |Eα+π/2〉 , |±2〉), where |Eα〉 and |Eα+π/2〉 are a pair of coherent orthogonal exciton spin states. For channels not
indicated in the table, the factors can be obtained by using Eq. (24).

SX SX ′ S f
X S f

X ′ Se
exch

(
SX , SX ′ , S f

X , S f
X ′

)
Sh

exch

(
SX , SX ′ , S f

X , S f
X ′

)
Eα Eα Eα Eα sin4 α + cos4 α sin4 α + cos4 α

Eα Eα Eα+π/2 Eα+π/2
1
2 sin2 2α 1

2 sin2 2α

Eα Eα Eα Eα+π/2 − 1
4 sin 4α − 1

4 sin 4α

Eα Eα +2 −2 1
2 sin 2α 1

2 sin 2α

Eα Eα+π/2 Eα Eα+π/2
1
2 sin2 2α 1

2 sin2 2α

Eα Eα+π/2 Eα+π/2 Eα+π/2
1
4 sin 4α 1

4 sin 4α

Eα Eα+π/2 +2 −2 − sin2 α cos2 α

Eα +2 Eα +2 cos2 α sin2 α

Eα +2 Eα+π/2 +2 - 1
2 sin 2α 1

2 sin 2α

Eα −2 Eα −2 sin2 α cos2 α

Eα −2 Eα+π/2 −2 1
2 sin 2α − 1

2 sin 2α

±2 ±2 ±2 ±2 1 1

One may notice that Hdir (QX , QX ′ , q) ≡ Hdir (q) (the ex-
ponents cancel each other out), and that HX

exch(QX , QX ′ , q) =
Hdir (QX , QX ′ , QX ′ − QX − q) [44]. Particularly, when QX =
QX ′ = 0,

Hdir (q) = HX
exch(q)

def= HX -X
dir (q). (30)

For the fermion exchange integrals it can be shown that [44]

He(h)
exch(QX , QX ′ , q) = He(h)

exch(QX − QX ′ , q)

def= He(h)
exch(
QX -X , q). (31)

Moreover, if 
QX -X = 0, then

He
exch(q) = Hh

exch(q)
def= HX -X

exch (q). (32)

We note that all of the matrix elements Eqs. (19), (20)
and (25)–(28) are real because of symmetry considerations
(see Ref. [44] for details). Also, it is necessary to point out
that all of the integrals above are inversely proportional to
the normalization area A: the product of the wave functions
is proportional to 1/A2, while integrating over the systems’
center of mass gives an A factor. Physically, this means that
the farther apart the excitons are from carriers or other ex-
citons on average, the weaker the scattering. Of course, when
calculating observables such as the collisional broadening, the
end result cannot depend on A. Still, it is easier to work with
normalization-independent quantities. Therefore we will be
dealing with the quantities JX -e(h)

dir , JX -e(h)
exch , JX -X

dir , JX -X
exch , which

are related to the matrix elements by the simple expression

J = A · H, (33)

and are independent of A. In particular, at zero wave vectors
(
QX -X = 
QX -e(h) = q = 0) the integrals are commonly
known as the exchange constants (see, e.g., Refs. [54] and
[36] and its Supplemental Material). Their physical meaning
is evident from the relation A = 1/nX,e,h, where nX,e,h is the
areal density of the respective quasiparticles. They point to
the exciton energy shift and allow to predict the QW width for
which the shift will be the strongest.

III. CALCULATION OF MATRIX ELEMENTS

To calculate the wave functions for excitons and carriers
we use material parameters used in Ref. [2], apart from the
effective masses, which were taken from the work by Vurgaft-
man et al. [55].

The eigenfunctions of the discretized three-dimensional
Schrödinger equation are represented by an array of wave
function amplitudes distributed across a uniform 3D grid with
step h. Generally, to obtain precise values for the matrix ele-
ments one must evaluate a series of them using wave functions
with decreasing step h, the precise value being the limit of this
dependence as h → 0 (see Ref. [2] for details). However, as an
estimate, it is often sufficient to evaluate the matrix elements
using one finite but sufficiently small h, as will be shown
below.

Since we use numerical wave functions for the relative
motion inside an exciton, all of the integrals must be computed
numerically. For each set of momenta {
Q, q} the integrals in
question are nine- and 12-dimensional, so even a single point
of the momentum dependences presents a certain computa-
tional challenge. However, there are ways to drastically speed
up the calculations. Firstly, a change of variables is neces-
sary (see the Appendix). Then, by efficiently implementing a
standard Monte Carlo integration scheme utilizing GPU paral-
lelism with the help of NVidia CUDA, we were able to speed
up the calculations by orders of magnitude. The calculation
of a single exciton-exciton integral to an error of around 10%
takes several minutes (on an NVidia GTX1660 6GB GPU) at
around 109 − 1010 ten-dimensional points, whereas it would
take hours on a regular CPU. For carriers the calculations are
much quicker [56].

The exchange constants for fermion exchange in the X-e,
X-h and X-X cases as functions of QW width are plotted in
Fig. 2. In this figure, each black symbol is an extrapolation
of the dependences J (L, h) as h → 0. For the exciton-exciton
curve the finite-h points have been added for reference, shown
by red crosses. The largest h used in these extrapolations are
in the range 1.25–4 nm, depending on the QW width. As it
can be seen from the figure, the extrapolation does not alter
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FIG. 2. Fermion exchange constants for exciton-exciton (black
crosses), exciton-electron (dots) and exciton-hole (empty dots) as
functions of QW width L. Each point is extrapolated from sequences
calculated at decreasing step values h. Red crosses denote examples
of such sequences for the exciton-exciton curve. Note that there are
two X-X fermion exchange terms, corresponding to electron-electron
and hole-hole exchange, which are characterized by the same ex-
change constant, shown in the figure [see Eqs. (23) and (32)]. We
neglect heavy-hole/light-hole mixing, therefore the results at L > 50
nm should be treated as rough estimates. The general decrease of the
exchange constants at large QW width is not a consequence of this.

the values significantly; in fact the smallest h (0.25–1 nm, de-
pending on the QW width) generally give very good estimates,
with errors in the order of 1%. Nevertheless, the extrapolation
must be performed in order to obtain a smooth curve. As we
will see, the broadening’s dependence on the QW width L is
mainly determined by the curves in Fig. 2, i.e., the exchange
constants.

The negative signs of the exchange constants imply the
tendency of antiparallel spin alignment. Noting that the
exciton-exciton interaction includes two fermion exchange
terms [see Eqs. (23) and (32)], we can see that the exchange
interaction is of similar magnitude in the three systems stud-
ied. The exciton-hole exchange constants are slightly smaller
in magnitude than those in the exciton-electron case. This is a
consequence of the hole’s larger mass. In narrow wells the X-e
and X-h curves coincide. In this region, the hole’s larger mass
leads to weaker barrier penetration, which in turn enhances
the interaction relative to the exciton-electron case. Overall
the QW width dependences of the exchange constants are
rather weak, with variation of around 10% in the considered
range. The broad maxima of the dependences in the region of
L = 25–65 nm are likely a result of the interplay between the
increasing confinement and the changing shape of the wave
functions, both along the growth axis, and in the (x, y) plane.

Ciuti et al. report the fermion exchange constant for
exciton-exciton interaction to be equal to approximately
4.2 μeV μm2 for strictly 2D excitons in GaAs [44], which
is in good agreement with our data for narrow QWs. For
an infinite-barrier 20 nm GaAs QW the exciton-electron
exchange constant is around 15 μeV μm2, as reported by
Ramon, Mann, and Cohen [45], whereas our results estimate
it to be around 10 μeV μm2. In their work, the effective Bohr
radius of a trial exciton wave function was calculated by a

variational procedure and turned out to be around 15 nm.
According to our estimates, it is smaller by around 15%. Al-
though this difference may not affect single exciton integrals,
the different behavior of their approximate wave function
and our numerical exciton wave function at large ρeh could
significantly alter the exciton-electron integrals.

Obtaining the matrix elements as proper functions of all
the considered momenta [see Eq. (16)] involves calculating
seven- and ten-dimensional integrals as functions of three
scalar variables [44,45]. Estimating around ten points per
variable, we would require 103 integrals for each interaction
type and each QW considered, which is an incredibly diffi-
cult computational task. Let us consider the simpler case of

QX -X = 
QX -e(h) = 0, which corresponds to low tempera-
tures and low pumping intensity, when the average momentum
of all quasiparticles is small compared to the inverse exciton
Bohr radius. The matrix elements calculated as functions of
transferred momentum q for several QW widths are shown
in Fig. 3. The chosen QWs well represent the region where
our wave functions are applicable, that is, where the QWs are
neither too narrow for the envelope function approximation to
be accurate, nor too wide for the effects of heavy-hole/light-
hole mixing to be significant. In these calculations we have
not performed h extrapolation, using exciton wave functions
with relatively small steps as a reasonable approximation (see
caption to Fig. 3).

It can clearly be seen that at all L the fermion exchange
terms dominate, which is a fact well established in literature
[43]; in fact, the overall shape of the q dependence of the
matrix elements is well known [44–46]. The specific shape
of the curves in Fig. 3 is determined by the interplay of the
attractive and repulsive potentials in Eqs. (21) and (29) and
the different confinement of the electron and hole inside an
exciton. The matrix elements of single Coulomb potentials
[the terms in Eqs. (21) and (29)] are approximately an order
of magnitude higher than those of the total potentials VX -X (e,h).
The total charge of an exciton is zero, therefore at q = 0 the
direct terms are negligible, vanishing completely for all q if
me = mh because of equal confinement of the Coulomb-bound
electron and hole. The exchange integrals, in contrast, reach
their maximum values at q = 0, equal to the exchange con-
stants shown in Fig. 2.

IV. COLLISIONAL BROADENING

In optical experiments, the scattering of quasiparticles
in general leads to lineshifts and homogeneous collisional
broadening. One possible approach to calculating this density-
dependent broadening has been described in detail in
Refs. [41] and [42], and successfully used in Ref. [44]. In this
approach, based on the second-order Born approximation, an
implicit equation for the broadening �

SX
QX

of the exciton state
(QX , SX ) in the case of exciton-exciton scattering is derived:

�
SX
QX

= 2π
∑
QX ′

∑
SX ′ ,

S f
X , S f

X ′

NSX ′ (QX ′ )
∑
q �=0

∣∣∣HS f
X S f

X ′
SX SX ′ (QX , QX ′ , q)

∣∣∣2

× L
(
EQX + EQX ′ − EQX +q − EQX ′ −q,

�
SX
QX

+ �
SX ′
QX ′ + �

S f
X

QX +q + �
S f

X ′
QX ′−q

)
. (34)
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FIG. 3. Matrix elements of exciton-exciton (a), exciton-electron (b), and exciton-hole (c) scattering as functions of transferred momentum
q at 
QX -X = 
QX -e(h) = 0. Dotted lines: direct terms, solid lines: exchange terms. Colors denote QW widths. The exciton wave function’s
grid step h for each QW width used: 5 – 0.25 nm, 15 – 0.3 nm, 30 – 0.5 nm, 50 – 1 nm. aB = 11.7 nm is the bulk GaAs hydrogenlike heavy-hole
exciton Bohr radius. Note that there are four terms in the X-X interaction represented by the two integrals in panel (a) [see Eqs. (23) and (32)].

Similar expressions may be derived for exciton-carrier scat-
tering. For electrons

�
SX
QX

= 2π
∑
Qe′

∑
Se′ ,

S f
X , S f

e′

NSe′ (Qe′ )
∑
q �=0

∣∣∣HS f
X S f

e′
SX Se′

(QX , Qe′ , q)
∣∣∣2

× L
(
EQX + EQe′ − EQX +q − EQe′−q,

�
SX
QX

+ �
Se′
Qe′

+ �
S f

X
QX +q + �

S f
e′

Qe′−q

)
. (35)

In the equations above NSX ′ (QX ′ ) [NSe′ (Qe′ )] is the num-
ber of excitons (electrons) in the corresponding state, EQ =
h̄2Q2/2M and EQe′ = h̄2Q2

e′/2me are the exciton and electron
in-plane kinetic energies, respectively, and L is the Lorentzian
function

L(E , γ ) = 1

π

γ /2

E2 + (γ /2)2
. (36)

The physical meaning of Eqs (34) and (35) is clear: because
of additional interactions, excitons are damped quasiparticles,
and the conservation of energy is partially lifted [57]. The
finite-width Lorentzian is a consequence of the two-exciton
or exciton-carrier energy having an imaginary component,
which itself arises from the non-Hermiticity of the effective
Hamiltonian [42]. In the limit of very small damping, i.e., as
γ → 0, L(E , γ ) → δ(E ), and the expressions (34), (35) are
reduced to the usual Born approximation (see, for example
Collision theory in Ref. [58]).

In considering these equations, we note that the functions
NSX ′ (QX ′ ) and NSe′ (Qe′ ) depend on the experimental condi-
tions (i.e., temperature, pump energy and intensity, pump
polarization, etc.). In the general case they must be obtained
separately by considering the dynamics of the exciton (carrier)
gas, which is beyond the scope of our work. However, the
problem can be simplified under certain conditions.

We assume the excitons to be created by resonant pho-
tons, thus their wave vector is around 0.3 in units of 1/aB

(aB = 15.9 nm is the bulk GaAs heavy-hole exciton Bohr

radius). On a timescale of several ps the excitons remain
largely within the light cone. At longer times, the excitons
thermalize, and the nonradiative exciton reservoir is formed
[33]. At helium temperatures, the wave vectors of reservoir
excitons Q reach values of about 0.5–0.7 in units of 1/aB. We
have carried out additional calculations with finite in-plane
momenta in a 30 nm QW, and they reveal that at such wave
vectors, the scattering matrix elements do decrease relative
to the QX = 0 case, but not significantly, similarly to the q
dependences shown in Fig. 3. Thus, even the large wave vector
exciton reservoir can be approximately treated as if QX = 0
when discussing exciton-exciton and exciton-carrier interac-
tions, provided it is characterized by temperatures of less than
10 K. Nevertheless, we will mainly restrict our discussion to
excitons inside the light cone, which are well-approximated
by QX = 0.

Carriers may also be created optically. Hot carriers cre-
ated by non-resonant excitation are characterized by large
kinetic energies in the order of 10–30 meV, which implies
electron wave vectors in the range 1.5–3.0 in units of 1/aB.
For holes, the corresponding wave vectors are larger by a
factor of around 1.3. In our calculations of the broadening
below we neglect the carrier momenta Qe′(h′ ), which implies
a low temperature carrier reservoir. This is possible with
near-resonant excitation, and also in experiments with low
intensity continuous-wave pumping. If discussing dynamics
experiments, then only processes with characteristic times
much greater than the carrier energy relaxation time should
be considered. It is well known that the energy relaxation of
hot carriers is a fast process, with characteristic times in the
order of 100 ps (see, e.g., Ref. [59]).

To further simplify the problem, we will also neglect the
dependence of the broadening � on spin and momentum.
Moreover, we will assume that in the exciton-carrier case the
damping is the same for excitons and carriers. This is a fairly
crude approximation, however, the damping values should be
in the same order for excitons and carriers, which is indeed
the case, as will be shown below.
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Finally, replacing the sum over q by an integral and rewrit-
ing in terms of J = A H [see Eq. (33)], we transform Eqs. (34)
and (35) to

�X -X =
∑
SX ′ ,

S f
X , S f

X ′

nSX ′

∫ ∞

0
dq q

∣∣∣JS f
X S f

X ′
SX SX ′ (0, 0, q)

∣∣∣2

× 1

π

2�X -X(
h̄2q2

M

)2
+ 4�2

X -X

, (37)

�X -e =
∑
Se′ ,

S f
X , S f

e′

nSe′

∫ ∞

0
dq q

∣∣∣JS f
X S f

e′
SX Se′

(0, 0, q)
∣∣∣2

× 1

π

2�X -e(
h̄2q2

2M∗
e

)2
+ 4�2

X -e

, (38)

where we have introduced the exciton (electron) areal den-
sity nSX ′ = NSX ′ /A (nS′

e
= NS′

e
/A) and have defined M∗

e =
1/(M−1 + m−1

e ). Expression (38) is trivially modified for
holes.

To obtain the broadening, we must specify the distribu-
tions nS , nSe(h) , which determine the spin polarization of the
ensemble of scattering particles. The parameter α reflects
the polarization of photons which create new excitons, and
determines the spin scattering channels (see Tables I and II).
We consider the exciton-exciton problem first. In the case of
circularly polarized light (α = 0, π/2), excitons are created
in the states |±1〉. If all excitons are created optically, then
the only channel is (±1,±1) → (±1,±1). This means that
the exciton population remains in the initial state as long as
other spin relaxation mechanisms are negligible. Assuming a
short-delay pump-probe experiment scheme with copolarized
pump and probe pulses, we then have

�X -X = nX

∫ ∞

0
dq q

∣∣J1,1
1,1 (0, 0, q)

∣∣2 1

π

2�X -X(
h̄2q2

M

)2
+ 4�2

X -X

,

(39)

which we will refer to as the copolarized case.
Now let us assume an experiment with excitation into the

heavy-hole exciton resonance by a linearly polarized laser
pulse (α = π/4). In this case two bright excitons in the state
|Eα〉 can scatter not only into the same states or orthogonal
ones, but also to the dark states |±2〉. Considering all the
possible spin channels and their relative weight (see Table II),
we find that eventually an equal redistribution of populations
in each state must take place. The time required for this
redistribution is on the order of the inverse of the broaden-
ing (several ps for a broadening of ∼ 1 meV). In this case
n|x〉 = n|y〉 = n|+2〉 = n|−2〉 = nX /4 and we have

�X -X =
∑
SX ′ ,

S f
X , S f

X ′

nX

4

∫ ∞

0
dq q

∣∣∣JS f
X S f

X ′
SX SX ′ (0, 0, q)

∣∣∣2

× 1

π

2�X -X(
h̄2q2

M

)2
+ 4�2

X -X

. (40)

This equation may be applied to luminescence experiments or
experiments where a cold exciton reservoir is formed. We note
that in the case of equal population of each state, the choice of
α is arbitrary, as one would expect.

For the problem of exciton-carrier scattering similar rea-
soning may be employed. In the limiting case of complete
polarization of both excitons and carriers, only the transitions
(|±1〉 , |∓1/2〉) → (|±1〉 , |∓1/2〉) take place (for holes it is
the same channel with |±3/2〉 instead of |∓1/2〉). Therefore,
for a short-delay co-polarized pump-probe experiment we
may write the exciton-electron collisional broadening as

�X -e = ne

∫ ∞

0
dq q

∣∣J1,−1/2
1,−1/2 (0, 0, q)

∣∣2

× 1

π

2�X -e(
h̄2q2

2M∗
e

)2
+ 4�2

X -e

, (41)

and for holes a similar expression is obtainable.
On the other hand, if excitons and carriers are created with

linearly polarized light or are otherwise created without a sig-
nificant spin polarization, then all of the spin scattering events
in Table I are possible, and the carriers populate the states
|±1/2〉 (|±3/2〉) equally. Denoting the total electron density
as ne, we get the following expression for the broadening of
the exciton resonance:

�X -e =
∑
Se′ ,

S f
X , S f

e′

ne

2

∫ ∞

0
dq q

∣∣∣JS f
X S f

e′
SX Se′

(0, 0, q)
∣∣∣2

× 1

π

2�X -e(
h̄2q2

2M∗
e

)2
+ 4�2

X -e

. (42)

We use expressions (39)–(42) to calculate the density-
dependent collisional broadening for four GaAs/AlGaAs
QWs (L = 5, 15, 30, 50 nm) due to exciton-exciton,
exciton-electron and exciton-hole scattering and in both the
copolarized and the unpolarized cases. The results are pre-
sented in Fig. 4, see panels (a), (b), and (c).

It is immediately apparent that all interactions grow in
strength with decreasing QW width L. The reason for this
is evident. With decreasing L, the exciton is squeezed not
only along the growth axis, but also in the (x, y) plane, and
in the limiting 2D case, the exciton Bohr radius is reduced
to aB/2. The increased confinement is connected to increased
delocalization of the exciton in reciprocal space, which results
in the widening of the q dependences with decreasing L in
Fig. 3. In turn, this increases the integrals in the broadening
equations (39)–(42), leading to an increase in the broadening.
One may treat this effect as a manifestation of the uncertainty
principle: increased confinement leads to greater momentum
uncertainty, which translates to greater broadening of the en-
ergy levels. The exciton-exciton matrix elements are stronger
affected by this exciton squeezing than the exciton-carrier
ones (see Fig. 3), which leads to a strong dependence on
L in Fig. 4(a). In the exciton-electron case the L depen-
dence is weakened because the direct and exchange terms
partially compensate each other in the region of large q [see
Fig. 3(b)].
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FIG. 4. Top panels: density-dependent collisional broadening of the heavy-hole exciton resonance in rectangular GaAs/AlGaAs QWs for
three scattering mechanisms: (a) exciton-exciton scattering, (b) exciton-electron scattering, (c) exciton-hole scattering. Solid lines: all spin
states populated equally (cold exciton reservoir or luminescence experiments), see Eqs. (40), (42); lines with circles: only the spin states |+1〉
(excitons), |−1/2〉 (electrons) and |+3/2〉 (holes), or the equivalent opposite sign states are populated, and the probe pulse is copolarized, see
Eqs. (39) and (41). Note: 100 μm−2 = 1 × 1010 cm−2. The bottom panels (d), (e), and (f) display the L dependences of the low-density cross
section σ0 (blue symbols, left axes) and the critical density n0 (red symbols, right axes) for the three scattering processes in the unpolarized
case [see Eq. (44)]. Squared crosses in panel (d) are results of fitting the unpolarised curves from Ref. [44], the squared solid circle in panel
(e) is the linear cross section extracted from the 5 K curves of Ref. [45].

With L decreasing further, the overall magnitudes of the
matrix elements begin to decrease as a consequence of the
wave functions penetrating the barriers. The decrease at all
values of q is approximately proportional to the decrease of
the exchange constants in Fig. 2. Once this decrease becomes
large enough, it compensates the increasing width of the J (q)
curves. In the X-e and X-h cases, where the exchange con-
stants experience a sharper decrease compared to the X-X case
(see Fig. 2), the beginning of a saturationlike behavior of � is
observed in narrow QWs. We have also studied the �(n) de-
pendences in a 3-nm QW, though the use of an effective mass
approach in such narrow QWs is debatable. Nevertheless, in
these calculations we have observed a decrease in � relative
to the 5- nm case in all three types of scattering, caused by the
significant barrier penetration of the exciton and carrier wave
functions.

The exciton-exciton collisional broadening is noticeably
different in the copolarised and unpolarised cases, whereas
exciton-carrier scattering is almost independent of polariza-
tion. This is explained by a larger number of spin scattering
channels for the unpolarized exciton-exciton scattering. We
have also considered various cases of partial spin polarization
of excitons and carriers. In our calculations, the broadening
turned out to be generally greater than in the unpolarized
case, but less than in the case of complete polarization. As
experiments show, the GaAs QW exciton dynamics are char-
acterized by a fast (∼10 ps) component, followed by a much
slower one [33,43]. This could be partially explained by the
scattering of |Eα〉 excitons into the orthogonal and dark states,
however at this point it is not possible to separate this process

from the contribution of the quickly recombining radiative
excitons.

All of the broadening curves presented in Figs. 4(a), 4(b)
and 4(c) demonstrate sublinear dependence on the exciton or
carrier areal density. This is an effect caused by the Lorentzian
in Eqs. (40) and (41): as � increases, scattering events with
greater transferred momentum q begin to occur. The matrix
elements near q = 0 decrease with rising q, and this causes the
sublinear dependence. The sublinear behavior of the curves
can be easily analyzed. In the limit of very small broadening,
the Lorentzian behaves similarly to a δ function. This elimi-
nates the dependence on � on the right side of the equations,
leading to a linear �(n) dependence near n = 0 with a coeffi-
cient σ0 that is proportional to the corresponding exchange
constant squared. In the exciton-exciton case, for example,
Eqs. (39) and (40) dictate that the relationships between σ0

and the exchange constants Jexch are

σ th
0 = a

M

h̄2 J2
exch, (43)

where a is a number that is between 2.5 (unpolarized
case) and 4 (copolarized case), and the constant M/h̄2 ≈
0.6 μeV−1μm−2.

At large �, when the Lorentzian is much broader in q than
the matrix elements J (0, 0, q), the asymptotic behavior of the
broadening is such that �(n) ∼ √

n, with the coefficient being
proportional to the integral of J2

exch(0, 0, q). These considera-
tions allow fitting the curves with the two-parameter functions

� = σ0
n

1 + √
n/n0

, (44)
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which accurately model the numerical results, with relative
errors of the fitting parameters σ0, n0 in the order of 1%.
Based on Eq. (44), we may introduce the density-dependent
scattering cross-section

σ (n) = σ0

1 + √
n/n0

. (45)

The physical meaning of the fitting parameters is evident from
Eq. (45): σ0 is the scattering cross section in the linear regime,
when �(n) = σ0n, and n0 is the quasiparticle density at which
the cross section is halved, i.e., σ (n0) = σ0/2. This parameter
determines the density at which the �(n) dependence becomes
essentially sublinear. The fit results in the unpolarized case are
plotted in panels (d), (e), and (f) of Fig. 4. The low-density
cross-sections σ0 vary within the range 30–60 μeV μm2.
Since they are proportional to the corresponding exchange
constants squared, their QW dependences closely follow the
dependences in Fig. 2, with the ratio σ0/σ

th
0 ≈ 1.3 - 1.4. The

discrepancy is due to the choice of the model function (44).
The same behavior is observed in our fit data for the copolar-
ized case, with σ0/σ

th
0 ≈ 1.4 - 1.5.

Let us compare the magnitude of the broadening �(n) to
that of the shift 
E (n). In the linear regime, dividing one
by the other eliminates the density dependence and yields the
rough estimate

�(n)


E (n)
≈ σ0n

Jexchn
≈ (2 ÷ 5)

M

h̄2 Jexch ≈ (5 ÷ 13), (46)

which is an order-of-magnitude difference, and is consistent
with the experimental findings of Refs. [36,37].

In wide QWs, the critical densities n0 are quite small,
with n0 < 5 μm−2 for L � 30 nm. A significant increase in
n0 is observed across all cases in narrow wells, which is
a consequence of the excitons being squeezed in the QW
plane. This increase in n0 widens the density range where
the broadening may be considered linear in density. We must
note that in real experiments the transition from the linear to
the sublinear regime may be obscured by noise, as well as
errors in determining the exciton/carrier densities. Moreover,
the �(n) dependence may seem linear if the measurements
are made across a range of one order of magnitude in density,
meaning that special attention must be paid in experiments
with seemingly linear power dependences of the exciton reso-
nance broadening.

The exciton-exciton collisional broadening can be com-
pared to the work of Ciuti et al. [44]. We have fitted the
unpolarized curves presented in their work with the function
(44), the results are plotted in Fig. 4(b). The cross-section
in the linear regime is consistent with our results for narrow
QWs, as is the critical density. Overall, the exciton-exciton
broadening obtained in our work for the narrowest QW (L = 5
nm) is larger by a factor of 1.15 than the result of Ref. [44].
There are several possible reasons for this, e.g. the differ-
ent material parameters used in our work and in theirs, and
the difference between our microscopically calculated wave-
functions and the strictly 2D analytical wave functions of
Ref. [44]. Overall, we find our exciton-exciton calculation in
good agreement with this work, predictably.

Our exciton-electron data can be compared to the results
obtained for an infinite-barrier 20 nm QW by G. Ramon, A.

Mann and E. Cohen [45]. They take the thermal distribution
of electrons into account, while we only consider stationary
carriers at very low temperatures. However, they note that the
scattering favours events such that 
QX -e = −q and that the
amplitude only weakly depends on 
Q in a wide range. Con-
sidering this fact, one would expect similar results with our
approach. However, our calculations produce a broadening
that is smaller than their 5 K result by a factor of 1.5 in the
linear regime (see Fig. 4(b)), and is much more sublinear at
larger electron densities. We ascribe the large difference to
the different approaches of our work and Ref. [45]: we use the
self-consistent Eq. (35), while Fermi’s golden rule was used
in [45], which corresponds to a Lorentzian of zero width in
our model. Naturally, this causes our approach to produce a
much smaller broadening.

V. DISCUSSION AND CONCLUSIONS

In this work, we have developed a general theoretical ap-
proach for study of the exciton-exciton and exciton-carrier
interaction in quantum wells. We have considered the case
of relatively weak interaction, when the unperturbed wave
functions of the interacting quasiparticles can be used in the
theoretical modeling, and correlation effects can be neglected.
The exciton wave functions were calculated by the direct nu-
merical solution of the 3D Schrödinger equation for excitons
in QWs of different widths with finite potential barriers. The
direct Coulomb and exchange matrix elements are obtained
by the numerical calculations of the nine- and 12-dimensional
integrals. The spin degrees of freedom are also taken into
account via a Hartree-Fock approach. In this work we have
considered only the case of small exciton and carrier wave
vectors in the QW layer, with a finite transferred momentum
q due to the collisions between quasiparticles. Similarly to
Refs. [44,45,47], we have found that the exchange interaction
dominates over the direct one.

We have also calculated the collision-induced broadening
of exciton resonances, which is observable in optical experi-
ments. In these calculations we have used an approach based
on the second-order Born approximation, taking into account
the spin dependence of the interactions. We have determined
that the fermion exchange constants, i.e., the exchange matrix
elements at zero momenta, are the greatest factor determining
the overall strength of the interactions, particularly at low
densities. The other important factor is the spatial distribution
of the electron-hole pair inside the exciton. The behavior of
the broadening with respect to QW width is almost entirely
determined by the interplay of these two factors. This is sup-
ported by analyzing the results of fitting the broadening curves
in terms of model two-parameter functions. Additionally, the
introduction of such functions should help compare our results
to experimental works in the future.

We have shown that the exciton-exciton interaction leads
to greater broadening than exciton-carrier interaction in the
considered model. The QW width dependence is predictably
stronger in the exciton-exciton case, and is weakest in the
exciton-electron case because of the direct and exchange ma-
trix elements partially compensating each other. The different
interactions also behave differently with respect to spin po-
larization. Exciton-exciton collisional broadening is enhanced
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by approximately 30% in the copolarized case relative to
the unpolarized one at large exciton densities, i.e., when n ∈
(40; 100) μm−2. At the same time, exciton-carrier interactions
lead to a broadening that is nearly independent of polarization.
We interpret this as a consequence of the richer spin scattering
channels in the exciton-exciton case.

We have demonstrated that the cross section of the exciton-
exciton collisional broadening in the low-density regime is
proportional to the exchange constant squared, with a coef-
ficient ranging from 1.5 to 2.5, depending on the degree of
spin polarization of the exciton ensemble. We must stress,
however, that this relation holds only at very low exciton
densities. The sublinear dependence of the broadening on
particle density becomes apparent only across a very wide
range of densities, around two orders of magnitude. Because
of various factors, the sublinearity may be masked in exper-
iments if measurements are made across a small range of
densities, making the dependence seem linear. In that case a
linear approximation could yield only a very rough estimate
of the exchange constants.

Our results indicate that the lineshift (signified by the
exchange constants) and the exciton line broadening reach
their maxima in QWs of different width. The high-density
broadening is maximized in 5–10 nm QWs (see Fig. 4), while
the lineshift is greatest in wide 35–75 nm QWs. This could
help choose the best QW structure for a given application.

The above calculations have been carried out for
GaAs/AlGaAs with a 30% Al concentration in the barriers.
However, varying the Al content in the barriers does not
have a strong effect on the results. Moreover, the approach
can be easily applied to other similar QW structures, e.g.,
CdTe/CdMgTe QWs.

Comparison of our results with other works [44,45] yields
good agreement, the small discrepancies are mainly due to
the simpler wave functions used in these works. Quantitative
comparison with experiments is complicated because proper
momentum distributions must be included in the calculations.
This tremendously complicates the problem, but it is crucial
for the advancement of theoretical studies of exciton scat-
tering, especially to describe experiments with a large-wave
vector exciton reservoir.
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APPENDIX: CHANGING THE VARIABLES

For the exciton-electron integrals:

(re, rh, re′ ) → (ρeh, ze, zh, ρe′h, ze′ , σ ), (A1)

where ρeh(e′h) = r⊥
e(e′ ) − r⊥

h are the in-plane coordinates of
the electrons relative to the hole, σ = (mer⊥

e + mer⊥
e′ +

mhr⊥
h )/(2me + mh) is the system’s center of mass. Due to the

translational symmetry of the exciton-electron system, the in-
tegrals do not depend on σ , so the integration over σ is trivial
and gives the normalization area A. This reduces the integrals
to seven-dimensional ones. The rest of the coordinates are
chosen so that the wave functions vanish as any of them go
to infinity. We further increase the convergence of the integral
by switching to double polar coordinates in (ρeh, ρe′h). This
is due to the fact that uniformly distributed points on a polar
grid have a higher density near the origin; in our case, the
integrands are largest at the origin and vanish exponentially,
which provides enhanced convergence compared to cartesian
coordinates.

To calculate the exciton-exciton matrix elements, the vari-
ables are also changed:

(re, rh, re′ , rh′ ) → (ρeh, ze, zh, ρe′h′ , ze′ , zh′ , ξ , σ ), (A2)

where ρeh(e′h′ ) = r⊥
e(e′ ) − r⊥

h(h′ ) are the in-plane relative coor-
dinates of the excitons, σ = (Reh + Re′h′ )/2 is the system’s
center of mass, and ξ = Reh − Re′h′ is the distance be-
tween the two excitons. Due to the translational symmetry
of the two-exciton system, the integrals do not depend
on σ , so the integration over σ is trivial and gives the
normalization area A. This reduces the integrals to ten-
dimensional ones. Again, the convergence of the integral is
further increased by switching to triple polar coordinates in
(ρeh, ρe′h′ , ξ ).
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