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Invariants in the paramagnetic resonance spectra of impurity-doped crystals
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We show that in cubic crystals with anisotropic impurity centers the sum of squares of the magnetic resonance
[electron paramagnetic resonance (EPR)] frequencies is invariant with respect to the magnetic field direction.
The connection between such an invariant and the g-tensor components of the impurity is derived for different
types of centers. The established regularity is confirmed experimentally for the spin-noise spectra of a cubic
CaF2-Nd3+ crystal. We show how this property of the EPR spectra can be efficiently used for the assignment of
paramagnetic centers in cubic crystals.
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I. INTRODUCTION

Dielectric crystals with paramagnetic impurities are known
to be classical objects of optical and electron paramagnetic
resonance (EPR) spectroscopy and have remained popular
materials of present-day photonics and optoelectronics [1–4].
The advantages of the impurity-doped crystals are related to
the fact that their properties can be significantly modified by
small amounts of dopants without affecting the structure and
macroscopic symmetry of the crystal [5–7]. For many applica-
tions, dielectric crystals doped with paramagnetic impurities
acquire unique magnetic (spin-related) properties [8–11]. It
is important that the point symmetry of the impurity centers,
in many cases, appears to be lower than that of the regular
site. The anisotropy of the impurity centers, however, is not
revealed in macroscopic properties of the crystal [12], so that
cubic crystals remain magnetically and optically isotropic,
and uniaxial crystals remain isotropic in the plane orthogonal
to their axes [13–15].

The hidden anisotropy of the impurity centers can be
revealed using experimental methods not restricted by the
effects of linear response. The most efficient among them is
the method of EPR spectroscopy that makes it possible to ex-
amine the magnetic characteristics of a center in great detail.
In crystals with anisotropic paramagnetic impurities with a
large number of magnetically nonequivalent centers, the EPR
spectra appear to be rather complex and not so simple for
deciphering. Still, it is clear that the total macroscopic sym-
metry of the magnetic susceptibility of the crystal (described
by a second-order characteristic surface) should be inevitably
consistent not only with the spatial arrangement of the centers
in the crystalline matrix, but also with the angular behavior
of their EPR resonances. When applied to cubic crystals with
anisotropic impurity centers, which will be the main object of

our research, it means that the combination of all the EPR
frequencies of the impurities has to provide invariance of
the crystal magnetization with respect to the magnetic field
direction.

In this paper, we attract attention to the fact that the connec-
tion between the magnetization of an impurity-doped crystal
and its EPR frequencies is essentially different for a field of
fixed direction varied in magnitude and for the field of fixed
magnitude varied in direction. In the former case, both the
magnetization and the EPR frequency vary linearly with the
magnetic field, so that the EPR frequency can be immediately
used as a measure of the magnetization. In the latter case, the
EPR frequencies vary only due to a change of the effective g
factors of the anisotropic centers. As a result, the magnetiza-
tion of the crystal, quadratically dependent on the impurity’s
g factor, varies as the EPR frequency squared. This fact, in
combination with the magnetic isotropy of the cubic crystal,
allows one to obtain an important invariant relation between
EPR frequencies of the impurity centers, that is useful for
interpretations of the EPR spectra in these systems. We show
that this invariant is given by the sum of squares of EPR
frequencies of all magnetically nonequivalent centers of the
same type and is determined numerically by the values of the
impurity’s g-tensor components. Note that in classical EPR
spectroscopy, when the precession frequency is fixed, and the
magnetic resonance spectrum is specified by a set of resonant
magnetic fields, the above invariant remains valid but acquires
the form of the sum of squares of inverse resonant magnetic
fields.

As compared with the classical EPR spectroscopy,
the method of spin-noise (SN) spectroscopy (see, e.g.,
Refs. [16–19]), that does not imply application of any AC
field, allows one to obtain in a single-shot measurement the
panoramic EPR spectrum of the crystal as a function of
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frequency, with all the frequencies needed to calculate the
above invariant. We encountered the problem of deciphering
multiline EPR spectra of impurity centers in cubic crystals in
our studies of rare-earth-activated crystals using the method
of SN spectroscopy [20]. These data are used here to illustrate
the applicability of the proposed algorithm for assigning the
EPR peaks to particular impurity centers in a cubic crystal.

II. THEORETICAL BACKGROUND

To establish the origin of individual magnetic peaks, we
begin with development of the theoretical background, which
would allow one to relate the experimentally observed Larmor
resonance frequencies to the total magnetization of the crystal
in a magnetic field. Consider first the case of a cubic crystal
with anisotropic paramagnetic impurity centers. The simplest
way to model such a crystal goes as follows. Let us place the
impurity at an arbitrary point of the elementary cell of the
crystal and apply all transformations of the cubic group of
symmetry. Thus we will find all points of the elementary cell
equivalent to the first one from the viewpoint of symmetry.
Since we have no grounds to give a preference to some of
them, we assume that all these sites are filled with impu-
rity ions uniformly. One can easily see that the number of
orientationally distinguishable sites will depend on the local
symmetry of the crystal in the chosen point: The number of
sites of higher symmetry will be smaller than that of lower
symmetry. In particular, for the cubic crystal in question, this
number may be 3 (tetragonal centers), 4 (trigonal centers), 6
(rhombic centers), and 12 or 24 (centers of lower symmetry).
Each of these numbers (denoted as N) corresponds to the
number of magnetically nonequivalent centers of the appro-
priate symmetry. We assume the total concentration of the
impurity centers to be small, so that the crystal, as a whole,
keeps its cubic symmetry. In this case, in the high-temperature
limit, the tensor χ of the static magnetic susceptibility, that
describes the linear relation between the magnetization of the
crystal and the applied magnetic field B (M = χB), is a scalar,
χik = χ0δik .

Let us number the groups of magnetically equivalent
centers by the superscript α = 1, 2, . . . , N and denote the
concentration of the centers of each group by n. The magneti-
zation M of the system is equal to the sum of the contributions
Mα of all groups of centers, with each of them being described
by its susceptibility tensor χα ,

Mi =
N∑

α=1

Mα
i =

N∑
α=1

χα
ikBk ⇒ χik =

N∑
α=1

χα
ik, (1)

i.e., the tensor χ of the crystal is the sum of tensors of all the
groups. For consistency of our further analysis, we present
the calculation of the tensor χα [21,22]. The Hamiltonian of
an arbitrary center of the group is given by the scalar product
of the operator of magnetic moment of the center m and the
magnetic field vector B: Hα = −miBi. The operator of the
magnetic moment is related to that of angular momentum
(spin) S through the symmetric g tensor,

mi = μgα
ikSk . (2)

Here, μ is the Bohr magneton. We will consider our paramag-
netic centers as two-level systems described by the effective
spin S = 1/2 [23]. In this case, the spin operator matrices Si

turn into Pauli matrices, and the matrix Hα of the Hamiltonian
of the center acquires the form

Hα = −miBi = −μgα
ikSkBi ≡ −μhα

i Si,

|hα|2 = |B|2[(gα
1

)2
cos2 θ1 + (

gα
2

)2
cos2 θ2 + (

gα
3

)2
cos2 θ3

]
,

(3)

where we introduced the effective field hα , and expressed its
magnitude squared through the direction cosines (cos θi, i =
1, 2, 3) of the magnetic field in the coordinate frame where
the tensor gα is diagonal with principal values gα

i , i = 1, 2, 3.
Assuming the temperature T is so high that μ|hα| � kBT (kB

is the Boltzmann constant), we can present the equilibrium
density matrix ρα in the form

ρα = 1 − βHα

2
, β ≡ 1/kBT . (4)

Then, for the mean value of the i-th projection of the magne-
tization, we can write the following chain of equalities,

Mα
i = n Sp ραmi = nβ

2
Sp Hαmi = nμ2β

2
Bjg

α
jl g

α
ik

δlk/2︷ ︸︸ ︷
Sp Sl Sk,

(5)

with Sp being the trace of the matrix. Here, we used the known
properties of the Pauli matrices. Now, taking into account that
the tensor gα is symmetric (gα

ik = gα
ki ), we can continue the

chain (5):

Mα
i = nμ2β

4
gα

ikgα
k jB j = nμ2β

4
[gα]2

i jB j = χα
i jB j . (6)

Using this relationship, we come to the conclusion that
the tensor χα of the static magnetic susceptibility of the α-th
group and the magnetic susceptibility tensor of the whole
crystal are given by the expressions

χα = nμ2β

4
[gα]2, χ = nμ2β

4

N∑
α=1

[gα]2. (7)

Note that, as was already mentioned, for the magnetically
isotropic crystal, χik = χ0δik , where χ0 is a scalar. Therefore,
for such crystals, the sum of squares of the g tensors of the
group of paramagnetic centers is a scalar, which we denote by
g2

0I (I is the unity matrix):

N∑
α=1

[gα]2
ik = g2

0δik . (8)

For the crystal with paramagnetic impurities occupying
positions that cross over into each other under the symmetry
transformations of the crystal, the principal values of the g
tensors of all centers are the same (gα

i ≡ gi, i = 1, 2, 3), and
the g tensors of each group differ only by orientations of
their axes. In this case, the factor g2

0 entering Eq. (8) can be
expressed through principal values of the g tensors (g1, g2,
and g3) by taking the trace of the right- and left-hand sides of
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this equation:

g2
0 = N

3

[
g2

1 + g2
2 + g2

3

]
. (9)

Now, let us turn to the calculation of the EPR frequencies
of the above crystal. The α-th group of centers provides a peak
in the EPR spectrum at the frequency ωα determined by the
difference of eigenvalues of Hamiltonian (3): h̄ωα = μ|hα|.
Using definition (3) for the components hα

i of the effective
field, we can write the following expression for the sum of
squares of the EPR frequencies:

N∑
α=1

ω2
α = μ2

h̄2

N∑
α=1

hα
i hα

i = μ2

h̄2

N∑
α=1

gα
ikgα

i jBkB j

= μ2

h̄2

N∑
α=1

[gα]2
k jBkB j . (10)

Taking into account Eqs. (8) and (9), we eventually have

N∑
α=1

ω2
α = N

3

(μB

h̄

)2

[g2
1 + g2

2 + g2
3]. (11)

Thus, we come to the conclusion that the sum of squares
of the EPR frequencies created by all magnetically nonequiv-
alent centers of the same type in a cubic crystal is invariant
with respect to the magnetic field direction and is determined
numerically by the sum of squares of the g-tensor components
of these centers. For a crystal with impurity centers of dif-
ferent types, the total number of EPR lines increases, but the
EPR spectra of centers of each type obey their own invariant
relationships. In the general case, the above invariants do not
allow one to unambiguously identify EPR spectra of a cubic
crystal, but may essentially simplify this problem.

Note now that Eq. (10) can be written in the form

N∑
α=1

ω2
α = 4

nβ h̄2 (M, B), M ≡
N∑

α=1

Mα, (12)

which shows that, in the general case, regardless of the crystal
symmetry, the sum of squares of the EPR frequencies of
paramagnetic centers is determined by the projection of the
total magnetization M of these centers onto the magnetic field
B. This fact establishes a direct relation between the EPR
frequencies of the impurity-doped crystal of arbitrary sym-
metry and its magnetization. In conformity with the crystal
symmetry, the above sum becomes invariant with respect to
the magnetic field direction not only for cubic crystals, but
also for uniaxial crystals provided that the magnetic field is
rotated in its “equatorial” plane.

III. EXPERIMENTAL ILLUSTRATION

To confirm the above conclusions, we took advantage of
the SN spectroscopy method that allows one to measure si-
multaneously all the resonance frequencies (spin precession
frequencies) observed in a fixed magnetic field.

The optical arrangement of the setup, schematically pre-
sented in Fig. 1, was similar to that described in Refs. [20,24].
As an object of study, we chose the sample CaF2-Nd3+ (0.1
mol %) used in our recent work [20] to demonstrate the

FIG. 1. Schematic of the homodyne-detection setup with a rotat-
ing magnetic field of constant strength. The laser beam is split at the
input polarizing beam splitter (PBS) of the Mach-Zehnder interfer-
ometer into two parts: the signal (probe) and local oscillator (LO).
The transmitted and scattered photons of the probe have orthogonal
linear polarizations. The polarizer is used to filter out the transmitted
part. The passed scattered light and the light of the LO are matched
to interfere on the 50:50 nonpolarizing beam splitter (nPBS). The
balanced photoreceiver measures the interference signal. The AC
part of the signal is analyzed using a spectrum analyzer.

applicability of the SN spectroscopy to dielectric crystals with
paramagnetic impurities. The laser wavelength was fixed at
862.69 nm, which corresponds to one of the absorption lines
of the Nd3+ centers in this crystal [20]. A plane-parallel plate
of the crystal with arbitrarily oriented crystallographic axes
was held in a cryostat at a temperature of ∼6 K. Unlike
conventional measurements of the SN spectra, performed in
a fixed magnetic field applied orthogonal to the optical axis,
the present experiments implied measuring the SN spectra at
varying orientation of the magnetic field with respect to the
crystal. We solved this task, as we believe, in the simplest
way, using a strong permanent magnet. The disklike magnet
magnetized along its cylindrical axis was placed outside the
cryostat, as shown in Fig. 1, and could be rotated around the
axis L lying in the plane of the disk and passing through the
center of the sample. As a result, the magnetic field created by
the magnet on the sample could be rotated in the plane normal
to the axis L, remaining the same in magnitude. Calibration of
the magnetic field by the permanent magnet was performed
by measuring the SN spectra of the sample in a magnetic
field of identical orientation created by an electromagnet. This
arrangement allowed us to make measurements of the SN
spectra at different orientations of the fixed magnetic field and,
in addition, to monitor the continuous transformation of the
SN spectra with rotation of the magnetic field.

Figure 2 shows the results of the measurements in a color
map format. In order to decipher the observed picture, we
note that the Nd3+ ion in the CaF2 crystal, replacing the
divalent cation Ca2+, typically occupies a tetragonal position
with the F− ion compensating the excess impurity charge. The
components of the ground-state g tensor of this center are
known to be g‖ = 4.412 and g⊥ = 1.301 [21]. The angular
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FIG. 2. Experimental angular dependence of the SN spectrum
of the crystal CaF2-Nd3+ (0.1 mol %), obtained by rotation of the
applied magnetic field (created by the outer permanent magnet). The
dashed curves represent fits of the experimental angular dependen-
cies of the SN resonance frequencies calculated by the relationship
h̄ω/μBm = √

a + b cos[2α] + c sin[2α]. The solid white circles in
the upper part of the figure are calculated after the expression√∑3

i=1[h̄ωi/μBm]2, with the frequencies ωi extracted from the ex-
perimental SN spectra. The solid white line shows the average of the
extracted values, and the pale white stripe indicates the confidence
interval for the measured quantity. The dotted white line represents
the invariant obtained from Eq. (11). As is seen, these two lines
coincide well within the experimental error.

dependencies of the characteristic EPR frequencies ωi, i =
1, 2, 3 for three groups of tetragonal centers upon the rota-
tion of the magnetic field in a fixed plane are given by the
expressions

(
h̄ω1

μBm

)2

= g2
⊥ + g2

‖ − g2
⊥

2
sin2 	[1 + cos 2α], (13)

(
h̄ω2

μBm

)2

= g2
⊥ + g2

‖
2

+ g2
‖ − g2

⊥
2

×[(
sin2 
 cos2 	 − cos2 


)
cos 2α

+ sin 2
 cos 	 sin 2α − sin2 
 sin2 	
]
, (14)

(
h̄ω3

μBm

)2

= g2
⊥ + g2

‖
2

+ g2
‖ − g2

⊥
2

× [(
cos2 
 cos2 	 − sin2 


)
cos 2α

− sin 2
 cos 	 sin 2α − cos2 
 sin2 	
]
. (15)

Here, Bm is the modulus of the magnetic field, which is con-
stant during the measurement. The angles 	 and 
 specify
the orientation of the axis of rotation of the magnetic field
in the crystal coordinate system. The angle α describes the
rotation of the magnetic field in the plane perpendicular to
the specified axis of rotation. Functions (13)–(15) are 180◦
periodic and reach minimum once per each 180◦. As can be

seen from the above expressions, all three minima are the
same and are determined by the value of g⊥ at h̄ωi/μBm = g⊥,
i = 1, 2, 3. These three curves, related to three groups of
magnetically nonequivalent centers, can be well distinguished
in the experimental picture.

To find out the values of the invariants, we performed
an accurate quantitative analysis of the experimental data.
The mentioned minima of the angular dependencies, the
same for all three groups of the centers and approximately
equal to ωmin = 2π · 185 × 106 rad/s (see Fig. 2), allowed
us to evaluate more accurately the magnetic field Bm cre-
ated by the permanent magnet on the sample. It is given
by the relationship Bm = h̄ωmin/g⊥μ = 10 mT (here, g⊥ =
1.301). As seen from Eqs. (13)–(15), the angular dependen-
cies of the resonance frequencies have the form h̄ω/μBm =√

a + b cos[2α] + c sin[2α], where α is the angle specifying
the orientation of the magnetic field in the plane of its rota-
tion. Results of the approximation of the experimental angular
dependencies by this equation are presented in Fig. 2 by the
dashed curves. In the upper part of the figure, the white solid

circles show the values of the quantity
√∑3

i=1[h̄ωi/μBm]2,
which are expected to be constant. The average experimental
value of this quantity (white solid line), as seen from the fig-

ure, well coincides with its calculated value
√

2g2
⊥ + g2

‖ [see

Eq. (11)] shown by the white dotted line. These results show
unambiguously that the three chosen SN resonance peaks
belong to different magnetically nonequivalent groups of the
same tetragonal Nd3+ centers.

At the same time, the experimental SN resonance spec-
tra presented in Fig. 2 reveal some additional peaks with a
different angular dependence. We did not intend to examine
accurately these dependencies, but we can conclude that these
peaks undoubtedly belong to Nd3+ centers (because of the
strong selectivity of the method in the optical channel) with
other values of the g-tensor components [20].

IV. CONCLUSION

To conclude, we have shown that in crystals with
anisotropic paramagnetic centers the sum of squares of the
EPR frequencies is proportional to the projection of the mag-
netization of the centers onto the magnetic field. In cubic
crystals, in view of their isotropy, the magnetization is aligned
along the applied field, and this sum remains invariant upon
rotation. The value of this invariant is easily expressed through
the impurity’s g-tensor components and can be used for identi-
fication of the centers. In uniaxial crystals, this quantity should
be invariant to rotation of the field in the plane orthogonal to
the crystal axis. In crystals of arbitrary symmetry, this sum
follows the general pattern of the crystal magnetization and
indicates its orientation with respect to the external magnetic
field. The angular behavior of this sum for all magnetically
nonequivalent centers of any (but the same) type reflects
the general magnetic anisotropy (or isotropy) of the crystal
through EPR frequencies of its impurities.
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