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Heavy-hole–light-hole exciton system in GaAs/AlGaAs quantum wells
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Light-hole (lh) excitons (Xlhs) in quantum wells (QWs) are hardly studied compared with heavy-hole (hh)
excitons (Xhhs), mainly due to the difficulties of their experimental observation. In this paper, a comprehensive
study of both types of excitons in high-quality GaAs/AlGaAs QWs of different widths is performed. We focus
on the energy positions of exciton resonances and the exciton-light interaction. The effect of mixing lhs and hhs
in GaAs-based structures on these exciton characteristics is investigated. The corrections to the exciton energy
due to mixing are only a fraction of millielectronvolts for wide QWs, in which the energy levels of Xhhs and Xlhs
are close to each other. It is also experimentally found that the oscillator strength of Xlhs is ∼2.5 times less than
that of Xhhs. This value noticeably deviates from the 3:1 oscillator strength ratio known for optical transitions
between free electron and hole states. This deviation originates from the different squeezing of the Xlh and Xhh
wave functions due to distinct values of the effective masses of the Xlh and Xhh in the heterostructure. Mixing
of hh and lh valence bands is not so important.
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I. INTRODUCTION

Excitons in quantum wells (QWs) have been exten-
sively studied for several decades since the publication by
Dingle et al. [1]. In GaAs-based heterostructures, the va-
lence band consists of the heavy-hole (hh) and light-hole
(lh) subbands which are split in QWs. Correspondingly,
the hh exciton (Xhh) and lh exciton (Xlh) can be ob-
served in optical experiments. Xhhs have giant oscillator
strength [2–4] and, therefore, have been extensively studied in
experiments [5–10].

Much less is known about Xlhs [11–15]. Natural funda-
mental reasons for that are smaller oscillator strength and
larger nonradiative broadening of Xlh resonances due to the
phonon-mediated relaxation to the low-lying Xhh state. In
wide QWs, the excited quantum-confined states of the Xhh
overlap with the ground Xlh state, which complicates its iden-
tification and the study of coupling with light.

Exciton transitions are experimentally studied using pho-
toluminescence (PL) or reflectance spectroscopy. The PL
intensity from Xlhs is typically weak, at least for narrow
QWs, in which Xlhs rapidly relax down to the Xhh state.
Correspondingly, reliable determinations of Xlh energies and
exciton oscillator strengths are problematic. Therefore, re-
flectance spectroscopy is mainly used for this purpose [15].

The exciton resonances observed in the reflectance spectra
of high-quality heterostructures can be quantitatively de-
scribed in the framework of the nonlocal optical response
theory [3]. This theory allows one to precisely approximate
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the exciton resonance profile and to determine such character-
istics of the Lorentz-shaped resonance as the exciton energy,
the radiative and nonradiative broadenings, and the phase of
the resonant reflection [5–8,15]. When the heterostructure is
of moderate or poor quality, the inhomogeneous broadening
of the exciton resonances can be considerably larger than the
homogeneous one. In this case, the quantitative analysis of the
resonances is complex and gives less reliable results.

This paper is devoted to an investigation of two particular
issues in the Xhh-Xlh system, which have not been resolved
yet. The first one is the role of hh-lh mixing in GaAs-based
structures. The hh and lh states originate from the complex
valence band and may be coupled. This coupling is theo-
retically described by the Luttinger Hamiltonian [3,16–18].
Experimentally, this coupling has been studied in many early
works devoted to spectroscopy of excitons [11–13] as well as
to quantum beats of the Xhh and Xlh and intervalence band
coherence [19–24]. The quality of heterostructures at that time
was not sufficient to draw certain conclusions about the role
of coupling.

The second problem is exciton-light coupling. It can be
quantitatively studied using the reflectance spectroscopy of
the high-quality heterostructures, for which the inhomoge-
neous broadening of exciton resonances is negligibly small.
The quantitative characteristics of the exciton-light coupling
strength is the radiative broadening of exciton resonances h̄�0.
It can be obtained from a reflectance spectrum by fitting the
Lorentz-like resonance profile [3,15]. It is well known that,
for the case of optical transition between free electron and
hole states, the ratio of transition matrix elements electron (e)
↔ hh and e ↔ lh is 3:1 [3]. We could naively assume that
this ratio is also valid for the exciton-light coupling constants
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(or oscillator strengths) for the Xhh and Xlh. This assump-
tion deserves experimental verification for the high-quality
heterostructures where resonant features for Xhh and Xlh
transitions can be resolved in optical spectra.

In this paper, we have experimentally studied several high-
quality GaAs/AlGaAs heterostructures with QWs of different
widths and barrier heights. The energy positions of exciton
resonances and the coupling constants h̄�0 for the Xhh and
Xlh were experimentally obtained from the reflectance spectra
measured for these structures.

We also theoretically calculated the energies and wave
functions of several quantum-confined exciton states using
two approaches. In the framework of a simplified approach,
we numerically solved a three-dimensional Schrödinger
equation, separately for the Xhh and Xlh, by the method
described, e.g., in Refs. [6,7,10].

Within the second, more complicated approach, we solved
the Schrödinger equation including the complete 4 × 4
Luttinger Hamiltonian and, hence, including coupling of the
hh and lh subbands. The numerically obtained results were
compared with the experimental data.

The major advantages of our results come from the
narrow exciton resonances, i.e., from the high crystalline
quality. Moreover, this is achieved by the nanostructure de-
sign intended to present resonances in a reflectance spectrum
as narrow peaks to simplify the experimental data analy-
sis. These advantages are based on our experience and the
craftsmanship of the growth group. Significantly improved
precision of experimental data is supported by the original
theoretical approaches. Those include calculations involving
modern computation facilities and sophisticated optimization
of the numerical techniques.

II. EXPERIMENT

The structures under study were grown by the molecular
beam epitaxy (MBE) on GaAs substrates with a crystallo-
graphic orientation (001). They contain GaAs QWs layers
sandwiched between AlxGa1−xAs barrier layers characterized
by various content of aluminum x. The most perfect structures
were selected for this study. The criterion of the high quality
is the negligible inhomogeneous broadening of exciton transi-
tions compared with the homogeneous broadening.

The reflectance spectra of the structures are measured at the
normal incidence of a probe light beam. The reflected beam
is dispersed in a 0.5 m spectrometer with the 1800 gr/mm
grating and detected using a nitrogen-cooled charge-coupled
device array. The normalization of the detected signal on the
light beam spectral profile is used to obtain the reflectance
spectra of the sample.

Precise normalization of a reflectance spectrum is partic-
ularly accurate in this work. To obtain the absolute value of
the reflectance, we used a monochromatic laser beam whose
photon energy was tuned to a spectral point in the vicinity
of an exciton resonance. The intensities of the incident and
reflected beams were measured, and their ratio was used to
calibrate the reflectance at the selected spectral point. The
accuracy of this calibration is of ∼ 10% considering some
errors in the calibration of transparency and reflectance of
several optical elements (cryostat windows, objective lenses,
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FIG. 1. Reflectance spectrum of heterostructure T844 with the
20, 30, and 40 nm GaAs/Al0.16Ga0.84As quantum wells (QWs;
points) and its fit by Eqs. (2) and (3) (solid curve). Labels Xhh
and Xlh mark the lowest quantum-confined exciton states of heavy-
hole and light-hole excitons, respectively, in each QW. Dashed
lines divide regions with Xhh and Xlh resonances for 40, 30, and
20 nm QWs.

and mirrors) in the experimental setup. Unfortunately, the
calibration of the whole reflectance spectrum has even larger
error because the background reflection from the structure
under study is modulated by the interference of the light waves
reflected from different layers in the structure. This problem
limits the accuracy of h̄�0 obtained from the experiment.

A typical reflectance spectrum of the structure T844 with
three GaAs/AlxGa1−xAs QWs (x = 0.16) is shown in Fig. 1.
It displays the Xhh and Xlh resonances in the spectral region
of 1.518–1.530 meV. The resonances appear as peaks due
to the appropriate choice of the top layer thicknesses. This
thickness is chosen to fulfill a condition L = Nλ/2 for each
QW. Here, L is the distance from the sample surface to the
middle for the QW, N is an integer number, and λ is the wave-
length of light in the heterostructure. This condition defines
the constructive interference of light reflected from the QW
layer and from the sample surface.

The exciton resonances can be modeled in the framework
of the nonlocal optical response theory described in a textbook
by Ivchenko [3] and applied to the experimental data analysis
in many works, see, e.g., Refs. [5–9,15]. The amplitude reflec-
tion coefficient of a QW r j in the vicinity of a single exciton
resonance is given by the expression:

r j = i�0 j

ω0 j − ω − i(� j + �0 j )
, (1)

where �0 j describes the radiative decay rate of the jth exciton
state, � j is the rate of the nonradiative relaxation from this
state, and ω0 j is the frequency of the exciton transition j.
These three quantities are considered fitting parameters of the
model for each particular exciton resonance.

When a heterostructure contains several QWs, index j
should numerate both the QWs (index l) and the quantum-
confined exciton states (index k); thus, the index should be
double j = {l, k}. To describe the excited quantum-confined
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FIG. 2. Structure T846 with 22, 33, and 55 nm
GaAs/Al0.13Ga0.87As quantum wells (QWs). In addition to the
main resonances Xhh1 and Xlh1, several, less intense resonances
Xhhk are identified with the use of the microscopic modeling
(Sec. III A). Colors mark resonances belonging to different QWs:
orange for the 55 nm QW, yellow for the 33 nm QW, and blue for
the 22 nm QW.

states, Eq. (1) should be refined [5]:

r j = i(−1)(k−1)�0 j

ω0 j − ω − i(� j + �0 j )
. (2)

Factor (−1)(k−1) in the nominator of this equation comes from
the symmetry of the exciton envelope wave function [3,5].
Its cross-section at the coinciding coordinates of the electron
and the hole in the exciton has a cosinelike shape for the odd
quantum-confined states (k = 1, 3,..) and a sinelike one for
the even states (k = 2, 4,..). For the QWs with an asymmetric
potential profile, an additional phase factor appears in the
nominator of Eq. (2) [7]. Here, we consider only the symmet-
ric rectangular QWs, which are well-proven models for the
GaAs/AlGaAs heterostructures.

The total reflection depends also on the amplitude re-
flection coefficient of the sample surface rs and can be
expressed as

R =
∣∣∣∣ rs + ∑

j r j exp(iφ j )

1 + rs
∑

j r j exp(iφ j )

∣∣∣∣
2

, (3)

where φ j is the phase acquired by the light wave propagating
from the sample surface to the middle of the jth QW layer.
Phases φ j are also considered fitting parameters because their
values are very sensitive to small variations of the structure
layer thicknesses [15].

Equations (2) and (3) are used to fit the spectra shown in
Fig. 1. One can see that the calculated curves perfectly re-
produce all peculiarities of the resonances. They describe the
Lorentz-like profile of the resonances with slowly decaying
wings. This is a clear evidence that no noticeable inhomo-
geneous broadening is present in the exciton system. Such
broadening would result in the Gaussian-like wings charac-
terized by a faster decay than the observed Lorentzian wings.

The good agreement of the experimental and calculated
curves allows one to extract the main parameters of exci-

FIG. 3. Energies of the heavy-hole (Xhh) and light-hole (Xlh)
excitons. Symbols are the experimental data taken from Figs. 1 and 2.
Solid curves are the numerical calculations. Eg = 1519.4 meV [31].

ton resonances, the radiative (h̄�0 j) and nonradiative (h̄� j)
broadenings, as well as the exciton energy (h̄ω0 j) with an
accuracy from a few microelectronvolts to fractions of micro-
electronvolts. Of course, some systematic uncertainties in the
obtained values are also possible.

In addition to the main exciton resonances, which are easy
to identify, there are several weak spectral peculiarities in
Fig. 1. These weak resonances slightly deviate the background
for the Xhh and Xlh resonances; therefore, we add them to
the fitting curve. One of them is seen as a dispersion curve at
∼ 1.5225 eV. In fact, there are two resonances: one comes in
the form of a dip and another in the form of a peak. We assume
them to be optical transitions to the second quantum-confined
state for the 30 nm QW and the third state for the 40 nm
QW, respectively. Their identification requires microscopic
modeling of the exciton spectrum. Our further analysis present
later in Fig. 3 confirms these assumptions.

The next example of the QW heterostructures is the sample
T846 with three slightly wider QWs. Its reflectance spectrum
is shown in Fig. 2. In this spectrum, in addition to the main
resonances, several resonances observed as peaks or dips are
clearly seen. Their identification based on the microscopic
modeling (see the next section) is given in the figure. It is easy
to see that the odd resonances (Xhh1, Xlh1, Xhh3, and Xhh5)
are observed as peaks and the even ones (Xhh2) as dips. This
rule directly follows from Eqs. (2) and (3), when the optical
path from the sample surface to each QW is a multiple of a
half-wavelength.

III. MICROSCOPIC MODELING OF EXCITON STATES

A. Simplified approach

The basic microscopic model of exciton states in QWs
has been described in several preceding papers [6–8,10,25–
27]. In this work, within the simplified approach, we have
numerically solved a three-dimensional Schrödinger equation,
separately for the Xhh and Xlh, in the rectangular QW. The
width of the QW is varied in the range 10–100 nm. The depth
of potential wells for electrons and holes is determined by the
aluminum fraction in the barrier layers.
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TABLE I. Material parameters for GaAs/AlxGa1−xAs
heterostructures.

x = 0.3 x = 0.15

�Eg 365.52 172.905
Ve/Vh

67
33 ≈ 2

GaAs AlAs

me 0.067 0.15
γ1 6.98 3.76
γ2 2.06 0.82
ε 12.53 10.06

We have performed the calculations for the
GaAs/Al0.15Ga0.85As heterostructures for the numerical and
experimental data comparison. We used material parameters
which are typically considered for the GaAs/AlGaAs
heterostructures, see, e.g., [3,6,28,33]. They are listed in
Table I. The notations are as follows: me is the effective mass
of the electron in units of electron mass m0; γ1 and γ2 are
Luttinger’s parameters; �Eg is the difference of bandgaps of
the QW and barrier layers; and ε is the dielectric constant.
The ratio of band offsets for the conduction and valence bands
Ve/Vh is taken to be 2, which is close to the value in Ref. [33]
(Ve/Vh = 65

35 ).In the calculations, anisotropic hole effective
masses were taken, as they are more appropriate for QWs with
width <100 nm due to lifted degeneracy of the valence band.
Additionally, the mass discontinuity at the QW interface is
considered. It is proven that the mass discontinuity noticeably
changes the exciton energies (δE > 0.1 meV) in the relatively
narrow QWs (L < 30 nm). We neglected the nonparabolicity
of electron dispersion and the discontinuity of dielectric
constants of GaAs and Al0.15Ga0.85As layers, which cause
a small effect on the exciton energies (δE < 0.1 meV) for
QW widths L > 10 nm [18,29,30]. Details of the numerical
procedure are described in Appendix.

Results of the calculations are shown in Fig. 3. The numer-
ically obtained dependencies of exciton energies on the QW
width L are approximated by a phenomenological function
y = a/(Lb + cL) + d . The obtained parameters are listed in
Appendix, Table II. The accuracy of the approximations is
good, δE � 0.1 meV in the range L = 10–100 nm.

The experimental values of exciton energies extracted from
Figs. 1 and 2 are shown in Fig. 3 by markers. Results ob-
tained for one more structure (T867) with the 33 nm QW
are also shown in this figure. As seen, the experimental and
theoretical data agree well with each other. The typical de-
viation of all the experimental points from the calculated
curves is only 0.3 meV. To minimize the deviation, we
slightly scaled the QW layer thicknesses, particularly L =
0.94LMBE for structure T846 and L = 0.98LMBE for struc-
ture T844, where LMBE is the value specified in the MBE
program for these structures. This is due to a gradient in
the layer thicknesses. The obtained agreement indicates that
all valuable contributions are included in the microscopic
calculations. The hh-lh subband mixing can slightly change
the exciton energies. This effect is discussed in the next
section.

FIG. 4. Differences of exciton energies as functions of the quan-
tum well (QW) width. The value dX = Xcoupl − Xno is calculated as
the difference between the exciton energy with coupling accounted
and the energy of the uncoupled exciton state.

B. Model with hh-lh mixing

The hh-lh valence-band coupling is theoretically described
by the Luttinger Hamiltonian [3,16]. It is a matrix of size
4 × 4; therefore, it considerably complicates the exciton
Hamiltonian and the numerical solution of the respective
Schrödinger equation. To make this problem solvable, we
have considered the relative in-plane angular coordinate ϕ.
Eigenfunctions of the angular momentum operator k̂ϕ of
the relative electon-hole motion in the exciton are used to
represent the Luttinger Hamiltonian. For the diagonal part
of the Hamiltonian, an angular momentum kϕ can be at-
tributed as a quantum number. The hh-lh interaction couples
exciton states with different kϕ according to the selection
rules. Coupling occurs between the states, which kϕ dif-
fers by one or two. We consider therefore a restricted
Hamiltonian including hh(lh) state with kϕ = 0 and three
Xlh(Xhh) states with kϕ = 1, 2,−2 to describe bright
Xhh(Xlh) states observed in the experiment. Thus, the ma-
trix Hamiltonian, which includes hh-lh coupling, describes
the superposition of four exciton states. This approach par-
tially simplifies the numerical solution of the problem, but
it remains too complex to be solved by a desktop com-
puter. Further adaptation to available computational facilities
was achieved by implementing a nonuniform grid for the
discretization of the Hamiltonian operator. Details of the
numerical procedure are described in Appendix. The nonuni-
form grid also allows one more accurate modeling of the
exciton wave function at the coinciding coordinates of the
electron and the hole. This is important for the calculations
of exciton-light coupling (see the next section).

Like the calculations in the framework of the simplified
approach, we have calculated energies of several quantum-
confined states of the Xhh and Xlh as functions of the QW
width. To highlight the effect of hh-lh coupling, we have
calculated the exciton energies with allowance of coupling,
Xcoupl and without coupling Xno. Figure 4 shows the difference
of these energies dX = Xcoupl − Xno. As seen, hh-lh coupling
shifts ground exciton states toward the higher exciton energies
dX < 0.3 meV for the QW width L > 20 nm. This effect,
however, is not governed by the energy distance between the
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bright Xhh and Xlh states, which becomes small in wide
QWs (see Fig. 3). According to the selection rules, it is rather
governed by the distance between the bright observable state
and dark states with nonzero angular momentum. Therefore,
the coupling effect gets more pronounced for the lower QW
widths L < 20 nm, where the Hamiltonian matrix elements
defining the coupling become larger, while the distance be-
tween coupling states does not change significantly. This,
however, is different for the ground lh state and the second
hh state, which are drawn closer to the dark states with which
they couple, and therefore, the coupling effect for those states
gets more pronounced in thinner QWs.

For wider QWs, the coupling effect remains rather small
and weakly changes since the distance between coupling
states is mainly defined by the Coulomb interaction rather than
the quantum-confined effect. The coupling states remain non-
degenerate even in bulk materials, and hh-lh coupling changes
the exciton energies in the 100 nm QW only slightly, as shown
in our calculation.

IV. EXCITON-LIGHT COUPLING

The radiative decay constant �0 can be calculated when
the exciton wave function is obtained from microscopic
modeling [3,26]:

�0 = 2πq

h̄ε

(
e|pcv|
m0ω0

)2∣∣∣∣
∫ ∞

−∞
�(z) exp(iqz) dz

∣∣∣∣
2

. (4)

Here, �(z) is the cross-section of the exciton wave function
with coinciding coordinates of the electron and the hole in
the exciton. In the framework of the simplified approach,
the cylindrical symmetry of the problem allows one to con-
sider only three electron-hole coordinates: ze and zh are the
electron and hole coordinates along the growth axis of the
heterostructure, and ρ is the distance between the electron and
the hole in the QW plane. The coincidence of the coordinates
means: ze = zh ≡ z and ρ = 0. Other notations in Eq. (4) are
the following: q = √

εω/c is the wave vector of light in the
layer with dielectric constant ε, pcv is the matrix element of
the momentum operator between the electron and hole states,
ω0 is the exciton resonance frequency, and e and m0 are the
charge and free electron mass, respectively.

We have calculated the radiative decay rates for the ground
Xhh and Xlh states using the simplified approach with the
uniform and nonuniform grids as well as with allowance of
Xhh-Xlh coupling. The effect of exciton coupling on the ra-
diative decay rates is illustrated in Fig. 5. The upper panel in
the figure shows the ratio of the radiative decay rates calcu-
lated with allowance of coupling (�0c) and with no coupling
(�0), separately for the Xhh and Xlh. As seen from the figure,
coupling decreases the radiative rates for wide QWs. This
is the expected result since bright exciton states are coupled
with dark ones, and originally, bright excitons become par-
tially dark. However, coupling can also change the form of
the exciton wave function, which results in the increase of
the oscillator strength for the Xhh. At the same time, the
anticrossing of the Xlh bright state with the Xhh dark states, in
the vicinity of the 20 nm QW width, decreases the �0 value
of the Xlh state. For the Xhh state, coupling increases the �0

value if the QW is thinner than 40 nm. All these effects, how-

FIG. 5. (a) Effect of exciton coupling on the Xhh and Xlh decay
rates. (b) Ratio of the radiative decay rates for the Xhh and Xlh
calculated in different approaches.

ever, are relatively small comparing the experimental errors of
the �0 determination.

The lower panel of Fig. 5 presents the ratio of the Xhh
radiative decay rate to that of the Xlh:

γ = �0hh

�0lh
. (5)

If the Xhh and Xlh would have the same envelope wave
functions, this ratio would be exactly 3. This comes from
the difference in the dipole matrix elements for the e →
hh and e → lh transitions [3]. However, γ , which we ob-
tained in all the approaches, substantially deviates from this
value. Specifically, it gradually decreases with the QW width
decrease.

The simplified approach with the uniform grid predicts
the decrease from γ = 2.84 at L = 100 nm down to 2.45
at L = 10 nm. The calculations with the nonuniform grid
predict similar dependence but slightly less pronounced. The
dependence appears to be sensitive to coupling of the Xhh-Xlh
states; however, the ratio remains below the expected value
of 3. We can, therefore, conclude that the main origin of the
lower value of γ is the difference of the envelope functions
for the Xhh and Xlh.

Qualitative illustration of this difference is presented in
Fig. 6. The figure presents wave function slices, with the
exciton center of mass placed in the center of the 40 nm QW.
As seen in the figure, the Xhh is more compact along the z
axis than the Xlh. This is due to larger hole effective mass
along this direction. These slices, however, are insufficient to
describe the exciton-light interaction constant, as this value
depends on how spread the wave function is. There are inte-
gral characteristics of the wave function that characterize this
spread, namely, mean distances between the carriers along a
given direction.

Using the numerically obtained wave functions, we calcu-
lated the mean electron-hole distances along the growth axis
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FIG. 6. Cross-sections of the envelope wave functions of the
(a) Xhh and (b) Xlh in a 40 nm quantum well (QW) in coordinates
zeh = ze − zh and xeh = xe − xh. Axis x is directed along the QW
layer. The center of mass of the excitons is in the middle of the QW.
(c) Mean electron-hole distances in the z and x directions for the Xhh
and Xlh for different QW widths.

and along one of the perpendicular axes. The mean distance is
defined as

〈αe − αh〉 =
∫

ψ∗|αe − αh|ψ ρdzedzhdρ. (6)

Numerical values of the wave functions on the grid were
interpolated to obtain smooth function ψ . In the case of the
x coordinate, the mean value of ρ was calculated, and then
it was divided by

√
2 to account for the impact of the mean

distance along the y coordinate in the 〈ρ〉 value. We employed
the Monte Carlo technique to calculate the three-dimensional
integrals. Calculation results are shown in the lower panel of
Fig. 6. For the QW with widths L < 40 nm, the QW con-
finement mainly defines the electron-hole distance along the
z direction, and the Xhh and Xlh reveal almost coinciding
curves in the figure. The difference lies in the behavior of
the exciton wave function perpendicular to the growth axis.
As one can see, the electron and hole are closer in the Xlh;
therefore, the exciton-light coupling constant acquires higher
values. When combined with factor 3, arising from the inter-
band transition probability, the Xhh to Xlh oscillator strength
ratio becomes <3. The same analysis for the wider QWs
cannot deliver such a clear argument. Still, calculations show
that the ratio remains below the value of 3.

An additional factor controlling the behavior of γ in nar-
row QWs is penetration of the exciton wave function into the
barrier layers. It is stronger for the Xlh that results in further
increase of the overlap integral and in a decrease of γ . In

FIG. 7. (a) Radiative broadening constants h̄�0 for the heavy-
hole (Xhh) and light-hole (Xlh) excitons (the lowest quantum-
confined states) as functions of the quantum well (QW) width.
(b) Ratio of the radiative constants for the Xhh and Xlh. Solid lines
are the microscopic modeling (simplified approach). Symbols are the
experimental data. The data obtained for other structures with the 14
and 20 nm QWs are also shown.

Fig. 6, one can see that electron-hole distance for the Xlh is
indeed greater than that for the Xhh in the z direction, which
illustrates the effect. However, our calculations show that this
effect is less important than hh-lh coupling.

Figure 7 displays values of the radiative broadening of
the Xhh and Xlh resonances extracted from the experiment
for a series of samples. In addition to samples, for which
spectra are present above, the data for samples with 14 and
20 nm QWs are shown in the figure. Although the measured
radiative broadenings have a relatively large spread of their
values, the ratio γ obtained experimentally is systematically
<3. The ratio for the 55 nm QW substantially exceeds the
value given by numerical modeling and reaches the value of
2.9. As seen in Fig. 2, the Xhh1 resonance for this QW is over-
lapped with a spectrally wide exciton resonance, which most
probably comes from the wide GaAs buffer layer or substrate.
The separation of these resonances would be a speculative
procedure; therefore, we approximated these two resonances
by a single exciton resonance. Therefore, we obtained a larger
value for the Xhh1 radiative constant.

The absolute values of h̄�0 for the Xhh and Xlh, the ratio
γ , and their dependence on the QW width are adequately
described by the microscopic calculations in the framework
of the simplified approach. It means that this approach is
sufficient to describe the experiment within the unavoidable
experimental errors.

There are several sources of the experimental errors. The
main one is the small spectral features of background reflec-
tion rs [see Eq. (3)]. They can be caused by the interference
of light waves reflected from many technological layers in the
heterostructure. The second important reason is the overlap of
resonances related to the lowest exciton state in one QW with
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those related to the excited states in other QWs and exciton
states in technological layers and the substrate. Additionally,
the sample surface can be covered by a thin layer of ad-
sorbed molecules that changes the reflectance of the sample.
All these spurious effects could be, in principle, minimized
by the careful measurements of the background reflection
near each exciton resonance (when it is possible) and by the
modeling of the light interference as well as of the exciton
states in the technological layers. However, for the structures
containing several QWs as well as many technological layers,
the modeling would be too complicated to give results with
high enough accuracy. We should, however, emphasize that
the error of the h̄�0 determination is of ∼ ± 5 µeV, which
is relatively small compared with the sum of the radiative
and nonradiative broadenings of exciton resonances typically
exceeding 100 µeV.

V. CONCLUSIONS

The experimental study of reflectance spectra of high-
quality heterostructures with GaAs/AlGaAs QWs allowed
us to identify several quantum-confined states of the Xhh
and Xlh in the QWs of various widths. The observed
exciton resonances were quantitatively analyzed, and the
exciton transition energies were determined with high
accuracy.

Microscopic modeling of exciton energies was performed
using different approaches. It is found that the simpli-
fied approach considering the Xhh and Xlh as uncoupled
subsystems describes well the energies and their dependen-
cies on the QW width. The approximation formulas are
suggested, which describe the numerically obtained depen-
dencies with high accuracy. These formulas are useful for
identification of exciton resonances in the newly grown
structures.

The effect of Xhh-Xlh coupling on the exciton energies is
also studied. It is shown that coupling results in the relatively
small blueshift of the ground exciton state energy for the
QW width L > 20 nm. For the narrower QW, it is larger and
strongly dependent on the QW width.

The quantitative analysis of the exciton resonances also
allowed us to extract the radiative broadening of the Xhh
and Xlh transitions from the experiment. The ratio of the
broadenings for the lowest Xhh and Xlh transitions is found
to be systematically smaller than that predicted for optical
transitions between free electron and hole states. Microscopic
modeling shows that the main reason for this effect is the
difference of effective masses of the Xhh and Xlh. Xhh-Xlh
mixing is much less important.
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APPENDIX

1. Simplified approach

In the framework of the simplified approach, the hh and
lh subbands are considered independent, and only the di-
agonal matrix elements of the Luttinger Hamiltonian are
considered. The Hamiltonian for an exciton in a QW has a
cylindrical symmetry, which considerably simplifies the solu-
tion of respective Schrödinger equations [6,10,25]. The basic
equation of the problem has the form:[

− h̄2

2μ jhxy

(
∂2

∂ρ2
− 1

ρ

∂

∂ρ
+ 1

ρ2

)

− h̄2

2me

∂2

∂z2
e

− h̄2

2mjhz

∂2

∂z2
h

− e2

ε
√

ρ2 + (ze − zh)2

+Ve(ze) + Vh(zh)

]
χ = Eχ. (A1)

Here, the first term describes the kinetic energy of the relative
electron-hole motion in the QW plane, where ρ is the electron-
hole distance in the plane, and μ jhxy = memjhxy/(me + mjhxy)
is the exciton reduced mass. The second and third terms are,
respectively, the kinetic energy of the electron and the hole
across the QW layer. The next term is the Coulomb energy of
the electron-hole interaction. The last two terms describe the
potential wells for the electron and the hole. The hole mass
is assumed to be anisotropic mjhz �= mjhxy, where j = h, l
indicates the hh and lh. The hole masses are expressed via
Luttinger parameters γ1 and γ2:

mhhz = m0

γ1 − 2γ2
, mlhz = m0

γ1 + 2γ2
,

mhhxy = m0

γ1 + γ2
, mlhxy = m0

γ1 − γ2
.

The function χ (ρ, ze, zh) = ρψ (ρ, ze, zh), where ψ (ρ, ze, zh)
is the exciton wave function. The factor ρ is introduced
in the definition of χ (ρ, ze, zh) to allow for zero bound-
ary conditions at the coinciding coordinates of the electron
and hole. Note that χ (ρ = 0) = 0. The exponential decay
of function χ for large values of the variables allows one
to introduce zero boundary conditions for some cylindri-
cal volume: χ (ρ = Rmax) = 0, χ (ze = ±Lmax/2) = 0, χ (zh =
±Lmax/2) = 0. Here, Lmax > L because the wave function can
penetrate into the barrier layers.

2. Numerical realization

a. Differential operators

Differential operators in Eq. (A1) are replaced by finite-
difference operators with accuracy O(h4) with constant step h.
The functions Ve(ze), Vh(zh), and e2/[ε

√
ρ2 − (ze − zh)2] are

replaced by the grid functions. The central finite-difference
schemes are used for ze, zh, and ρ:

∂2χ

∂ρ2
≈ −χ−2 + 16χ−1 − 30χ0 + 16χ1 − χ2

12h2
+ O(h4),

(A2)
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∂χ

∂ρ
≈ −3χ0 − 10χ1 + 18χ2 − 6χ3 + χ4

12h
+ O(h4).

(A3)

Similar expressions are used for derivatives by ze and zh. For
the first two ρ points, the expression reads

∂2χ

∂ρ2
≈ 10χ0 − 15χ1 − 4χ2 + 14χ3 − 6χ4 + χ5

12h2
+ O(h4).

(A4)

The Krylov-Schur method (based on the Arnoldi method) is
used to find the first several eigenvalues and eigenfunctions
numerically [32].

b. Extrapolation by step h

A desktop computer has a limited random access memory;
therefore, the step cannot be chosen small enough to achieve
desirable accuracy of calculations. A typical approach to the
solution of this problem is the calculation of wave functions
and energies for several gradually decreasing steps. In our
case, the calculations are performed for the steps from 2 to
0.9 nm. Then extrapolation to the zero step is performed using
the formula y = ahb + c, where the fitting parameter b ranges
from 1 to 2. The accuracy of the lowest exciton state energy
obtained by the approximation is of ∼10 µeV. The excited
quantum-confined exciton states with energies below the con-
tinuous spectrum are calculated with accuracy of ∼20 µeV.
These numerical errors are still much less than possible errors
related with inaccuracy of the GaAs and AlGaAs material
parameters.

c. Extrapolation by magnetic field

High-energy quantum-confined exciton states can overlap
with the continuous spectrum of states of electrons and holes
moving along the QW layer. The algorithm we used cannot
calculate the exciton states in this case. To solve this problem,
we have applied a special method that allows us to make the
continuous spectrum discrete [25,26], namely, terms describ-
ing the application of a magnetic field B along the z axis are
introduced into the excitonic Hamiltonian. This magnetic field
makes the states of free electrons and holes quantized (Landau
levels). Thus, the continuous spectrum turns into a spectrum
with discrete states. The variation of the magnetic field makes
it possible to choose the case when the quantum-confined
exciton states and the free electron and hole states differ in
energy. The algorithm in this case can find the exciton states.

The magnetic field shifts the exciton states (diamagnetic
shift). Therefore, to find proper states, we should calculate the
states at different gradually decreasing values of the field B
and then extrapolate the results to B = 0. In practice, the exci-
ton states were calculated at B = 0.5–7 T. For each QW width
and each exciton state falling into the continuous spectrum of
states, particular values of magnetic field were slightly varied
to obtain the maximum energy distance between the exciton
state and the neighboring states of the free electron-hole pair.
The extrapolation to zero magnetic field is fulfilled using
a parabolic approximation of the exciton energies obtained

TABLE II. Fitting parameters of Eq. (A5) for aluminum concen-
tration in the barriers x = 0.15.

Type a b c d Llow (nm) SD ( µeV)

Xhh1 39 049 2.6242 88.97 −4.03 10 7
Xhh2 30 301 2.3481 39.78 −3.85 10 43
Xhh3 9464 1.9124 2.70 −4.07 20 57
Xlh1 73 264 2.6673 139.14 −3.94 10 12
Xlh2 550 000 2.8328 650.99 −3.67 10 25

at several values (typically 5–7) of B. The accuracy of the
obtained exciton energies is better than 0.1 meV.

3. Approximation of the dependencies of the
exciton energies on the QW width

Results of the microscopic calculations of the energies
of exciton transitions for heterostructures GaAs/AlxGa1−xAs
with aluminum content x = 0.15 and 0.30 were approximated
by a phenomenological formula:

y = a

Lb + cL
+ d. (A5)

The obtained values of fitting parameters are listed in Tables II
and III. Since the calculation results were obtained in different
intervals of L, the approximation was also made in different
intervals with the low limit Llow, given in a separate column
of the tables. The upper limit is the same Lupper = 100 nm. The
standard deviation (SD) between the calculated points and the
fitting curve is given in the last column.

4. Luttinger Hamiltonian representation in
the chosen coordinate system.

The diagonal part of the Luttinger Hamiltonian given in
Eq. (A1) assumes zero angular momentum. Considering the
arbitrary angular momentum leads to the Hamiltonian:[

− h̄2

2μ jhxy

(
∂2

∂ρ2
− 1

ρ

∂

∂ρ
+ 1

ρ2
− k2

ϕ

ρ2

)

− h̄2

2me

∂2

∂z2
e

− h̄2

2mjhz

∂2

∂z2
h

− e2

ε
√

ρ2 + (ze − zh)2

+Ve(ze) + Vh(zh)

]
χ = Eχ. (A6)

TABLE III. Fitting parameters of Eq. (A5) for aluminum con-
centration in the barriers x = 0.3.

Type a b c d Llow (nm) SD ( µeV)

Xhh1 28 905 2.5294 14.30 −4.07 10 17
Xhh2 18 777 2.3481 39.78 −3.95 10 25
Xhh3 2526 1.6321 −2.49 −4.28 30 9
Xhh4 4.8716 1.0099 −1.03 −4.42 50 56
Xlh1 44 356 2.5211 52.21 −4.02 10 11
Xlh2 95 231 2.4020 58.09 −3.97 14 19
Xlh3 437 1.2607 −2.13 −4.70 60 33
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The cubic symmetry of the 4 × 4 Luttinger Hamiltonian
produces the angular dependence of the nondiagonal matrix
elements in the chosen coordinate system. In the basis of the
operator of angular momentum of the exciton internal motion,
the Luttinger Hamiltonian is represented as an infinite matrix:⎛
⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

Hhh,−1 0 0 0 H31 0 0
0 Hlh,−2 0 H ′

31 0 0
0 0 Hlh,−1 0 0 0 H ′

13· · · 0 H ′
13 0 Hhh,0 H12 H13 0 · · ·

H13 0 0 H21 Hlh,1 0
0 0 0 H31 0 Hlh,2 H21
0 0 H ′

31 0 0 H12 Hhh,1
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(A7)

where in the diagonal terms, we use the subscript indexes
denoting the types of effective masses and values of kϕ . Opera-
tors H12, H13, H ′

13, H21, H31, and H ′
31 have the following form:

H12 = i

√
3γ3h̄2

m0

∂

∂zh

∂

∂ρ
,

H21 = i

√
3γ3h̄2

m0

(
− ∂

∂zh

∂

∂ρ
+ 1

ρ

∂

∂zh

)
,

H13 =
√

3(γ2 − γ3)h̄2

2m0

(
− 1

2ρ2
− 1

2ρ

∂

∂ρ
+ 1

2

∂2

∂ρ2

)
,

H31 =
√

3(γ2 − γ3)h̄2

2m0

(
3

2ρ2
− 3

2ρ

∂

∂ρ
+ 1

2

∂2

∂ρ2

)
,

H ′
13 =

√
3(γ2 + γ3)h̄2

2m0

(
− 1

2ρ2
− 1

2ρ

∂

∂ρ
+ 1

2

∂2

∂ρ2

)
,

H ′
31 =

√
3(γ2 + γ3)h̄2

2m0

(
3

2ρ2
− 3

2ρ

∂

∂ρ
+ 1

2

∂2

∂ρ2

)
.

We reduce the infinite Hamiltonian matrix to a restricted
Hamiltonian with the diagonal part corresponding to the
bright exciton states (with kϕ = 0) and those states that cou-
ple to them directly. For instance, for the hh subsystem, the
Hamiltonian has the form:

Ĥ =

⎛
⎜⎝

Hhh,0 H12 H13 H ′
13

H21 Hlh,1 0 0
H31 0 Hlh,2 0
H ′

31 0 0 Hlh,−2

⎞
⎟⎠. (A8)

This restricted Hamiltonian is then transformed into the al-
gebraic eigenvalue problem via the finite-difference method,
which exploits the nonuniform grid described in the next
subsection.

5. Numerical procedure for hh-lh mixing

To introduce hh-lh mixing into the numerical calculation,
we had to optimize our numerical calculation beforehand.
Thus, we implemented nonuniform grid in our calculation
domain to decrease the number of grid nodes. For a ne ×
nh × nρ = 120 × 120 × 120 nm3 domain with 1 nm grid
step, the Hamiltonian matrix would have been of 1 728 000 ×
1 728 000 size. Here, ne and nh are the numbers of nodes along
the ze and zh directions, respectively, and nρ is that along the
ρ direction. When one implements a nonuniform grid, the

TABLE IV. Nonuniform grid parameters. All values are given in
nanometers, except for grid dimensions, which are given in nodes.
Here, hρ = 1.64 nm and lρ = 2.2 × 10−3 nm for 60 points along axis
ρ, and hρ = 0.66 nm and lρ = 2.3 × 10−4 nm for 120 points along
axis ρ.

QW hz lz(10−4) Grid Domain

10 0.66 3.5 60 × 60 × 120 50 × 50 × 397
12.5 0.82 4.4 60 × 60 × 60 63 × 63 × 408
15 0.82 4.4 60 × 60 × 120 63 × 63 × 397
17.5 0.82 4.4 60 × 60 × 60 63 × 63 × 408
20 0.82 4.4 60 × 60 × 120 63 × 63 × 397
25 0.98 5.3 60 × 60 × 120 76 × 76 × 397
30 0.98 5.3 60 × 60 × 120 76 × 76 × 397
35 0.98 3.9 70 × 70 × 60 90 × 90 × 408
40 0.99 3.9 70 × 70 × 120 90 × 90 × 397
45 0.99 3.4 75 × 75 × 60 97 × 97 × 408
50 0.99 3.0 80 × 80 × 120 105 × 105 × 397
60 0.99 3.0 80 × 80 × 120 105 × 105 × 397
70 0.99 2.6 85 × 85 × 120 112 × 112 × 397
75 0.99 2.4 90 × 90 × 60 120 × 120 × 408
80 0.99 2.4 90 × 90 × 120 120 × 120 × 397
90 0.99 1.6 110 × 110 × 60 149 × 149 × 408
100 0.99 1.4 120 × 120 × 60 164 × 164 × 408

number of nodes in such a domain can be reduced to 60 ×
60 × 60 points, shrinking the matrix almost eightfold by
dimension. This allows us to add hh-lh coupling into consid-
eration by simply representing the Luttinger Hamiltonian in
the matrix form.

The nonuniform grid is defined by the polynomial smooth
piecewise functions, defining coordinates of the nodes:

zi =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ihz + [(
i − 5 − n

2

)3 − (
5 − n

2

)3]
lz,

if i > n
2 + 5,

ihz,

if |i − n
2 | < 5,

ihz + [(
i + 5 − n

2

)3 − (
5 − n

2

)3]
lz,

if i < n
2 − 5,

(A9)

ρi =
{

ihρ, if i < 8,

ihρ + (i − 8)3lρ, if i � 8,
(A10)

where hz, lz, hρ , and lρ are constants defining the scale of
linear and nonlinear parts of the grid, and n = ne = nh is the
number of nodes along the z coordinate. Constants 5 and 8
were arbitrarily chosen. The function in Eq. (A9) was used
for ze and zh coordinates. Table IV lists the steps, grid sizes,
and corresponding domains for each QW width for which the
calculation was performed.

Difference schemes for the nonuniform grid were made
like the schemes in Ref. [34]. For the schemes not present
in that paper, a Taylor series expansion was employed to
construct a system of linear equations defining scheme coef-
ficients. We used the schemes with accuracy not worse than
O(h2), where h is the characteristic distance between nodes.
The particular form of the differential operators was taken
following Ref. [25], where a similar problem was solved for a
wide InGaAs/GaAs QW.
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It should be noted that, considering coupling demands high
accuracy from the calculation. Indeed, the wave functions of
states with angular momentum 1 that get mixed to the ground
exciton states have two zeros along the ρ axis. To describe
such functions accurately, one must use grids with smaller
step size in the vicinity of the ρ = 0 point. In our calculation,
a step <1 nm was required to achieve reliable results. On the

other hand, in the region of higher ρ values, the wave function
tends to exponentially decay. It does not oscillate, but having
in mind zero boundary conditions in the calculation, it is
necessary to set a larger domain in the ρ direction. Step size in
this region can be larger. Our nonuniform grid approach meets
both these requirements and allows one to reliably calculate
the exciton wave function.
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