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Spin resonance induced by a mechanical rotation of a polariton condensate
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We study theoretically the polarization dynamics in a ring-shape bosonic condensate of exciton-polaritons
confined in a rotating trap. The interplay between the rotating potential and TE-TM splitting of polariton modes
offers a tool of control over the spin state and the angular momentum of the condensate. Specific selection
rules describing the coupling of pseudospin and angular momentum are formulated. The resonant coupling
between states having linear and circular polarizations leads to the polarization beats. The effect may be seen as
a polariton analogy to the electronic magnetic resonance in the presence of constant and rotating magnetic fields.
Remarkably, spin beats are induced by a purely mechanical rotation of the condensate.
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I. INTRODUCTION

Exciton-polaritons are hybrid light-matter quasiparticles
emerging in the regime of the strong coupling between a
photonic mode of a planar semiconductor microcavity and
an excitonic resonance in a quantum well embedded in the
antinode of a cavity mode. From their photonic component
polaritons inherit extremely small effective mass (about 10−5

of the mass of free electrons) and large coherence length (in
the mm scale) [1]. On the other hand, the presence of an
excitonic component leads to the sensitivity of the polariton
systems to external electric and magnetic fields, and robust
polariton-polariton interactions [2].

Remarkable tunability of cavity polaritons allows to en-
gineer their spatial confinement in a variety of experimental
geometries, ranging from individual micropillars [3–6] to the
systems of several coupled pillars forming so-called polariton
molecules [7,8] or periodically arranged arrays of the pillars
forming polariton superlattices [9–13]. Annular geometries
are of particular interest, as in this case the interplay between
nontrivial topology of the system and polarization TE-TM and
Zeeman splittings can lead to a variety of intriguing physical
phenomena, such as formation of the polaritonic persistent
currents [14] including symmetry breaking in spinor polariton
current states [15], linear [16], and nonlinear [17] polaritonic
Aharonov-Bohm effect, topological spin Meissner effect [18],
angular momentum fractionalization [19], and others. More-
over, it was recently proposed, that polariton rings can form a
material platform for the realization of optical qubits [20].

In the present work we theoretically predict a strong
polarization resonance to appear in a ring-shape polariton
condensate subject to a rotating potential trap. Such rotating
traps can be produced by optical pumping with Laguerre-
Gaussian laser beams as it was recently demonstrated

experimentally [21,22] and as we detail below. We demon-
strate, that linear to circular polarization coupling provided
by the perturbation leads to the strong beats between the
corresponding states. The phenomenon is a polaritonic coun-
terpart of the magnetic resonance experienced by the spin of
an electron placed in a combination of constant and rotating
magnetic fields.

II. THE MODEL

We assume the geometry of an experiment illustrated in
Fig. 1(a). A thin polariton ring of the radius R, is subjected to
the external scalar perturbation potential having the form

U (θ, t ) = U0 cos(2θ − �t ), (1)

where θ is an angular coordinate along the ring. We assume
that the thickness of the ring d � R, so that only the lowest
radial mode can be excited. Such kind of a perturbation results
from a superposition of two optical Laguerre-Gaussian modes
having the angular momenta l = ±1, which are slightly de-
tuned in energy [21] [see Fig. 1(b)].

The state of the system is described by a two component
spinor, corresponding to the two opposite circular polar-
izations ψ = (ψ+, ψ−)T, and its dynamics is given by a
Schrödinger-type equation,

ih̄∂tψ = Ĥψ. (2)

In this paper, we focus on the conservative linear limit,
where we neglect the dissipative nature of cavity polaritons
and polariton-polariton interactions. These approximations
will allow us to reveal the proposed effect analytically. We
acknowledge that the optical pump in polariton systems
normally creates a complex potential whose imaginary part
corresponds to the effective gain seen by the polaritons, but
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FIG. 1. (a) Polariton ring condensate (blue) in the presence of
TE-TM splitting, producing an effective magnetic field (orange ar-
rows) acting on pseudospins of polaritons, subjected to an external
rotating perturbation potential U (θ, t ) = U0 cos(2θ − �t ). Orange
arrows indicate the directions of the effective magnetic field pro-
duced by the TE-TM splitting along the ring. (b). Superposition of
the two Laguerre-Gaussian laser beams characterized by the angular
momenta l = ±1 and slightly different in frequencies ω±. The fre-
quency detuning between the two beams leads to the appearance of
the angular potential, rotating with the frequency � = ω+ − ω−.

related effects require special consideration which is left for
the follow-up paper. At the same time we would like to em-
phasize that the conservative case is also very relevant from
physical point of view.

The operator Ĥ in this approximation is hermitian and cor-
responds to the Hamiltonian of the system, which reads [23]

Ĥ = Ĥ0 + U (θ, t ), (3)

where, in the basis of the circular polarizations

Ĥ0 = h̄2

2mpR2

(
−∂2

θ �1e−2iθ

�1e2iθ −∂2
θ

)
. (4)

Here mp is an effective mass of polaritons, ∂θ = d/dθ , and
the dimensionless parameter �1 is proportional to the inverse
square of the ring thickness d and characterizes the value of
the TE-TM splitting in the system [23–25].

To better understand the effect proposed here qualitatively,
let us first consider the structure of the energy levels of a ring
described by the Hamiltonian (4). In the case where TE-TM
splitting is absent (�1 = 0), the states of the opposite circu-
lar polarizations are decoupled from each other, so that the
energy levels are characterized by the independent winding
numbers l+ and l−, corresponding to right and left circular
polarizations, respectively. The ground state with l+ = l− = 0
is twice degenerated, while all upper energy levels are degen-
erated four times, as clockwise and anticlockwise rotations,
corresponding to the different signs of l are all equivalent.

The presence of the TE-TM splitting mixes the states with
opposite circular polarizations having the winding numbers
l− − l+ = 2, as it is shown by the red arrows in Fig. 2(a). One
can see that the states with l± = ±1 are different from all the
rest [25], as only within this quadruplet we have a pair of the
states with the same energy coupled to each other. Its four
basis vectors split in the two groups.

The first one corresponds to the states with l+ = −1,
l− = +1, coupled by TE-TM splitting. As the result, two lin-
early polarized states, with tangential and radial polarizations
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FIG. 2. (a) Scheme of the coupling of the levels of a polariton
ring by TE-TM interaction �1 [see Eq. (4)]. Black horizontal lines
correspond to the energy levels for the case �1 = 0, up and down
vertical arrows denote states with right and left circular polarizations,
l correspond to the winding numbers. The ground state is twice
degenerate in polarization, all other states are four times degenerate:
in polarization and sign of l . If �1 �= 0, the states with l− − l+ = 2
become mixed, and degeneracies are partially lifted. Among all cou-
pled pairs, the one corresponding to the states with l− = 1, l+ = −1
is particular, as corresponding states have equal energies, and thus
they are most efficiently coupled by TE-TM splitting. (b). The
scheme illustrating the transitions induced by the rotating potential
U (θ, t ) = U0 cos(2θ − �t ) in the subspace of the states with wind-
ing numbers l+,− = ±1. Upper and lower states are strongly split
due to TE-TM interaction and are linearly polarized in radial and
tangential directions, respectively. Two states in the middle remain
degenerate in energy and correspond to two circular polarizations.
Resonant and antiresonant transitions are shown by solid and dashed
red arrows, respectively.

are produced, with the energies ET = h̄2(1 − �1)/2mpR2 and
ER = h̄2(1 + �1)/2mpR2 and wave functions

ψT = 1√
2

(
e−iθ

eiθ

)
, ψR = 1√

2

(
e−iθ

−eiθ

)
. (5)

The second group corresponds to a pair of degenerate
states, which stem from the states with l+ = +1 and l− = −1,
with some admixture of the states with l+ = −3, l− = 3. For
simplicity, we neglect this admixture, assuming that �1 � 1.
In this case, these states remain circularly polarized, their

045301-2



SPIN RESONANCE INDUCED BY A MECHANICAL … PHYSICAL REVIEW B 108, 045301 (2023)

energies being Ec = h̄2/2mpR2 and the wave functions

ψ↑ =
(

eiθ

0

)
, ψ↓ =

(
0

e−iθ

)
. (6)

Approximating the wave function as ψ = ∑
j A jψ j , where

j = T, R,↑,↓ we obtain the following set of the coupled
equations for the amplitudes of the modes Aj :

∂t AT = −iωc(1 − �1)AT + iη(ei�t A↑ + e−i�t A↓), (7a)

∂t AR = −iωc(1 + �1)AR + iη(ei�t A↑ − e−i�t A↓), (7b)

∂t A↑ = −iωcA↑ + iηe−i�t (AT + AR), (7c)

∂t A↓ = −iωcA↓ + iηei�t (AT − AR), (7d)

where ωc = Ec/h̄, η = U0/h̄. As one can see, the rotating
perturbation mixes the states with linear and circular polar-
izations, while it does not mix the states of the opposite linear
polarizations AR and AT directly. This is because of the inter-
play between TE-TM splitting and particular symmetry of the
perturbation, which mixes the components with the winding
numbers differing by two.

III. ROTATING WAVE APPROXIMATION

Let us consider the resonant case, where � ≈ ωc�1. One
can see that the couplings can be either resonant, or antires-
onant, depending on the sign of �, i.e., the direction of the
rotation of the perturbation. In the case, when � > 0 the
tangentially linearly polarized lowest energy state resonantly
couples to the right circular polarized state, and antiresonantly
to the left circular polarized state, while the radially polarized
highest energy state, on the contrary, resonantly couples to
the left circular polarized state, and antiresonantly to the right
circular polarized state. The change of the rotation direction
will lead to the inversion of the coupling scheme, as it is
shown in Fig. 2(b).

In the rotating wave approximation the system of the four
coupled equations thus splits into the two independent pairs,
each of which coincides with well known equations for the
description of the magnetic resonance of a spin,

∂t AT = −iωc(1 − �1)AT + iηei�t A↑, (8a)

∂t A↑ = −iωcA↑ + iηe−i�t AT , (8b)

and

∂t AR = −iωc(1 + �1)AR − iηe−i�t A↓, (9a)

∂t A↓ = −iωcA↓ − iηei�t AR. (9b)

The application of the resonant rotating perturbation will
thus lead to linear-circular polarization beats. Note, that for
a stationary potential (� = 0), two circular polarized compo-
nents will be coupled instead, see the last subsection of the
Appendix [26].

In resonant approximation one can easily get the simple
analytical expression for the polarization occupancies. For
example, if at t = 0 the lowest energy linear polarized state
AT is populated, the occupancy of the circular polarized state

FIG. 3. The dependences of the occupancies of the resonant AT,↑
(a) and nonresonant AR,↓ (b) modes on time for the case of the
exact resonance, ωc�1 = �. The normalized Stokes vector �S and
the effective magnetic field at different angular positions on the
ring are shown in (c)–(e) for the times indicated in (a). The arrows
showing the Stokes vector are shown in color ranging from red to
blue. Orange arrows indicate the orientation of the effective magnetic
field. The polarization ellipses are shown in (f)–(h). The parameters
are ωc�1 = � = 1, η = 0.1.

resonantly coupled to it is

|A↑(t )|2| = 4η2

4η2 + δ2
sin2

(√
δ2

4
+ η2t

)
, (10)

where δ = � − ωc�1 is the detuning from the exact reso-
nance, see the Appendix for more details [26].

The temporal evolution of the resonant AT,↑(t ) and
nonresonant AR,↓(t ) modes calculated from (7) is illustrated
in Figs. 3(a) and 3(b), respectively. One can see that the
contribution of the nonresonant modes is negligibly small, and
the formula (10) gives almost perfect approximation of the
systems dynamics.

The normalized Stokes vectors �S = (ψ† �σψ )/ψ†ψ accom-
panied by polarization ellipses at different spatial points are
shown in Figs. 3(c)–3(e) and 3(f)–3(h), respectively, for the
times corresponding to the maximum occupancy of AT states,
the maximum occupancy of A↑ state and the moment when
these modes have the same occupancies. �σ = (σ1, σ2, σ3) is
the vector of Pauli matrices. One can clearly see the beatings
between linear and circular polarized states, going through
elliptically polarized states at intermediate times.

IV. FLOQUET SPECTRUM

The coefficients in the system (7) are periodic functions of
time, and, according to the Floquet theorem the solutions of
the system can be represented in the form

Aj (t ) = e−iεt/h̄a j (t ), (11)

where aj (t ) = a j (t + 2π/�) are periodic functions of time.
The parameters ε correspond to the so-called Floquet
quasienergies of the system [27].
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(a) (b)

FIG. 4. The dependences of the Floquet eigenenergies on the
potential rotation velocity � are shown in panel (a) for η

ωc�1
= 0.15.

The thin dashed lines correspond to the case η = 0. (b1) and (b2)
show the energy level splitting in the areas shown by the orange ovals
in (a). The red lines in the right inset correspond to the eigenenergies
calculated neglecting the antiresonant terms.

In our case, making the substitution (a1, a2, a2, a4)T =
(b1, b2, b3e−i�t , b4ei�t )T we get

i
∂ �b
∂t

= L̂�b, (12)

where the matrix L̂ is time independent,

L̂ =

⎛
⎜⎜⎜⎜⎝

ωc(1 − �1) 0 −η −η

0 ωc(1 + �1) −η η

−η −η ωc − � 0

−η η 0 ωc + �

⎞
⎟⎟⎟⎟⎠ (13)

and Floquet quasienergies, up to a Planck constant, can be
thus found as its eigenvalues. Thus we conclude that the
problem of polariton states in a rotating potential can be
conveniently considered in terms of Floquet states.

Note that Floquet quasienergies can be found analytically,
but corresponding expressions are bulky and they are not
shown here. Instead we plot in Fig. 4 the calculated depen-
dences of the Floquet energies on the rotation velocity �. The
presence of the rotating potential leads to the visible anticross-
ings of the Floquet quasienergies at � = 0 and � = ±ωc�1.
Around � = 0 the anticrossing comes from the coupling be-
tween the states of the opposite circular polarizations ψ↑ and
ψ↓, while at � = ±ωc� – from the coupling between linear
and circular polarized states, as it is shown in Fig. 2.

It is shown in the Appendix [26] that, close to the reso-
nance, in the rotating wave approximation Floquet quasiener-
gies can be approximated as

ε = h̄

(
ωc + ωc�1 + �

2
±

√
(ωc�1 − �)2

4
+ η2

)
, (14a)

ε = h̄

(
ωc − ωc�1 + �

2
±

√
(ωc�1 − �)2

4
+ η2

)
. (14b)

They are shown by the red lines in Fig. 4(b2). One can see
that for a relatively shallow rotating potential the perturbation
theory provides a very accurate estimate for the eigenenergies.
Note here that the limit of shallow potential is highly relevant
to the experiments with optically induced rotating traps [21].

V. CONCLUSIONS

In conclusion, we predict a parametric resonance leading
to the polarization beats in polariton ring condensates sub-
jected to a rotating perturbation. The considered effect is a
polaritonic analog of the electronic magnetic resonance. We
demonstrate, that a rotating perturbation leads to the beats
between linear and circular polarizations that manifest a cyclic
dynamics of the polariton pseudospin. The phenomenon is a
remarkable manifestation of the effect of mechanical rotation
on spin properties of a quantum object. It may be used as a
tool of control over the quantum state of a ring-shape polariton
condensate which is important for applications in quantum
and classical polariton computing.

Finally, let us notice that the incoherent pumping of po-
lariton condensates creates complex effective potentials in
general. The imaginary part of such a potential accounting for
the interplay between losses and gain in each specific point
of the real space. This interplay may lead to the pseudodrag
effect [28] that remained beyond the scope of the present
study.
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APPENDIX: POLARIZATION DYNAMICS

1. Corrections to the coupling strength
due to nonresonant terms

To develop the perturbation theory it is convenient to write
the equations in Floquet basis introduced in the main text.

ε

h̄
b1 = ωc(1 − �1)b1 − η(b3 + b4), (A1a)

ε

h̄
b2 = ωc(1 + �1)b2 − η(b3 − b4), (A1b)

ε

h̄
b3 = (ωc − �)b3 − η(b1 + b2), (A1c)

ε

h̄
b4 = (ωc + �)b4 − η(b1 − b2). (A1d)

Let us assume that |�−ωc�1|
|�+ωc�1| � 1 and, for concreteness that

ε
h̄ − ωc > 0. If |η| � |ωc�1| the energy splitting at the ex-
act resonance is much less compared to TE-TM splitting
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| ε
h̄ − ωc| � |ωc�1| and this allows to express b2 and b4

through b1 and b3 from Eqs. (A1 b)–(A1d)

b2 = η

ωc�1
b3, b4 = η

ωc�1
b1. (A2a,b)

Substituting Eq. (A2) into Eqs. (A1a)–(A1c) we obtain

ε

h̄
b1 =

(
ωc − ωc�1 − η2

ωc�1

)
b1 − ηb3, (A3a)

ε

h̄
b3 =

(
ωc − � − η2

ωc�1

)
b3 − ηb1. (A3b)

From this we derive the expression for the eigenenergies

ε = h̄

[
ωc(1 − �1) − η2

ωc�1
+ ω±

]
, (A4)

where ω± = − δ
2 ±

√
δ2

4 + η2 and δ = � − ωc�1. Thus we
can conclude that in the first approximation order the non-
resonant terms do not contribute to the splitting of the
eigenfrequencies in the vicinity of � = ωc�1. The only effect
is that the eigenenergies get shifted by η2

ωc�1
. The analogs

procedure can be done for ε
h̄ − ωc < 0. In the same way we

can consider the resonances appearing at � ≈ −ωc�1.
To show that the initial excitation in the form of a radially

or tangentially polarized state will never transform to a pure
circularly polarized state we can return to the initial basis
and write down the expression for the field keeping also the
corrections appearing due to the nonresonant terms

�ψ± =
[

η√
2

(
e−iθ + ω±

ωc�1
eiθ

eiθ − ω±
ωc�1

e−iθ

)
+ ω±

(
eiθ

0

)
e−i�t

+ η2

ωc�1

(
0

e−iθ

)
ei�t

]
e−i[ωc (1−�1 )+ η2

2ωc�1
+ω±]t

. (A5)

It is seen that the radially or tangentionally polarized state
cannot be represented as a composition of just two modes �ψ±
but all four modes are required. The frequencies of the modes
are not commensurable in a general case and thus the pure
linearly polarized state will never reappear in the system.

However, if we disregard the nonresonant terms then the
eigenmodes are

�ψ± =
[

η√
2

(
e−iθ

eiθ

)
+ ω±

(
eiθ

0

)
e−i�t

]
e−i[ωc (1−�1 )+ω±]t .

(A6)

This means that the initial radially or tangentially polarized
state can be represents as a sum of just to modes and so it will
be completely restored after evolution for �t = π

η
.

2. Polarization beats for � ≈ ωc�1

Let us derive the formula describing the occupancy of the
modes AT and A↑ for the case when the nonresonant terms can
be neglected. In this case the solution can be found in the form
�ψ = C+ �ψ+ + C− �ψ− where the eigenmodes �ψ± are given by

Eq. (A6). Requiring that the initial state is tangentially polar-
ized we obtain C− = −ω+

ω−
C+. Then from the condition that

the initial occupancy ρ = | �ψ |2 of the tangentially polarized

FIG. 5. The dependences of the occupancies of the resonant AT,↑
modes on time for the case of the exact resonance, ωc�1 = �, when
we disregard the nonresonant terms in Eqs. (7) in the main text (a).
Total density variation around the ring δρ = (| �ψ |2 − 1) for the times
indicated in (a). Due to small deviation of the density from 1, the
density variations δρ1,3 are shown with factor 102. The normalized
Stokes vector �S and the effective magnetic field at different angular
positions on the ring are shown in (c)–(e) for the times indicated in
(a). The arrows showing the Stokes vector are shown in color ranging
from red to blue. Orange arrows indicate the orientation of the effec-
tive magnetic field. The polarization ellipses are shown in (f)–(h).
The parameters are ωc�1 = 1, η = 0.1. The initial conditions vector
is [AT(0), AR(0), A↑(0), A↓(0)] = (1, 0, 0, 0).

FIG. 6. The trajectories of the normalized Stokes vector �S on the
Poincaré sphere for the conditions treated in Fig. 3 in the main text
(a), Fig. 5(b), Fig. 8(c), and Fig. 9(d). The polarization is taken at the
angular coordinate θ = 0.
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FIG. 7. The dependence of the occupancies of the resonant AT,↑ modes on time for the case of the exact resonance, ωc�1 = � (a). Red dots
in (b) show the polarization vectors �S on the Poincaré sphere calculated at θ = 0 for the times corresponding to |AT |2 = |A↑|2. The polarization
ellipses at different point of the ring for the indicated times are shown in (c) numbered from 1 to 20 in accordance with the order of the
intersections of the curves in (a).

state is equal to unity we obtain (up to an arbitrary phase that
can be set to zero without loss of generality) that

C+ = ω−
η(ω− − ω+)

, C− = ω+
η(ω+ − ω−)

. (A7a,b)

Using the expressions for C±, after some algebra, one obtains

�ψ =
[

1√
2

ω+e−iω−t − ω−e−iω+t

ω+ − ω−

(
e−iθ

eiθ

)

− ω+ω−
η(ω+ − ω−)

(e−iω+t−e−iω−t )

(
eiθ

0

)
e−i�t

]
e−iωc (1−�1 )t .

(A8)

Therefore for the occupancies of the tangential ρT and circu-
larly ρ↑ states we have

ρT = 1

δ2 + 4η2

×
{

δ2 + 4η2

[
1 − sin2

(√
δ2

4
+ η2t

)]}
, (A9a)

ρ↑ = 4η2

δ2 + 4η2
sin2

[√
δ2

4
+ η2t

]
. (A9b)
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As one should expect the beating period Tb is equal to in-
verse difference of the eigenfrequencies of the modes Tb =
2π/|ω+ − ω−| = π (δ2/4 + η2)−1/2.

The resonant case � = ωc�1 is discussed in the main text
where Fig. 3 illustrates the dynamics of the states occupancies
and behavior of the polariton polarization. Figure 5 illustrates
the dynamics of the states in the case when the nonresonant
terms AR,↓ are neglected. Figures 6(a) and 6(b) show trajec-
tories of the Stokes vector on the Poincaré sphere calculated
at the angular coordinate θ = 0 in the resonant case with (a)
and without (b) nonresonant terms. Comparing the figures,
one can see that the nonresonant terms are responsible for
breaking periodicity of the evolution of the polariton modes
and making it quasiperiodical.

Let us note that after a beating period the field reproduces
itself (or quasireproduces in case when the none-resonant
terms are accounted for) in the rotating reference frame. This
means that in the laboratory frame the field distributions will
be turned by the angle ϕ = �Tb. Thus, if we plot the polar-
ization ellipses at the times when the occupancies ρT and ρ↑
becomes equal, see Fig. 7, the shift becomes obvious. The
pictures numbered 1 and 11 looks very similar because �Tb

2π

is close to an integer. However, in a general case the ratio
�Tb
2π

is irrational and thus the polarization state is never the
same in the laboratory reference frame even if the nonresonant
terms are neglected and the motion is periodic in the rotating
reference frame.

In the nonresonant case � �= ωc�1, as it is seen from
Eq. (A9b) the occupancy of the circularly polarized state ρ↑
never reaches unity even if the nonresonant terms are dis-
regarded. Correspondingly, the occupation of the tangential
polarized state is always finite, see (A9a). The dynamics of the
occupancies is shown in Fig. 8(a) for the finite detuning from
the resonance. Let us remark that the occupancy evolution
observed in the numerical simulations fits perfectly to the one
predicted by Eq. (A9).

It is worth mentioning here that in this case the Stokes
vector trajectory never riches the pole (where the polarization
is circular) but instead orbiting around the pole, see Fig. 6(c).
The diameter of the orbit growth with the detuning from the
resonance. The Stokes vector and the effective magnetic field
at different points of the trap are shown in Figs. 8(c)–8(e) for
the times when most of the polaritons are in the linearly (c) or
circularly (e) polarized mode and when the occupancies of the
states are equal Fig. 8(d). The polarization ellipses are shown
in Figs. 8(f)–8(h) correspondingly.

3. Energy splitting at low rotation velocities

Here we consider the case when the rotation velocity is
small � � ωc�1. Then in the absence of the potential η = 0
there are two energy levels ε = h̄ωc(1 ± �1) corresponding
to the radially and tangentially polarized modes AR,T and
double degenerate energy level ε = h̄ωc corresponding to the
circularly polarized modes A↑,↓. At finite η the degeneracy is
lifted due to hybridization of the modes A↑,↓.

Let us consider this hybridization in detail. We focus on
the modes having low eigenergies ε

h̄ − ωc � ωc�1. To ensure
small energy splitting we require that η � ωc�1. Then the

FIG. 8. The dependences of the occupancies of the resonant AT,↑
(a) and nonresonant AR,↓ (b) modes on time for the small detuning
from the resonance, � = 1.075. The normalized Stokes vector �S
and the effective magnetic field at different angular positions on
the ring are shown in (c)–(e) for the times indicated in (a). The
arrows showing the Stokes vector are shown in color ranging from
red to blue. Orange arrows indicate the orientation of the effective
magnetic field. The polarization ellipses are shown in (f)–(h). The
parameters are ωc�1 = 1, η = 0.1. The initial conditions vector is
[AT(0), AR(0), A↑(0), A↓(0)] = (1, 0, 0, 0).

amplitudes b1 and b2 in Eq. (A1) are nonresonant and can be
expressed as

b1 = − η

ωc�1
(b3 + b4), (A10a)

b2 = η

ωc�1
(b3 − b4). (A10b)

Substituting Eq. (A10) into Eqs. (A1c) and (A1d) we obtain

ε

h̄
b3 = (ωc − �)b3 + 2η2

ωc�1
b4, (A11a)

ε

h̄
b4 = (ωc + �)b4 + 2η2

ωc�1
b3. (A11b)

The dependences of the eigenenergies of the hybridized
modes are given by

ε = h̄ωc ± h̄

√
�2 + 4η4

ω2
c�

2
1

. (A12)

The dynamics of the occupancies of the first ρ↑ and the
second ρ↓ circularly polarized states can easily be calculated
and the expressions for these quantities are

ρ↑ = 1 − 4η4

ω2
c�

2
1�

2 + 4η4
sin2

⎛
⎝

√
�2 + 4η4

ω2
c�

2
1

t

⎞
⎠, (A13a)

ρ↓ = 4η4

ω2
c�

2
1�

2 + 4η4
sin2

⎛
⎝

√
�2 + 4η4

ω2
c�

2
1

t

⎞
⎠ (A13b)

for the case when at t = 0 only one circularly polarized state
is populated with the occupancy equal to unit, ρ↑ = 1, ρ↓ = 0.
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FIG. 9. The same as Fig. 8, but for resting potential (� = 0).
The initial conditions vector is [AT(0), AR(0), A↑(0), A↓(0)] =
(0, 0, 1, 0).

From Eq. (A13a) it is seen that the beating period be-
tween the circularly polarized states becomes shorted for
the higher coupling strength η and the rotation frequency

�: Tb = π (�2 + 4η4/ω2
c�

2
1)−1/2. The modulation depth,

however, decreases with � and thus for the relatively rapidly
rotating potential the polariton transfer from one circularly
polarized state to another is suppressed.

The evolution of the occupancies ρ↑ and ρ↓ are shown in
Fig. 9(a) for the case � = 0 calculated for the case when the
nonresonant terms are accounted. The polarization dynamics
are illustrated in Figs. 9(c)–9(h). The nonresonant terms are
responsible for quasiperiodic dynamics. They also explain
why the occupancies of the circularly polarized states ρ↑ and
ρ↓ are never equal to 1 for t > 0. Decreasing the coupling
strength η the effect of the nonresonant terms can be reduced
but this make the beating period large. One can anticipate that
for the finite losses this can prevent the observation of the
polarization beating.

The important fact which should be mentioned here is
that in this case the mode interaction is mediated by the
nonresonant terms and, therefore, the splitting at � = 0 is

h̄η2

ωc�1
whereas at ω = ωc�1 the splitting is h̄η. So the split-

ting is proportional to square of η in the former case and
to η in the latter case. Thus for the small η the split-
ting is stronger for the potential rotating at the velocity
� = ωc�1.
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