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Vorticity of polariton condensates in rotating traps
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This work is inspired by recent experiments on the formation of vortices in exciton-polariton condensates
placed in rotating optical traps. We study theoretically the dynamics of the formation of such vortices and
elucidate the fundamental role of the mode competition effect in determining the properties of stationary
polariton states triggered by stimulated scattering of exciton-polaritons. The interplay between linear and
nonlinear effects is shown to result in peculiar polariton dynamics. However, near the lasing threshold, the
predominant contribution of the nonlinear effects is the saturation of the linear gain.
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I. INTRODUCTION

Semiconductor systems suitable for the realization of
strong light-matter coupling have been actively studied in
recent years [1]. The reason for the interest they attract is
the hybridization between the cavity photons and electronic
excitations, which gives rise to the appearance of quasipar-
ticles having extremely low effective masses and being able
to efficiently interact with each other. Probably the most
remarkable achievement in this field is the experimental real-
ization of Bose-Einstein condensation of exciton polaritons at
extraordinarily high temperatures [2,3]. This fundamental dis-
covery paved the way for the practical realization of polariton
lasers [4–6].

Coherent ensembles of interacting polaritons reveal the
phenomenon of superfluidity [1], and in certain geometries,
polariton states sustaining persistent currents may be formed
[7–16]. The corresponding nonlinear localized structures
characterized by a topological charge, known as polariton
vortices, have been extensively studied from both theoretical
and experimental perspectives [16–20].

States of the opposite vorticity can form the basis of a
polariton qubit [21,22]. It is therefore important to possess
a tool to have control over the direction of the polariton
rotation. This can be achieved by using chiral structures
[23,24], fine tuning the excitation conditions [25], using the
effect of spin to angular momentum conversion [26], using
Laguerre-Gaussian beams [27], or applying external magnetic
fields [28].

The study of mesoscopic coherent polariton states, includ-
ing vortices, confined in the microcavity plane using potential
traps has attracted considerable interest [29–36]. Particularly
noteworthy are annular optical traps, which can be induced
in the microcavity by laser beams with appropriate spatial

profiles [33–36]. It was recently shown that the formation of
an external rotating potential is a powerful tool for controlling
the polariton states forming in annular traps [37,38]. The
goal of this paper is to provide a theoretical analysis of the
dynamics of the polariton condensates in these geometries in
the vicinity of a polariton lasing threshold and to elucidate the
mechanism responsible for the symmetry breaking between
the clockwise and counterclockwise rotating solutions. We
consider two distinct experimentally relevant situations, cor-
responding to three different coupling schemes between the
states of distinct vorticities induced by the rotating potential.
Vorticity is characterized by the angular index m, which quan-
tifies the number of times the phase of a wave winds as one
moves around the vortex core. Namely, we analyze the cases
of the coupling between m = 0 and ±1 states, the coupling
between m = ±1 and ±2 states, and the coupling between
m = −1 and +1 states [37].

The formation of polariton vortices in a trap with a rotating
complex potential is considered within the framework of the
generalized scalar Gross-Pitaevskii equation. It is shown that
close to the polariton lasing threshold, the stationary states
inherit their angular momentum from the fastest growing lin-
ear mode. In fact, during the linear stage of condensation at
the beginning of the polariton evolution, the polariton field
can be expressed as a combination of different eigenmodes.
Because the condensation process originates from an inco-
herent exciton reservoir, the eigenfrequencies of these modes
are complex, with some modes exhibiting exponential growth
over time. The mode with the highest growth rate, at a certain
point, suppresses the other modes and consequently shapes
the structure of the stationary condensate.

It is worth noting that in the presence of the azimuth
nonsymmetric potential, the polariton eigenmodes can be
expressed as a combination of multiple components with
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different angular indices [13,14]. The resulting direction of
rotation of the polariton state is determined by the relative
weights associated with these components. These weights, in
turn, are influenced by the angular velocity of the rotating
potential. At certain threshold angular velocities, the velocity
of the condensate can cross zero and undergo a change in sign.

There is an additional scenario that can lead to a change
in the rotation velocity of the condensate. This scenario arises
from a swap between the fastest and the second fastest grow-
ing modes. In the case considered in the paper, polaritons
in these modes rotate in different directions, with not only
different absolute values of velocities but also opposite signs.
Therefore, if the fastest and the second fastest modes swap
at a certain velocity, the rotation direction of the stationary
polaritons also changes. In this scenario, the velocity of the
polariton rotation is not a continuous function of the rotat-
ing potential velocity. Instead, it undergoes a distinct change
by a finite value at critical velocities of the potential. To
analytically describe the observed effects, a perturbation ap-
proach was employed. The developed coupled mode theory
effectively reproduces the results obtained from direct two-
dimensional (2D) simulations.

The paper is organized as follows. After the Introduction,
in Sec. II, we describe the considered geometry and introduce
the corresponding mathematical model. In the third section,
we provide a brief discussion of the formation of hybrid
states in the presence of the rotating potential that couples
modes with different angular indices. Section IV contains the
numerical results concerning the hybridization of the modes
with an angular index difference equal to 1. The perturbation
theory explaining the numerical results is developed in the
fifth section. Various mechanisms governing the formation
of stationary polariton states in the rotating potentials are
discussed in Sec. VI. Finally, in the Conclusion, we briefly
summarize the main findings of the paper.

II. THE SYSTEM IN QUESTION AND ITS
MATHEMATICAL DESCRIPTION

We consider the geometry of an annular trap created by an
axially symmetric incoherent pump, which produces both the
conservative confining potential for a condensate due to the
effect of reservoir-induced blueshift and the effective linear
gain provided by the stimulated condensation of polaritons
from a reservoir to a coherent state. We also account for
the axially symmetric conservative potential created by the
microstructuring of a sample. We opted to incorporate this
potential for two primary reasons. The first reason is that this
potential contributes to the confinement of polaritons, thereby
enhancing the suitability of the coupled mode approach de-
veloped to elucidate the phenomena observed in numerical
simulations. The second reason is of a technical nature: The
supplementary conservative potential facilitates control over
the condensate properties. A schematic representation of the
excitation and trapping of the polariton condensate is shown
in Fig. 1(a).

Control of vorticity is achieved via an additional rotating
nonresonant pump, which can be created by the application
of two interfering optical beams with different orbital angular
momenta (Laguerre-Gaussian modes) and slightly detuned

FIG. 1. (a) Schematic depicting the excitation of a polariton
condensate in an external rotating optical potential. The rotation is
induced by two laser beams with angular momenta l1 = 1 and l2 = 0,
characterized by different frequencies � = ω1 − ω2. (b)–(d) The
shape of the rotating part of the pump-induced optical trap depend-
ing on the angular momenta of the optical pump components. The
frequencies in the panels are taken as ω1 > ω2.

frequencies, and thus reads

Pr (r, t ) = f̃ (r) cos[�l (θ − �t )], (1)

where f̃ (r) describes the radial dependence of the pump,
�l = l1 − l2 denotes the difference in the angular indices
between the beams creating the pump, � = ω1 − ω2 is the
rotation velocity of the potential defined by the detuning be-
tween the two pumping modes, and r and θ correspond to the
radial and angular coordinates, respectively. Indices 1 and 2
enumerate the interfering beams. In panels (b)–(d) of Fig. 1,
we show schematically examples of the rotating potentials
created by two beams with different combinations of l1 and
l2. We assume ω1 > ω2 for definiteness. The absolute value of
the difference �l determines the number of variations of the
potential in the azimuthal direction, while its sign determines
the direction of rotation of the potential. It is worth noting
that when ω1 < ω2, the rotation direction of the potential trap
is reversed.
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Let us stress once more that the rotating pump results in
both the rotating conservative potential and the rotating gain
for the condensate, as will become clear from the dynamic
equations that we introduce below.

In the scalar case, the problem can be described by the
equations that govern the polariton condensate, characterized
by the order parameter function �(r, t ) and the density of the
incoherent exciton reservoir ρ(r, t ):

ih̄∂t� = h̄2

2m∗ ∇2� − [Ṽ (r) + ih̄	p + h̄(g2 − ig1)ρ]�

− (H + iH̃ )|�|2�, (2a)

∂tρ = −(	r + 2g1|�|2)ρ + P(r, t ), (2b)

where m∗ is the effective mass of polaritons in the microcavity
plane, Ṽ (r) is the axially symmetric conservative potential
created by the microstructuring, and the term h̄	p� accounts
for the intrinsic losses in the cavity that we assume to be spa-
tially uniform. The coefficient g1 is the rate of the stimulated
scattering of reservoir excitons into the coherent polariton
state, and the coefficient g2 defines the reservoir-induced
blueshift of the condensate as a function of its density. The
nonlinear self-induced blueshift of the coherent polariton state
is described by the parameter H , and the coefficient H̃ ac-
counts for the nonlinear losses of coherent polaritons. Finally,
	r is the relaxation rate of the incoherent reservoir excitons.
The total incoherent pump is accounted for by P(r, t ) stand-
ing on the right-hand side of Eq. (2b). The pump P(r, t ) =
P0(r) + Pr (r, t ) contains two components, including the time-
independent axially symmetric term P0(r) and the rotating
term Pr (r, t ) defined by Eq. (1). It is noteworthy that the
problem of vortex formation in polariton condensates created
solely by the rotating pump is of significant interest. However,
it requires specific examination and, as such, falls beyond the
scope of the current paper.

Let us assume that the relaxation of incoherent excitons
is fast compared to other characteristic timescales of polari-
ton dynamics. This allows us to adiabatically eliminate ρ

setting ∂tρ = 0 and thus obtain the following equation for
the macroscopic wave function of the condensate. Intro-
ducing the dimensionless time t → t/2	p, the coordinate
x → x

√
h̄/2m∗	p, and the order parameter function ψ =

�
√

2g1/	r , we get

i∂tψ = 1

2
∇2ψ −

(
V + i

2

)
ψ − (1 − iα)

W0 + Wr

1 + |ψ |2 ψ

− (h + ih̃)|ψ |2ψ, (3)

where V = Ṽ /2h̄	p, W0 = P0g2/2	p	r , and Wr =
Prg2/2	p	r = f (r) cos[�l (θ − �t )] are the effective
stationary and rotating potentials created by the pump with
f = f̃ g2/2	p	r , and � is given in units of 2	p. α = g1/g2

is the ratio of the gain and pump-induced blueshift, and
h = H	r/4h̄g1	p and h̃ = H̃	r/4h̄g1	p are normalized
coefficients that account for the real and imaginary parts of
the polariton nonlinearity.

III. HYBRIDIZATION OF THE STATES
IN ROTATING POTENTIALS

In this section, we consider the scenario in which the ro-
tating potential couples the scalar states with angular indices
m = 0 and ±1. This can be realized if an external nonresonant
pump is created by the superposition of a simple Gaussian
beam and a Laguerre-Gaussian beam with l = ±1. The shape
of the rotating part of such a potential is schematically shown
in Fig. 1(b).

The linearized equation (3) that describes the dynamics of
the condensate close to the lasing threshold reads

i∂tψ − 1

2
∇2ψ +

(
V + i

2

)
ψ + (1 − iα)W0ψ

= (iα − 1)Wrψ. (4)

Let us assume the rotating potential is a small correction. This
is a physically relevant case that allows us to develop a simple
perturbation theory, giving a physical insight into the polariton
dynamics.

The solution of the unperturbed equation (4) with the right-
hand side set to zero can be expanded as

ψ =
∑
m,q

Cm,q(t )ψm,q, (5)

where ψm,q = Rm,q(r) exp imθ are eigenfunctions of the az-
imuthally symmetric problem corresponding to the eigenval-
ues λm,q, with functions Rm,q describing the radial condensate
distribution, and m and q are angular and radial quantum
numbers. For convenience, we use the normalized eigenfunc-
tions,

∫ |ψm,q|2dxdy = 1. The amplitude coefficients Cm,q are
governed by the equations

Ċm,q = λm,qCm,q. (6)

It is important to note that the eigenvalues λm,q are, in
general, complex, with the imaginary part representing the
frequency of the eigenmode and the real part accounting
for the effective losses caused by intrinsic dissipation and
leakage of the mode through the potential barrier of finite
width and height. In the presence of the pump, certain modes
may formally exhibit negative effective losses (gain) and
consequently grow exponentially in time. These modes are re-
sponsible for the polariton lasing in the considered geometry.
As modes with higher radial quantum numbers q are offset
in energy and have substantially higher losses than the ground
mode with q = 0, we neglect them in our further consideration
and omit the index q everywhere below.

Now we can consider the influence of the rotating po-
tential as a small perturbation. Projecting Eq. (4) onto the
unperturbed solutions of Eq. (6), we obtain the following
equation for the amplitude coefficients Cm:

Ċm = λmCm + (i + α)(ηm−Cm−�l e
−i�l�t+ηm+Cm+�l e

i�l�t ),

(7)

where ηm± = 2π
∫

f (r)Rm±�lR∗
mrdr are overlap integrals that

provide the coupling coefficients of the mode m to the modes
m ± �l .

Let us consider the condition that needs to be satisfied for
strong intermode coupling. The energies of the eigenmodes
are schematically shown in Fig. 2, where the horizontal axis
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FIG. 2. Schematic representation of energy levels of linear
modes of polaritons in a symmetric potential. The vertical axis
represents the eigenenergies of the modes, and the horizontal axis
denotes the quantized angular momentum m. Only the modes corre-
sponding to the lowest radial quantum number are displayed. Panel
(a) illustrates the coupling of the states with m = ±1 by a stationary
potential with �l = 2. Panel (b) demonstrates the detuning of states
from resonance due to the suppression of hybridization of the m = 1
and −1 modes when the potential rotates. Panels (c) and (d) illustrate
the hybridization of the m = ±1 states by stationary and rotating
potentials with �l = 1, respectively (see the text for more details).

is the angular index of the mode and the vertical axis is the
mode frequency. The condition of the strong coupling of the
two modes requires that the angular indices of the modes, m1

and m2, differ by the angular index of the potential, �l , and
the frequencies of the interacting states, ωm1 and ωm2, differ by
��l . This can be formulated as a phase-matching condition:

m1 = m2 + �l, (8a)

ωm1 = ωm2 + ��l. (8b)

Let us start with the case �l = 2. One can easily see that for
zero angular velocity, the stationary potential strongly couples
the states with m = ±1, which are degenerate in energy; see
Fig. 2(a). When the potential starts rotating, effective detuning
in the rotation frame appears, which weakens the coupling, as
illustrated in Fig. 2(b). It should be noted that, in general, a
rapidly rotating potential can efficiently couple states such as
m = 1 and 2 or m = 1 and 3. In these cases, the physics of the
mixing is similar to that between m = 0 and m = ±1 states.
However, this latter case requires slower rotation velocities to
observe the discussed effects, which is advantageous from an
experimental viewpoint. Thus, in this paper, we focus on the
rotating potential with �l = 1, which couples the states with
m = 0 and ±1.

The stationary potential corresponding to �l = 1 cannot
efficiently couple the states because the states with m2 − m1 =
1 always have different eigenfrequencies [see Fig. 2(c), where
it can be observed that the states with m = ±1 are detuned
by some frequency �01 from the state with m = 0 and by
�12 from the states with m = ±2]. However, rotation with
velocity � = �01 couples the state m = 1 to the state m = 0;
see Fig. 2(d). It is worth mentioning that this rotation is not

FIG. 3. (a) Potentials created by the microstructuring, V , and by
the radially symmetric pump, W0. (b) The spatial distribution of the
rotating potential Wr . The upper part of the panel shows a 2D pattern
of the potential, while the cross section of the potential Wr by the y =
0 plane is shown in the lower part of the panel. In numerical simula-
tions, the potential V is defined as V = V0{exp[−(r − RV )8/w8

V ] +
exp[−(r + RV )8/w8

V ]}, with V0 = 7, RV = 2.25, and wV = 1. The
radially symmetric potential is W0 = W̃0{exp[−(r − RW )2/w2

W ] +
exp[−(r + RW )2/w2

W ]} with W̃0 = 3.75, RW = 0.8, and wW = 0.3,
and finally the rotating potential Wr = W̃r{exp[−(r − Rr )2/w2

r ] −
exp[−(r + Rr )2/w2

r ]} cos(θ ) with W̃r = 1.5, Rr = 0.4, and wr =
0.25. In this figure and all subsequent ones, spatial coordinates and
parameters are scaled to the polariton propagation length

√
h̄/2m∗	p.

sufficient to couple the state m = 1 to the state m = 2 as
nonzero detuning ¯̄�12 is maintained. Note that this rotation
couples the state m = −1 neither to the state m = 0 nor to
the state m = −2 as the corresponding detunings in the ro-
tating frame are increased to �̄01 and �̄12, respectively. This
way, the symmetry θ → −θ gets broken: When the rotating
potential is present, the state with angular momentum m = 1
undergoes hybridization with the state m = 0, while the state
with angular index m = −1 remains almost unaffected by the
rotating potential. Therefore, one can anticipate that the prop-
erties of the states m = ±1 change differently when subjected
to a rotating potential.

IV. NUMERICAL STUDIES OF POLARITONS
IN ROTATING POTENTIALS WITH ANGULAR INDEX

�l = 1

To check our hypothesis, we performed numerical simu-
lations using potentials shown in Fig. 3. The dimensionless
parameter α defining the ratio of the gain to the polariton
frequency shift created by the pump was set to 0.33. The
dimensionless nonlinear coefficients accounting for the po-
lariton interactions and nonlinear losses were chosen to be
h = 0.0186 and h̃ = 0.001, respectively. The corresponding
values of dimensional parameters in Eq. (2) are given in [39].

It has been established [40] that by adjusting the param-
eters of a pump beam, it is possible to selectively excite
the modes with well-defined angular and radial indices. For
our simulation, we choose the potential W0 such that, in the
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FIG. 4. (a) The normalized angular momenta of stationary po-
lariton states obtained from 2D numerical simulations (black dots)
and of the two fastest growing modes obtained using the perturbation
theory (red and blue curves) as functions of the potential rotation
velocity �. The thicker sections of the curves indicate the mode with
the highest growth rate. In the 2D simulations, the angular momenta
are averaged over the results of the series of N = 100 runs, each

starting from random initial conditions, 〈M〉 =
∑N

j=1 M j

N , where Mj is
the normalized angular momentum in the jth run. (b) The disper-

sion DM =
∑N

j=1(M j−〈M〉)2

∑N
j=1 M2

j
of the angular momenta obtained from 2D

simulations; see the text for more details. The thin line connecting
the circles is a guide for the eyes. Values of � = ±�1 at which the
resonant mode coupling occurs are indicated by vertical dashed lines;
see the text and Fig. 6 for details. In this figure and all subsequent
ones, frequency parameters, including the rotation velocity of the
potential �, are scaled to twice the polariton decay rate 2	p.

absence of the rotating pump, a condensate with the lowest
radial index and angular momentum ±1 is created. Because
of the symmetry, the modes with m = +1 and −1 are excited
with equal probability. The potential also supports the funda-
mental mode, which exhibits slightly higher effective losses
compared to the modes with m = ±1 (given the chosen set of
parameters). The other modes have poor localization and high
effective losses, which allows us safely to assume that they do
not significantly impact the dynamics.

We performed a series of numerical simulations cor-
responding to different angular velocities of the rotating
potential (N = 100 simulations for each frequency). We cal-
culated the number of polaritons E = ∫ |ψ |2d2r and the
angular momentum

M = i
∫

ψ∗(y∂x − x∂y)ψd2r (9)

of stationary polariton states in each round of the simulations.
To characterize the rotation of the condensate, it is convenient
to introduce its normalized angular momentum, defined as
M = M/E . The dependency of this quantity averaged over
the number of realizations on the angular velocity of the
potential is shown in Fig. 4(a) by solid circles. Panel (b) shows
the dispersion of the angular momentum defined as

DM =
∑N

j=1(Mj − 〈M〉)2

∑N
j=1 M2

j

, (10)

where Mj is the normalized angular momentum calculated in
the jth round of simulations, and 〈M〉 = (

∑N
j=1 Mj )/N is the

normalized angular momentum averaged over N simulations
with different random initial conditions. It is seen that the

dispersion deviates significantly from zero only in the vicinity
of the potential angular velocities at which a change in the
direction of polariton rotation occurs. A comprehensive ex-
planation of this fact is provided in the subsequent section,
where the perturbation theory is developed.

The distinction between the states formed at different ro-
tation velocities is illustrated in Fig. 5, which displays the
density and phase distribution of the stationary polariton states
calculated at � = ±2.2 and ±1.9. From this visualization, it
can be deduced that polaritons generated in potentials rotating
at velocities � = ±1.9 and ±2.2 exhibit opposite rotation
directions.

The results of the simulation clearly demonstrate that the
normalized angular momentum of the stationary polaritons
is an odd function of the angular velocity of the potential:
M(�) = −M(−�). However, a significant finding is that
there exist specific nonzero potential rotation velocities at
which both the sign and the absolute value of the polariton
angular momentum undergo abrupt changes. Below, we show
that these velocities act as thresholds that separate different
ranges of potential angular velocities, where polaritons con-
dense into distinct states. Importantly, these stationary states
possess rotation velocities with different signs and absolute
values. Figure 4 clearly illustrates this transition occurring at
� ≈ ±2.

V. PERTURBATION THEORY FOR POLARITONS IN
ROTATING POTENTIALS WITH �l = 1

To explain the observed phenomenon, we construct a sim-
ple coupled-mode theory based on Eq. (7). In our case,
when �l = 1, we take into account the interaction between
the modes with m = 0 and ±1 only assuming that the cou-
pling with other modes is negligible within the considered
frequency range. First, we determine the parameters of the
eigenmodes for the chosen stationary potentials V and W0

in the absence of the rotating potential Wr = 0. The analysis
of the field evolution reveals the presence of a few localized
modes in the spectrum, with only three modes exhibiting
relatively high Q factors: m = ±1 and 0. Additionally, the
frequency separation between the modes with m = 0 and ±1
was found to be approximately 2 in the dimensionless units
used by us, while the frequency difference between the other
modes was considerably larger; see the Appendix for more
details. These findings support our assumption that a three-
mode approximation is sufficient to analyze the dynamics of
the system.

Let us rewrite Eq. (7) in the three modes approximation:

Ċ−1 = (−γ1 + iω1)C−1 + (i + α)η10C0ei�t , (11a)

Ċ0 = (−γ0 + iω0)C0 + (i + α)(η10C1ei�t + η10C−1e−i�t ),

(11b)

Ċ1 = (−γ1 + iω1)C1 + (i + α)η10C0e−i�t , (11c)

where γ1 and γ0 are the effective losses of the modes with the
angular indices m = ±1 and 0, respectively, which take into
account the radiative losses and the effect of the nonrotating
pump, ω1 and ω0 are real eigenfrequencies of the modes, and
η10 is the interaction strength between the modes. These pa-
rameters were determined from 2D numerical modeling (see
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FIG. 5. The density (a) and phase (b) distributions for the sta-
tionary polariton states for the case of a potential corresponding
to �l = 1 rotating at angular velocities � = −2.2, −1.9, 1.9, and
2.2. The thin blue dashed lines in panels (a) show the in-plane
symmetry axis of the rotating potential. White round arrows in panel
(b) indicate the direction of the rotation of the condensate. It is seen
in (b) that the phase gradient is directed oppositely for the angular
velocities of the potential equal to � = 1.9 and 2.2 (the same is true
for � = −1.9 and −2.2). This means that polaritons can rotate in
the same and in the opposite directions from the potential. It should
also be mentioned that the polariton density distributions are quite
different at � = 1.9 and 2.2. At � = 1.9, polaritons look like a
pulse going round the trap, whereas at � = 2.2 the polariton flux
and density are distributed more or less evenly along the angular
coordinate.

the Appendix for more details). It is worth noting that, for
the determination of these constants, only a few simulations
are necessary. Computationally, this approach is more effi-
cient than solving the eigenvalue problem and subsequently
calculating the corresponding overlap integrals. Additionally,
it is worth mentioning that the coupled-mode approach not
only speeds up simulations but also provides a pathway for

FIG. 6. The dependencies of the real (a) and imaginary (b) parts
of the eigenfrequencies δ of the modes on the rotation velocity of
the potential �, calculated in the framework of the coupled mode
theory. The dashed curves illustrate the case in which the rotating
potential is pure conservative. Negative values of the imaginary part
correspond to the modes growing in time. Values of � = ±�1 at
which the resonant mode coupling occurs are indicated by vertical
dashed lines.

analyzing the problem and investigating the mechanisms that
govern the dynamics of polaritons.

We set the frequency ω0 of the mode with m = 0 as a refer-
ence frequency and express the other frequencies as detunings
from ω0. We eliminate the explicit time dependence of the
coupling coefficients by introducing new complex amplitudes,

A1 = C1 exp−i(ω0+�)t , (12a)

A0 = C0 exp−iω0t , (12b)

A−1 = C−1 exp−i(ω0−�)t . (12c)

The equations for A0,±1 can be written in the following
form:

Ȧ−1 = (−γ1 + i�1 + i�)A−1 + (i + α)η10A0, (13a)

Ȧ0 = −γ0A0 + (i + α)η10(A1 + A−1), (13b)

Ȧ1 = (−γ1 + i�1 − i�)A1 + (i + α)η10A0, (13c)

where �1 = ω1 − ω0 is the detuning between the frequencies
of the modes with m = ±1 and m = 0.

Looking for the solution in the form A ∼ exp(iδt ), it is
easy to find the eigenfrequencies δ and the eigenvectors 
A =
(A−1, A0, A1)T of the modes as functions of the angular ve-
locity � of the potential. The dependencies of the real and
imaginary parts of the eigenfrequencies δ are shown in Fig. 6
for the parameters corresponding to the 2D simulations dis-
cussed above. It should be noted that because of the pump, the
values of γ0,±1 can be negative, indicating that corresponding
modes in the unperturbed problem (without the rotating po-
tential) experience linear gain and thus grow in time.

As shown in Fig. 6(a), the real parts of the eigenfrequencies
δ exhibit gaps at the rotation velocities � = 0 and � = ±�1.
The gap at � = 0 arises from the interaction of the modes with
m = ±1 mediated by the mode with m = 0. Consequently,
this gap is quadratic in η10 and is thus small for shallow
rotating potentials. The gaps at � = ±�1 occur due to the
resonant scattering between the modes m = 0 and 1 caused by
the rotating potential or, for the opposite sign of �, between
the modes with m = 0 and −1.

It is worth noting that in the vicinity of the resonant rota-
tion velocity � ≈ ±�1, the effect of the third mode can be
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neglected, and the eigenfrequencies of two hybrid modes read

δ± = 1
2

[
i(γ0 + γ1) + �1 + �

± i
√

[γ0 − γ1 + i(�1 + �)]2 + 4(1 − iα)2η2
10

]
(14)

for � ≈ −�1, and

δ± = 1
2

[
i(γ0 + γ1) + �1 − �

± i
√

[γ0 − γ1 + i(�1 − �)]2 + 4(1 − iα)2η2
10

]
(15)

for � ≈ �1. Let us remark that the approximate analytical
expression for the dependencies of δ(�) can be obtained for
the gap at � = 0 as well.

It is important that the eigenfrequencies are complex, with
their imaginary parts governing the growth (for Im δ < 0)
or decay (for Im δ > 0) of a mode. As can be observed in
Fig. 6(b), to the left of the resonance � = �1, the red-colored
mode is the fastest growing one, while the blue-colored mode
is the second fastest growing. To the right of the resonance,
the roles of the modes reverse, with the blue mode becoming
the fastest growing.

Based on the linear mode analysis, we can propose the
following scenario for the crossovers observed in our numer-
ical simulations. If initial conditions are taken in the form of
very low-intensity noise, the fastest growing mode eventually
dominates and suppresses the growth of the other modes once
it reaches the nonlinear regime. This scenario takes place
when the lasing threshold is surpassed by only one mode.

When the pump intensity is close to the lasing threshold,
nonlinear effects lead to the saturation of the mode but do not
significantly alter its structure. In this case, one can anticipate
that the structure of the stationary state closely resembles
that of the fastest growing linear mode, and their normalized
angular momenta coincide.

The dependencies of the normalized angular momenta M
of the fastest and the second fastest growing linear modes are
shown in Fig. 4 in blue and red, respectively. The thicker lines
indicate the range of � where a mode is the fastest growing.
It is clearly seen that the angular momenta of the stationary
states observed in the full-scale 2D simulations are very close
to the angular momenta of the fastest growing linear mode.

Thus, our perturbation theory shows that if the pump is
close to the lasing threshold, the stationary polariton state is
determined by the fastest growing linear mode. Furthermore,
the swap of the fastest and second fastest growing modes
causes an abrupt change in the stationary polariton state. Now,
let us delve into the reason behind the substantial deviation
of the dispersion of the normalized angular momentum, as
observed in a series of 2D simulations, in the vicinity of this
transition; see Fig. 4.

The reason for this is that a mode with a smaller increment
can win the competition if its initial amplitude is sufficiently
higher than that of the fastest growing mode. To estimate the
ratio of initial amplitudes at which the second fastest growing
mode can prevail, we make a simple analysis. Let us assume
that the nonlinear effects come into play, and the mode starts
suppressing its competitors when its amplitude becomes equal
to ath. We denote the increment and the initial amplitude
of the fastest growing mode as γ f and a f . Similarly, the

increment and the amplitude of the second fastest growing
mode are γs and as. Let us find the condition provid-
ing that both modes reach the value ath at the same
time, a f exp(γ f t ) = as exp(γst ) = ath. This time is given
by ln(ath/a f ). The second fastest growing mode reaches
the critical value earlier than the fastest mode if as >

a f exp( γ f −γs

γ f
ln ath

a f
).

The latter formula reveals that the probability of the second
fastest growing mode winning the competition depends on the
intensity of the noise taken as the initial conditions. However,
if the initial noise is weak, a f , as � ath, the fastest and the
second fastest growing modes have a comparable probability
of winning only if the difference of the increments γ f − γs is
small. This occurs at velocities close to the critical velocity
at which the fastest and the second fastest modes swap, as
at this point the increments are equal. This explains why the
dispersion of the angular momentum in Fig. 4 is large in the
vicinity of the resonant angular velocity � ≈ 2. In the regions
of � where the difference in increments is large, the fastest
growing mode always emerges as the winner.

It should be noted that this crossover does not occur in the
case of purely conservative rotating potential. Indeed, for this
case, there is no swap of the fastest and the second fastest
growing modes, as can be seen in Fig. 5(b). Hence, one should
expect a smooth dependency of the average angular momen-
tum of polaritons on the rotation velocity of the potential, as
shown by the blue line in Fig. 4.

Now, let us briefly discuss the behavior at small rotation
velocities. In this case, there is another swap between the
fastest and the second fastest growing modes for small angular
velocities of the rotating potential around � ≈ ±0.2 for the
chosen parameters. Consequently, there exists another thresh-
old velocity � at which the normalized angular momentum
of the condensate changes. However, the difference in growth
rates between the competing modes is relatively small, and
to observe the crossover, long simulation times are required,
which renders full-scale 2D simulations costly.

For this reason, we performed numerical simulations of
the coupled mode approximation generalized for the weakly
nonlinear case. The dynamic equations for the modes can then
be written as follows:

Ȧ−1 = (−γ1 + i�1 + i�)A−1 + (i + α)η10A0

+ (ε01|A0|2 + ε11|A−1|2 + 2ε11|A1|2)A−1, (16a)

Ȧ0 = −γ0A0 + (i + α)η10(A1 + A−1)

+ (ε0|A0|2 + ε01|A1|2 + ε01|A−1|2)A0, (16b)

Ȧ1 = (−γ1 + i�1 − i�)A1 + (i + α)η10A0

+ (ε01|A0|2 + ε11|A1|2 + 2ε11|A−1|2)A1, (16c)

where ε0, εi j are complex constants defining the intramode
(ε0, ε11) and intermode interactions (ε01) (see the Ap-
pendix for more details). The results are presented in Fig. 7.

The results obtained from the coupled-mode theory con-
firm the conclusion that the normalized angular momentum
of polaritons near the lasing threshold is determined by the
fastest growing linear mode. Figure 7(a) illustrates that the
averaged angular momenta of the stationary polaritons closely
align with the normalized angular momenta of the fastest
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FIG. 7. (a) Normalized angular momenta of stationary states ob-
tained from the coupled mode theory are shown by black filled circles
(the thin black line connecting the circles is a guide for the eye).
The red and blue lines show the normalized angular momenta of
the two fastest growing modes as functions of the potential rotation
velocity �. The thicker parts of the curves mark the fastest growing
modes. (b) Same as in panel (a), but for a narrower frequency range.
The vertical dashed lines mark the swap of the fastest and second
fastest growing modes. The average normalized angular momentum
changes it sign at � = 0, � ≈ ±0.2 and � ≈ ±2.

growing linear mode, except in narrow ranges of the angular
velocity � where the transitions between different polariton
states occur.

Numerical simulations of coupled mode equations are
much faster and allow for the collection of statistics through
a large number of runs using very small random fields as
initial conditions. This enables the accurate resolution of the
transition occurring at � ≈ 0.2, as well as of the change
of the polariton rotation at � = 0. Figure 7(b) shows that
the dependency of the normalized angular momentum of the
stationary polaritons on � passes through zero at � = 0 and
at � ≈ ±0.2.

It should be noted that the smoothness of the transitions at
� ≈ 0.2 is determined by the intensity of the initial noise used
as the initial conditions. In an ideal scenario, these transitions
should be sharp. However, achieving the desired sharpness
is challenging due to the requirement of extremely low in-
tensities for the initial conditions, necessitating very long
numerical simulations. This is why, in our full-scale 2D simu-
lations, we were unable to resolve these transitions completely
but instead observed a large dispersion of the normalized
angular momentum at the indicated angular velocities �, as
shown in Fig. 4(b). This means that the difference between
the increments of the fastest and the second fastest modes
is so small that, for the chosen statistical properties of the
initial conditions, these modes have comparable probabilities
of winning.

At � = 0, there is another change in the sign of the angular
momentum of the condensate. This change is connected with
the symmetry of the fastest growing mode. At � = 0, the an-
gular momentum of the fastest growing mode is exactly zero.
However, the rotation of the potential breaks this symmetry,
resulting in the appearance of the angular momentum of the
stationary polariton state. Therefore, we can conclude that the
changes in the sign of the angular momentum at � = 0 and
� �= 0 occur due to different physical reasons. At � �= 0, it
is due to the swap between the two fastest growing modes,
while at � = 0, it is due to the change in symmetry of the
fastest growing mode.

FIG. 8. (a) Potentials created by the microstructuring, V , and by
the radially symmetric pump, W0. (b) The spatial distribution of the
rotating potential Wr . The 2D distribution of the potential is shown
in the upper left part of the panel, while the cross sections of the
potential Wr by y = 0 and x = 0 planes are shown in the lower and
upper right parts of the panel, respectively. The potential is created
by the incoherent pump with an angular index difference �l = 2.
The parameters of the potentials V , W0, and Wr defined in the caption
of Fig. 3 used for simulations are as follows: V0 = 7, RV = 2.25,
and wV = 1; W̃0 = 3.45, RW = 0.9, and wW = 0.25; and W̃r = 0.15,
Rr = 0.9, and wr = 0.25. (c) The averaged (over 100 simulations
starting from a weak noise taken as the initial conditions) normalized
polariton angular momentum as a function of the rotation velocity of
the potential � for W̃0 = 3.45 (solid black circles) and W̃0 = 3.75
(red stars). One should note that at higher pump power, the polariton
number E in the stationary state is approximately five times larger
than at the lower pump. The blue curve shows the dependency of
the normalized angular momentum on � for the fastest growing
linear mode calculated within the coupled mode approach for the
parameters fitted to the full-scale 2D simulations.

VI. COMPARISON OF THE POLARITON DYNAMICS
IN ROTATING POTENTIALS WITH �l = 1 AND 2

The latter scenario discussed plays a key role in determin-
ing the angular momentum of polariton states in potentials
that couple states with m = ±1 [37]. We performed numer-
ical simulations using the potential shown in Fig. 8(a) with
�l = 2, which couples modes with m = ±1. The nonrotating
axially symmetric potentials are shown in panel (b). The av-
eraged normalized momenta of the stationary polariton states
are shown in Fig. 8(c) for the excitation slightly above the
polariton lasing threshold. It is clearly seen that the direction
of the rotation of the potential determines the direction of the
rotation of the condensate.

The density and the phase distributions of the stationary
polariton states are shown in Figs. 9(a), 9(c) and 9(f) and
Figs. 9(b), 9(d) and 9(e), respectively. The panels (a)–(d) cor-
respond to the case of the pump slightly exceeding the lasing
threshold. The direction of the condensate rotation is shown
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FIG. 9. Density (a),(c),(e) and phase (b),(d),(f) distributions cor-
responding to the stationary states for the case of the rotating
potential with �l = 2 and rotation velocities � = −0.025 and 0.025.
Thin white dashed lines in the left panels show the in-plane rotat-
ing potential symmetry axis passing through the potential maxima.
Arrows in the right panels indicate the rotation direction of the
polariton states. For (a)–(d), the stationary pump slightly exceeds the
lasing threshold, W̃0 = 3.45, whereas for (e),(f), the pump is more
intense, W̃0 = 3.75. The increase of the pump from W̃0 = 3.45 to
3.75 results in the growth of the total polariton number E in the
stationary states by approximately five times. It is seen that for a
higher incoherent pump, the variation of the polariton density along
the angular coordinate becomes less pronounced.

by white arrows. Notably, the polariton density distribution
consists of two lobes separated by dips. The separation be-
comes more pronounced at low rotation velocities; see panels
(a),(c).

To establish the connection between the angular momen-
tum of a stationary state and that of the corresponding fastest
growing mode, we examined the coupled mode model [37]. In
the case of a potential with �l = 2, it is sufficient to take into
account only two modes with m = ±1. By substituting

A±1 = C±1e−i(ω1±2�)t (17)

into (7), we get

Ȧ±1 = −(γ1 ± 2i�)A±1 + (i + α)η±1A∓1, (18)

where η±1 is the coupling strength between the modes.

FIG. 10. The dependencies of the real (a) and imaginary (b) parts
of the eigenfrequencies δ of the modes on the rotation velocity of the
potential �, calculated in the framework of the coupled mode theory.
The negative values of the imaginary part correspond to a growing
mode.

The eigenfrequencies δ1 of the modes can be easily found
analytically, and they read

δ1 = iγ1 ±
√

4�2 + (1 − iα)2η2
±1. (19)

The eigenmodes have different linear growth rates due to the
rotating spatially distributed linear gain. The dependencies of
the real and imaginary parts of the eigenfrequencies δ1 on the
rotation velocity � are depicted in Fig. 10. In this particular
case, we observe that there is now a swap between the modes,
and the same mode remains the fastest growing for all values
of the angular velocity of the potential �. Therefore, when �

crosses zero, the change in the direction of polariton rotation
occurs due to the corresponding change in the structure of
the fastest growing mode. As a result, this change of the
polariton velocity exhibits a smooth dependence on the po-
tential rotation velocity �. It is worth mentioning that, indeed,
the normalized angular momentum of the stationary polariton
state matches well with the normalized angular momentum of
the fastest growing linear mode in the whole range of �; see
Fig. 8(c).

Thus, we can conclude that close to the lasing threshold,
the formation of the stationary state is determined by the
fastest growing mode, suppressing the other modes. Let us
remark that when the initial conditions are taken as high-
intensity noise, the resulting state becomes random, and we
can observe, with different probabilities, the formation of the
polariton states corresponding to different angular momenta.

Furthermore, it is important to note that at higher pump
intensities, the impact of nonlinear effects on the structure
of the growing field becomes significant. The normalized
angular momentum as a function of the rotation velocity �

obtained from the numerical simulations for a stronger pump
is shown in Fig. 8(c) by the red stars. It is evident that the
dependence deviates significantly from the one predicted by
the linear mode analysis. It is also instructive to compare
the density distributions of the stationary states formed at
different pumps; see Figs. 9(d) and 9(e). It is seen that for
relatively slow rotation velocities, a stationary state resembles
a standing wave with deep minima. This standing wave is
formed by counterpropagating waves with similar amplitudes
and slightly different frequencies, causing the standing wave
to rotate with the potential. A finite angular momentum of a
polariton state arises due to the difference in the amplitudes
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of the counterpropagating waves. At higher pumps, one of
the waves becomes dominant, leading to an increase in the
angular momentum of the state; see Fig. 8(c).

VII. CONCLUSION

In conclusion, we developed a theory of the symmetry
breaking in a polariton condensate formed in a stationary
circular trap complemented with a weak rotating potential that
helps hybridize the modes of the condensate with different
quantized angular momenta. It is demonstrated that in the
vicinity of the lasing threshold, a “winner takes all” scenario
is realized, and the stationary state inherits the structure and
normalized angular momentum of the fastest growing linear
mode. We have also demonstrated that increasing the intensity
of random initial noise can lead to the formation of stationary
states different from the fastest growing states, with probabil-
ities depending on the growth rates of these modes.

We have identified the critical speeds of rotation of the
potential that induce the change of direction of the conden-
sate rotation, and we identified two corresponding switching
mechanisms. In the first case, the structure of the fastest grow-
ing mode changes in such a way that at some potential rotation
velocity, the angular momentum of the mode changes its sign.
In the second case, the fastest and second fastest growing
modes swap at threshold velocity.

It is essential to acknowledge that the problem under con-
sideration is closely connected to the formation of nonlinear
vortices. However, the dynamics of vortices becomes signifi-
cant only at relatively high polariton densities, given that the
size of the vortex is smaller or comparable to the size of the
trapping potential. In this paper, our focus is on excitations
near the condensation threshold. Consequently, the polariton
density is significantly lower than what is required for vortex
formation.
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APPENDIX: DEVELOPMENT OF THE PERTURBATION
THEORY FOR POLARITONS IN A ROTATING TRAP

Let us write Eq. (3) in the form

∂tψ = iL̂ψ + iP̂ψ + iG(ψ ), (A1)

where L̂ = − 1
2∇2 + (V + i

2 ) + (1 − iα)W0 accounts for the
linear properties of the systems in the absence of the rotating

potential Wr . The terms associated with the rotating poten-
tial and the nonlinearity are P̂ = (1 − iα)Wr and G(ψ ) =
(iα − 1)(W0 + Wr ) |ψ |2

1+|ψ |2 ψ + (h + ih̃)|ψ |2ψ , respectively.
To proceed, we decompose the field into a series of eigen-

modes of the unperturbed problem ∂tψ = iL̂ψ . Because of
the axial symmetry of the operator L̂, the eigenmodes can
be represented as ψm,q = Rm,q(r)eimθeiωm,qt , where ωm,q rep-
resent the corresponding eigenfrequencies of the operator L̂:
L̂ψm,q = ωm,qψm,q. The radial structure of the modes is de-
scribed by the function Rm,q. The indices q and m are the
radial and angular indices of the mode, respectively. In the
further consideration, we use the fact that Rm,q = R−m,q for
the operator L̂. For the sake of convenience, we normalize
the eigenfunctions as

∫ |ψm,q|2dx dy = 1. Let us acknowledge
here that the eigenvalues ωm,q are complex, accounting also
for the linear losses (gain) experienced by the modes.

We look for a solution in the form (5) with coefficients
Cm,q(t ) accounting for the temporal dynamics of the field.
These coefficients evolve as Cm,q = dm,qeiωm,qt , where dm,q are
constants for the unperturbed problem. In the presence of per-
turbations, dm,q exhibits slow temporal dynamics. The validity
of this approach relies on the condition that the perturbations
are sufficiently weak, such that the characteristic evolution
time Tch of the mode amplitudes dm,q satisfies the condition
min(|ωm,q − ωm′,q′ |Tch) � 1.

We further impose the condition |ψ | � 1, which corre-
sponds to low density of polaritons when they weakly deplete
the reservoir of incoherent excitons. This condition is required
to reduce the nonlinearity associated with the depletion of the
pump to a cubic nonlinearity (iα − 1)W0|ψ |2ψ , where, using
the aforementioned assumptions, we have neglected the de-
pletion of the rotating potential. Consequently, the nonlinear
term can be expressed in the following form:

G(ψ ) = U |ψ |2ψ, (A2)

where U (r) = (h − W0) + i(h̃ + αW0) is the complex pseu-
dopotential.

To develop the perturbation theory, we start with the linear
intermode interactions induced by the rotating potential. By
substituting (5) into (A1) and projecting onto the ψm,q modes,
we derive the equation for dm,q in the form

Ċm,q = iωm,qCm,q +
∑
m′,q′

Cm′,q′

∫
ψm′,q′ψ∗

m,qWrdx dy. (A3)

We consider the rotating potential of the form Wr = (i +
α) f (r) cos[�l (θ − �t )], where f (r) describes the radial de-
pendency of the potential. Let us recall that �l is the number
of maxima of the potential along the angular coordinate, and
� is the potential rotation velocity. We make the derivation
for the case of �l = 1, which can be easily generalized to
arbitrary �l . Subsequently, the integrals can be calculated as∫

ψm′,q′ψ∗
m,qWrdx dy = 1

2

∫
rR∗

m,qRm′,q′ f (r)dr

×
∫

ei(m′−m+1)θ−i�t

+ ei(m′−m−1)θ+i�t dθ.
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FIG. 11. (a) Cross section of the Fourier representation
ψ (kx, ky = 0, ω) of the field ψ (x, y, t ). The patterns identified as the
modes with m = 0 and q = 0, m = 1 and q = 0, and m = 1 and q =
1 are marked as ψ00, ψ10, and ψ11, respectively. (b) The dependencies
of the decay rates of the modes ψ00 and ψ10 as functions of α. The
solid circles are the calculated points, while the thin lines are a guide
for eye. The dashed line marks the zero of the decay rates. (c),(d) The
temporal dependencies of the occupancy of the modes ψ01 and ψ00

on time for different values of α. The time axis is chosen such that at
t = 0, only the one mode from the initial field distributions survives.
For convenience, the occupancies E are scaled such that at t = 0
they are all equal to unity. Please see the text for more details. In this
figure and all subsequent ones, time is scaled to the inverse of twice
the polariton decay rate 1/2	p.

This term is nonzero only for m′ = m − 1 and m′ = m + 1.
Then the equations for Cm,q can be reduced to

Ċm,q = iωm,qCm,q + (i + α)
∑

q′
σm,+,q,q′ei�tCm+1,q′

+ σm,−,q,q′ e−i�tCm−1,q′ , (A4)

where σm,±,q,q′ = π
∫

rR∗
m,qRm±1,q′ f (r)dr.

Typically, only a few modes exhibit negative or low pos-
itive losses, which aligns well with the results presented in
the main part of the paper. To obtain the coefficients required
for the perturbation theory, we conducted several numerical
experiments. Initially, let us determine the eigenfrequencies of
the polariton modes, specifically for the case of small α, where
the gain does not significantly impact the mode structure.
Under this condition, the real parts of the eigenfrequencies
remain independent of α. Therefore, we choose α = 0.26,
slightly below the smallest lasing threshold, and perform the
simulation starting with the initial conditions in the form of
ψ = a

∑4
m=0 e−r2/r2

0 eimθ , where a = 0.001 is the small ampli-
tude and r0 = 1 is the radius of the initial field distribution.
The rotating potential is set to zero.

The results of the numerical simulations are presented in
Fig. 11(a) displaying the Fourier representation ψ (kx, ky, ω)
of the field ψ (x, y, t ). In this panel, one can easily identify
the pattern corresponding to the mode with m = 0, q = 0
marked as ψ00. At the higher frequency, there is a pattern

corresponding to the mode ψ10 with m = 1, q = 0. By cal-
culating the positions of the spectral lines, we determine the
eigenfrequencies of the modes.

It is worth noting that for the chosen parameters, the width
of the spectral line of the mode ψ10 is smaller compared to
that of the mode ψ00, indicating a higher quality factor for
the modes ψ±10. Additionally, a faint pattern corresponding
to the mode ψ11 is observed at an even higher frequency, but
its quality factor is significantly lower. Let us remark that the
eigenfrequency of this mode is close to the maximum height
of the confining potential, suggesting that radiative losses are
expected to be very high for this mode and for the modes with
higher frequencies.

By conducting numerical simulations and monitoring the
decay of the polariton number E = ∫ |ψ |2dx dy over time,
it is straightforward to determine the mode decrements as
functions of the parameter α. By choosing appropriate sym-
metry of the initial conditions, it is possible to distinguish the
modes with different m. Thus, the initial distribution contains
modes with fixed m but different q. However, the modes with
different q have different decay rates, and eventually only
the mode with the slowest decay rate survives. This way, we
estimate the mode decrements as functions of α for the modes
ψ10 and ψ00; see Fig. 11(b). To demonstrate that we conduct
estimation at times when the field contains only one mode, we
plotted the dependencies of the polariton number E on time;
see Figs. 11(c) and 11(d). One can see that these dependencies
exhibit linear behavior on the logarithmic scale.

As expected for a weakly dissipative system, the decay
rates of the modes depend linearly on the parameter α, which
represents the ratio of the imaginary part of the potential to
its real part. It is possible to extrapolate the dependencies for
finding the effective losses for the parameter α = 0.33 used
in the numerical simulations. It should be noted that the mode
decrements become negative at some threshold α, indicating
mode growth. This method also provides the ability to identify
the mode with the longest lifetime among the modes with a
fixed angular index m.

Finding the modes with the second smallest decay rate is
more challenging. However, an estimation of their decay rate
can be obtained by examining the beating between the modes.
The decay rate of this beating provides the difference between
the decay rates of the modes with the first and second smallest
decay rates. By conducting this estimation, we discovered
that the decay rate of the mode ψ11 is more than an order
of magnitude higher than the decay rate of the mode ψ10.
This observation supports the assumption that, in the first
approximation, the dynamics of the system can be described
in terms of the amplitudes of the modes ψ00 and ψ±10.

Thus, we disregard all modes except the three modes with
m = ±1, m = 0, and q = 0. Subsequently, the equations for
the coefficients d±1, d0 take the following form:

Ċ−1 = iω1C−1 + ηei�tC0, (A5a)

Ċ0 = iω0C0 + η(e−i�tC−1 + ei�tC1), (A5b)

Ċ1 = iω1C1 + ηe−i�tC0. (A5c)

Here and everywhere below, we omitted the second index, q,
for it is always zero. We also used the equalities ωm = ω−m

and Rm = R−m that follow from the degeneracy of the modes
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FIG. 12. (a) The temporal spectra of the field for different poten-
tial rotation velocities of the potential �. The frequency differences
�ω between the peaks are given in the panel. (b) The positions of
the spectral peaks in the vicinity of the eigenfrequency of ψ00 state
as functions of �. The black solid circles are the data extracted from
2D simulations, and the blue curves are the fit by formula (14). The
thick black lines are a guide for the eye. (c) The spectra calculated
for the different amplitudes of the potential rotating at the velocity
� = 2.

with angular indices ±m. This is why σ−1,+ = σ0,− = σ0,+ =
σ1,−, and we denote this as η10.

To use the coupled mode approach, it is necessary to deter-
mine the values of the scattering rates η10. These values can be
found from 2D numerical simulations. We choose α slightly
below the lasing threshold for ψ10 mode and take the initial
distribution in the form ψ = ae−r2/w2

eiθ . Then we conduct
numerical simulations in the presence of the conservative ro-
tating potential and calculate the temporal spectra of the field.

The presence of the rotating potential with �l = 1 causes
the coupling of the mode with m = 1 to the mode with m = 0.
This process is most effective when the rotation velocity �

matches the frequency difference between the modes ψ00 and
ψ10. Indeed, when the frequency is close to 2, we observe the
emergence of two spectral peaks with frequencies close to the
eigenfrequency of the ψ00 mode; see Fig. 12(a).

These peaks correspond to two hybrid modes formed by
the mixing of ψ10 and ψ00 states. It is worth noting that each
of the hybrid modes has two spectral lines, one near the fre-
quency of the pure ψ10 state and the other near the frequency
of the ψ00 state. For technical reasons, it is easier to estimate
the spectral lines at frequencies close to the eigenfrequency of
ψ00 state.

The positions and the separation between the spectral lines
of the hybrid modes are dependent on the rotation velocity of
the potential; see Figs. 12(a) and 12(b). To confirm that the
two peaks are indeed associated with the splitting caused by
the rotating potential, we calculated the spectra for different
amplitudes of the rotating potential. The results depicted in
Fig. 12(c) show that, indeed, the frequency difference between
the peaks decreases with the decrease of the rotating potential
amplitude.

In the vicinity of the resonance frequency, this dependency
can be approximated by (14). To estimate the scattering rate,
we can disregard losses and fit the numerical data by the
analytical expression (14) choosing the appropriate η. The
fit, shown by the thicker blue line in Fig. 12(b), demonstrates
good agreement between the analytical and numerical results.

Let us now turn to the perturbation induced by the nonlin-
ear term. Looking for the solution in the form

ψ = C−1R1e−iθ + C0R0 + C1R1eiθ ,

we can calculate the nonlinear term and project it onto
the eigenfunctions ψ±1 and ψ0. The projections Y±1, Y0 on
the modes m = −1, 0, and 1 are given by the following
expressions:

Y−1 = (ε11|C−1|2 + 2ε11|C1|2 + ε01|C0|2)C−1 + ε̃01C
2
0C∗

1 ,

(A6a)

Y0 = (ε0|C0|2 + 2ε01|C−1|2 + ε01|C1|2)C0

+ ε̃∗
01(C0 + C∗

0 )C−1C1, (A6b)

Y1 = (ε11|C1|2 + 2ε11|C−1|2 + ε01|C0|2)C1 + ε̃01C
2
0C∗

−1,

(A6c)

where the nonlinear interaction constants are ε11 =
2π

∫
Ur|R1|4dr, ε01 = 4π

∫
Ur|R0|2|R1|2dr, ε0 =

2π
∫

Ur|R0|4dr, and ε̃01 = 2π
∫

UrR2
0R∗2

1 dr.
It is worth noting that the first term in (A6a) has a fre-

quency close to the frequency of the mode ω1 provided that,
according to the derivation, the mode amplitudes C can be
represented as Cm = dmeiωmt , where dm is a slowly varying
function of time. However, the frequency of the second term
can be estimated as 2ω0 − ω1. This would cause the dynamics
of the mode amplitude d−1 at the frequency 2|ω0 − ω1|, which
is, obviously, not small compared to the detuning of the mode
eigenfrequencies. Therefore, this term cannot be included in
the equation for C1 but, if necessary, can be taken into account
through an additional small correction to the field. Similarly,
it can be observed that the last terms in the expressions for Y0

and Y1 do not contribute to the equations for the amplitudes
C0 and C1. Thus, accounting for the nonlinear interaction, the
equations for the mode amplitudes can be written as follows:

Ċ−1 = iω1C−1 + (i + α)η10ei�tC0

+ (ε11|C−1|2 + 2ε11|C1|2 + ε01|C0|2)C−1, (A7a)

Ċ0 = iω0C0 + (i + α)η10(e−i�tC−1 + ei�tC1)

+ (ε0|C0|2 + ε01|C−1|2 + ε01|C1|2)C0, (A7b)

Ċ1 = iω1C1 + (i + α)η10e−i�tC0

+ (ε11|C1|2 + 2ε11|C−1|2 + ε01|C0|2)C1. (A7c)

Now changing the variables A1 = C1 exp−i(ω0r+�)t , A0 =
C0 exp−iω0r t , and A−1 = C−1 exp−i(ω0r−�)t , where ω0r =
Re ω0, we arrive at the equations for the amplitudes A:

Ȧ−1 = (−γ1 + i�1 + i�)A−1 + (i + α)η10A0

+ (ε11|A−1|2 + 2ε11|A1|2 + ε01|A0|2)A−1, (A8a)

Ȧ0 = −γ0A0 + (i + α)η10(A1 + A−1)

+ (ε0|A0|2 + ε01|A−1|2 + ε01|A1|2)A0, (A8b)
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FIG. 13. (a) The dependency of the frequency ω10 of the station-
ary state ψ10 on its polariton number E10. (b) The frequency of the
weak perturbation having the structure of the state ψ00 nestling on the
stationary state ψ10 as a function of the total number of polaritons
E10 in the state ψ10. (c) The temporal evolution of the polariton
number E00 of the state ψ00 for the parameter α below the lasing
threshold. (d) The instantaneous frequency ω00 = ∂t Q

Q of the decaying
state ψ00 as a function of the total number of polaritons E00 in the
state ψ00. The parameter Q is defined as Q = ∫

ψ dx dy. The thinner
dashed line in this panel is the linear fit for the numerically calculated
curve.

Ȧ1 = (−γ1 + i�1 − i�)A1 + (i + α)η10A0

+ (ε11|A1|2 + 2ε11|A−1|2 + ε01|A0|2)A1, (A8c)

where γ1 = Im ω1, γ0 = Im ω0, and �1 = Re ω1 − ω0r .
Next, we need to determine the values of the nonlinear in-

teraction constants. We start by estimating the imaginary parts
of ε’s. For this purpose, we perform numerical simulations of
the problem without the rotating potential while maintaining
α above the lasing threshold for the mode ψ10 but below the
lasing threshold of the mode ψ00. As a result, only the state
ψ10 can form in the system. The frequency of the stationary
state can be found from the position of the maximum of its

temporal spectrum. The polariton number of the stationary
state E10 can be controlled by changing the value of α. This
way it is possible to find the dependency of the frequency of
the stationary state on its polariton number. This dependency
is shown in Fig. 13(a). It is seen that the dependency is quite
linear, which proves that the nonlinearity can be accurately
approximated by a cubic nonlinearity. The slope of the line
gives the value of the coefficient Im ε11.

To find the coefficient Im ε01, we perturb the station-
ary state ψ11 by the state ψ00 of very low intensity. Then
we measure the frequency of the state ψ00 which depends
on the polariton number of the state ψ10. The frequencies
of the states ψ00 and ψ10 are well resolved, so the frequency of
the state ψ00 can be measured easily. The dependency of the
frequency ω00 of the small perturbation ψ00 on the polariton
number E10 of the stationary nonlinear state ψ10 is shown in
Fig. 13(b). As is expected, the dependency is close to 1 in the
linear case as well.

To determine the coefficient ε00 characterizing the nonlin-
ear self-action of the mode ψ00, we take the initial conditions
in the form of the field with the angular index m = 0 with
rather high intensity. To avoid the excitation of the state ψ10,
we set α below the lasing threshold. In these circumstances,
the polariton number of the state ψ00 decays quasiexponen-
tially; see Fig. 13(c). The change in intensity of the state leads
to variations in its frequency and decrement. The instanta-
neous frequency can be obtained by calculating the function
∂t Q
Q , where Q = ∫

ψ dx dy. The dependency of the frequency
ω00 on the polariton number E00 of the mode ψ00 is shown
in Fig. 13(d). The dependency is also close to 1 in the linear
case. The deviation can be explained by the contribution of the
modes with higher radial indices. The slope of the dependency
allows us to determine Im ε00.

Let us note that by measuring the decay rates of the modes,
one can obtain the values of the real part of ε, which quantify
the strength of the nonlinear losses. For the chosen parame-
ters, the real parts of ε can be approximated by the formula
Re ε = α Im ε, since the dominant nonlinearity arises from
pump depletion. Furthermore, it is worth mentioning that the
same approach described above can be used to determine the
parameters for the coupled mode approximation in the case of
a potential with �l = 2.
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