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Electron spin synchronization induced by optical nuclear magnetic resonance feedback
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We predict a new physical mechanism to explain the electron spin precession frequency focusing effect
recently observed in singly charged quantum dots exposed to a periodic train of resonant circularly polarized
short optical pulses [A. Greilich et al., Science 317, 1896 (2007)]. We show that electron spin precession in an
external magnetic field and a field of nuclei creates a Knight field oscillating at the frequency of the nuclear spin
resonance. This field drives the projection of the nuclear spin onto the magnetic field to the value that makes the
electron spin precession frequency a multiple of the train cyclic repetition frequency, the condition at which the
Knight field vanishes.
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An electron spin localized in a single quantum dot (QD) is
a natural qubit candidate for solid state quantum information
processing.2–4 However, various optical or electrical control
operations on an electron spin in a QD affect the nuclear spin
polarization (NSP), which was observed as the Overhauser
shift of the electron spin precession frequency in a magnetic
field using various pump-probe techniques.5–8 The NSP is
changed by electron-nuclear spin flip-flop processes resulting
from Fermi contact hyperfine interactions.9,10 Such processes,
however, are suppressed in a strong magnetic field because
of an approximately three orders of magnitude mismatch in
energy between the electron and nuclear Zeeman splittings.
The NSP could be preserved on the time scale of hours,11

unless special energy-conserving conditions for electron spin-
flip are reached.12 Consequently, various manipulations with
an electron spin by optical or electrical means become a main
source of nuclear spin pumping, because during the action
of these time-dependent perturbations, spin-flip processes can
occur without energy conservation.1,8,13–17

One of the most remarkable demonstrations of such a
phenomenon is the nuclear induced frequency focusing (NIFF)
effect that was discovered in an ensemble of singly charged
QDs under excitation by a periodic train of short resonant
pulses of circularly polarized light.1 This experiment showed
that the nuclei change their polarization to values that allowed
precession frequencies of all electrons in the ensemble to
satisfy the phase synchronization conditions (PSC). These
are the frequencies at which the Larmor precession period
of electron spin is equal to an integer fraction of the pump
pulse repetition period.18 Why does the NSP, which changes
randomly under light excitation, reach the value allowing
electrons to satisfy the PSC? The authors of Ref. 1 suggested
a connection with suppression of nuclear spin dynamics in
such dots. Indeed, the train synchronizes the spin precession
of electrons satisfying PSC and makes them optically passive
at the moment of pulse arrival. This significantly slows down
the light-stimulated random dynamics of the NSP in these
QDs, leading to the accumulation of electron spins satisfying
the PSC.1

In this Communication, we demonstrate that the NIFF could
be the result of the Knight field feedback-stimulated nuclear

magnetic resonance (NMR). Our calculations treat the electron
spin and NSP as classical vectors precessing around each other
and an external magnetic field, and show that the NSP increases
its projection onto the magnetic field monotonically with time
therefore modifying the electron spin precession frequency.
When the electron spin precession frequency has reached the
PSC, the time-averaged electron spin polarization generated
by the train and the corresponding Knight field causing the
NSP modifications vanishes. The suggested mechanism should
result in much faster frequency focusing than that connected
with random fluctuations of the NSP.1,13,17

We consider a singly negatively charged QD exposed to the
train of circularly polarized pump pulses propagating along the
structure growth axis z, arriving at the QD with the repetition
period TR , and also to a transverse magnetic field B ‖ ex ,
where ex is the unit vector along x axis [see inset in Fig. 1(a)].
It is assumed that the optical transition involves the excitation
of a singlet X− trion with the hole spin projection on the growth
axis being ±3/2 for σ+ and σ− pump pulses, respectively. The
pulse duration τp is short as compared with the spin precession
period in the external magnetic field and as compared with
the photocreated trion lifetime. The optical selection rules
are therefore the same as in the absence of a magnetic field.
In the interval between the optical pulses, the electron spin
interacts with the NSP, m = ∑

i I i , where I i are the nuclear
spins and the sum is over a mesoscopic number (N ∼ 105) of
nuclear spins. At equilibrium, in the studied magnetic fields,
nuclei are practically unpolarized: they are randomly oriented
and the NSP magnitude is controlled by random fluctuations
of nuclear spin directions |m| ∼ √

N ∼ 3 × 102. To describe
this electron-nuclei interaction, we treat the electron spin
polarization, S, and m as classical vectors19 and adopt the
box model20–22 in which the interaction between electrons
and nuclear spins does not depend on their positions. These
approximations lead to the following equations for S and m in
the interval between the optical pulses, (n − 1)TR � t < nTR ,
where n is the pulse number:23

dS
dt

= {[� + αm(t)] × S(t)}, (1a)

dm
dt

= {[ω + αS(t)] × m(t)}. (1b)
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FIG. 1. (Color online) Time dependence of z component of the
electron spin polarization Sz calculated after the train initiation (a),
and after ∼4000 repetition periods of the train (b). Panel (c) shows
electron spin precession frequency calculated numerically (magenta)
and analytically from Eq. (8) (black solid) and Eq. (11) (black dashed)
curves. Inset to panel (a) illustrates geometry of a single QD excitation
and shows a pump pulse and an electron (red) and nuclear (black)
spins. Inset to panel (c) shows the absolute value of electron spin as a
function of time. Calculations were conducted for α = 0.4, m = 23.5,
which corresponds to approximately 2200 nuclei with spin I = 1/2,
� = 2π/3, �TR/(2π ) = 8.5, and ω = �/500.

Here, � = �ex and ω = ωex are the electron and nuclear
spin precession frequencies in an external field, respectively,
and α is the hyperfine coupling constant between the electron
and nuclear spins in the QD. The difference of electron and
nuclear magnetic moments gives ω/� ∼ 10−3. The electron
and nuclear spins in Eq. (1a) are coupled via an Overhauser
field of fluctuation acting on the electron, αm, and a Knight
field of the electron spin acting on the nuclei, αS. We neglect
completely a slow nuclear spin relaxation connected with
dipole-dipole interactions between nuclei in Eq. (1b).

The dynamics of the electron and nuclear spins in the QD
have several very different time scales. Under experimental
conditions1 following inequalities hold

2π

�
� 2π

αm
� TR � 2π

ω
� 2π

α
,

These inequalities mean that (i) electron spin dynamics in
the interval between pulses occurs in the permanent field of
the frozen fluctuation of NSP and (ii) the dynamics of NSP
is controlled only by the electron spin polarization averaged
over the pulse repetition period:

S0 = 1

TR

∫ nTR

(n−1)TR

S(t)dt. (2)

Straightforward calculation shows that

S0 = n(n · S(a)) + S(a) − n(n · S(a))

�effTR

sin (�effTR)

+ [S(a) − n(n · S(a))] × n
�effTR

[1 − cos (�effTR)], (3)

where S(a) is the electron spin polarization right after the
excitation pulse, n = (� + αm)/�eff is a unit vector along
the effective field, and �eff = |� + αm| ≈ � + αmx . One can
see from Eq. (3) that the average electron spin polarization S0

transverse to n vanishes when �eff satisfies the PSC: �effTR =
2πK with K = 1,2, . . . . The longitudinal component does
not vanish at the PSC due to a small deviation of n from the
magnetic field direction caused by the nuclear field. As we
show below, the transverse components of an electron spin are
required for the NSP modification. As a result, the electron
spin does not affect the nuclei if the PSC is fulfilled. If the
PSC is not satisfied, however, the weak Knight field, αS0,
modifies the NSP and drives its projection, mx(t), to the value
that allows �eff to satisfy the PSC.

To describe this effect, we need to complement Eq. (1a),
which describes the electron-nuclear spin dynamics in the
interval between pulses, by the relationship between the
electron spin polarization before, S(b), and after, S(a), the pump
pulse, which for resonant σ+ excitation reads24

S(a)
z = Q2 − 1

4
+ S(b)

z

Q2 + 1

2
, S(a)

x = QS(b)
x , S(a)

y = QS(b)
y ,

(4)

where Q = cos �/2 and 1 − Q2 is the probability of trion
creation by the short circularly polarized pulse with area
�. Numerical integration of Eqs. (1), which uses Eq. (4),
clearly demonstrates the NIFF effect as one can see in Fig. 1.
Calculations were conducted for the electron spin precession
frequency, which does not satisfy the PSC: �TR/(2π ) = 8.5,
and an initial condition for the NSP, which was selected as
m ‖ ez. We exaggerated the value of α and reduced the number
of nuclei from a typical value in a QD N ∼ 105 down to N ∼
2 × 103 to conduct numerically accurate calculations within
reasonable computational time. Otherwise, the difference in
the characteristic times of electron and nuclei spin dynamics
requires carrying out calculations on a time scale covering nine
orders of magnitude.

Figure 1(a) shows the temporal dynamics of the electron
spin z component for the 6th and 7th repetition periods where
the electron spin dynamics is already stationary18 but the
nuclear effects have not come into play. Panel (b) shows those
dynamics for the 3998th and 3999th periods when the nuclear
spin precession had already taken place. One can see that the
slow nuclear spin dynamics changes qualitatively the character
of electron spin precession in this time interval: the amplitude
of electron spin polarization is strongly enhanced and reaches
its maximum value 1/2, see inset in Fig. 1(c). The effect is
connected with the temporal dynamics of the electron effective
spin precession frequency shown in Fig. 1(c). Apart from the
oscillations of frequency ω related to the NSP precession, �eff

initially grows linearly in time and then saturates at the multiple
of 2π/TR . The periodic train of short pulses synchronizes the
electron spin precession in the QD where �eff satisfies the
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FIG. 2. (Color online) (a) Schematic illustration of electron
spin precession in quasistatic field � + αm(t) (top) and temporal
dependence of Sx (bottom). (b) Geometry of NMR induced by
steady-state αSy,0, and alternating, αSx(t), Knight fields. Bottom
panel shows static and oscillating fields in the (xy) plane.

PSC, leading to complete polarization of electron as seen in
Fig. 1(b).

To understand the physical mechanism responsible for
NIFF demonstrated in Fig. 1, let us first consider the effect
of the nuclear spin precession on the electron spin dynamics.
Since nuclear spin precession is slow as compared with
electron spin precession and pump pulse repetition periods,
one can treat the electron spin dynamics in the interval between
pulses as a precession in the static field � + αm [see Fig. 2(a)].
Using the procedure from Ref. 24 and Eqs. (3) and (4), we
derive a steady state (on the timescale of TR) value of Sx

exposed to the train of optical pulses:

Sx ≡ Sx,0(t) = αmz(t)Cx/�,
(5)

Cx = − 2Q sin2 (�effTR/2) + (Q − 1)2/2

(Q − 1)2 + 2(Q + 1) sin2 (�effTR/2)
,

One can see from Eq. (5) that Sx(t) oscillates slowly with
the NSP precession frequency ω. This occurs because the
electron spin precession axis [see Fig. 2(a)] is tilted from
the x axis in the (xz) plane by the small angle αmz(t)/�.
The precession leads to a nonzero Sx projection of the electron
spin, which value is proportional to the tilt angle oscillating
at the frequency ω. The same geometrical arguments show
that S0,y and S0,z are the sum of the time-independent terms
S0,y and S0,z and small terms oscillating at 2ω that can be
neglected. As a result, the NSP, which precesses around the
static field ω + αS0 (the latter is slightly tilted from the x axis)
experiences the alternating Knight field αSx(t) [see Fig. 2(b)].
Since Sx(t) oscillates with ω, it drives the NMR and leads to
slow modification of mx , as shown below.

To describe the time dependence of mx(t), we need to take
into account that the NMR driving field, αSx(t), is almost
parallel to the static field. At first, it creates a time-independent
shift of the NSP, m̄z, along the z axis. Indeed, in the first
approximation on α:

mz(t) = m⊥ cos

[
ωt +

∫ t

0
αSx(t ′)dt ′

]
, (6)

where m⊥ = √
m2 − m2

x is the perpendicular component of the
NSP. In the same approximation on α, Eq. (6) can be rewritten
as mz(t) ≈ m⊥ cos ωt + m̄z, where m̄z = −α2m2

⊥Cx/(2ω�).
The analogous calculation shows that m̄y = 0.

Secondly, the NMR is caused only by the component of
the alternating field perpendicular to the NSP precession axis,
which is equal to α(αS0/ω)Sx(t). Averaging the x component
of Eq. (1b), dmx/dt = α(Symz − Szmy), over a sufficiently
long temporal interval 	T 
 1/ω 
 1/�, we obtain the
standard NMR expression:

dmx

dt
= αSy,0m̄z = −α3Sy,0Cxm

2
⊥

2ω�
, (7)

where the averaged my is equals to zero: m̄y = 0. Generally,
the right-hand side of Eq. (7) depends on mx via Sy,0 and Cx

dependence on �eff . One can neglect this dependence if �eff

is not very close to the PSC. In this case, we obtain for mx(t):

mx(t)

m⊥(0)
≈ t

τnf
,

1

τnf
= −α3m⊥(0)

2ω�
Sy,0Cx, (8)

where m⊥(0) is the initial value of the perpendicular compo-
nent of the NSP. One can see from Eq. (8) that mx(t) and,
consequently, �eff grow linearly with time. The analytical
dependence �eff(t) shown by the solid line in Fig. 1(c) is
in good agreement with results of the numerical calculations.

In the case where �eff is close to the phase synchronization
condition, which is fulfilled if mx = mPSC

x , one can rewrite
Eq. (7) using Eq. (3) as

dmx

dt
=

(
mx − mPSC

x

)2

mτ ′
nf

, (9)

where

1

τ ′
nf

= α5mTR

16ω�2

1 + Q

1 − Q

[
m2 − (

mPSC
x

)2]
. (10)

The dynamics of mx(t) in this case is described by

mx(t) = mPSC
x − m

τ ′
nf

t − t0
, (11)

where t0 is an arbitrary constant, chosen to merge the time
dependencies given by Eqs. (8) and (11) at t ∼ τnf . The
corresponding long-time asymptote of �eff is plotted in
Fig. 1(c) by a dashed line.

Although dmx/dt = 0 at mx = mPSC
x , these mx’s are only

the saddle points in the mx time dependence. For positive τ ′
nf ,

the points are stable if mx < mPSC
x and unstable otherwise.

This means that mx returns to mPSC
x only if its fluctuation

δ = mx − mPSC
x < 0. If δ > 0, the fluctuation causes the

deterministic growth of mx until the next PSC with larger
mx is met. Including a weak nuclear spin relaxation in
Eq. (1b) gives two mx = mPSC

x ± √
mPSC

x mτnf′/T1, at which
dmx/dt = 0, where T1 
 τnf′ is the nuclear spin relaxation
time. One of these solutions, mx = mPSC

x − √
mPSC

x mτnf′/T1,
is a stable point of mx(t). A switch of the light polarization
from σ+ to σ− does not change the direction of the mx growth,
as can be seen from Eqs. (8) and (11).

Figure 3 shows the dependence of the NIFF time, τnf ,
defined Eq. (8) on the pump pulse area, �. One can see that
τnf becomes extremely long for � � 1 because electron spin
orientation is inefficient and the averaged electron spin S0 is
very small under these conditions. Growth of � increases
S0 and consequently the Knight field, αS0, which in turn
shortens τnf . Further increase of τnf with � seen in Fig. 3
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FIG. 3. (Color online) (a) Dependence of the NIFF time, τnf , on
the pulse area, �. The three curves were calculated at the magnetic
fields that give the following electron spin precession frequencies:
�TR/(2π ) = 50.5 (black), 100.5 (red), and 150.5 (blue). The param-
eters used, α = 5 × 106 s−1, TR = 13 ns, ω/� = 10−3, and m = 126,
which could be created by 6 × 104 nuclei with spin 1/2, were selected
to keep the calculations relevant to Refs. 1,18. (b) and (c) Time
dependence of the average z component of the electron spin Sz(t)
during 3997 TR < t < 3999 TR time interval. The averaging was
conducted over 25 initial directions of NSP m. Panel (b) is calculated
for the frozen nuclear fluctuation [α = ω = 0 in Eq. (1b)], and panel
(c) is calculated taking the nuclear spin precession into account (α =
0.4, ω = �/500). Other parameters are the same as in Fig. 1.

is connected with the periodic dependence of S0 on �. The
frequency focusing time τnf ∝ �2ω increases significantly
with a magnetic field. This explains the rapid increase of τnf

with � seen in Fig. 3.
We have considered electron-nuclear spin dynamics in a

single QD with a certain initial orientation of NSP. To describe
a QD ensemble, we average over different initial orientations
of the NSP. The time dependence of the average z component
of the electron spin Sz(t) is shown in Figs. 3(b) and 3(c). The
initial NSP orientations m(0) were chosen to be isotropically
distributed, with the magnitude m(0) = m = 23.5 used to
describe the spin dynamics of a single QD in Fig. 1. Figure 3(b)

shows the electron spin dynamics in the absence of nuclear
spin dynamics, which is simulated using α = 0 and ω = 0
in Eq. (1b). One can see that Sz(t) partially decays between
the pump pulses and the phase of spin beats jumps at each
repetition period. Comparison with Fig. 1(a) shows that the
amplitude of Sz(t) after 4000 repetition periods is the same
as at the initial precession stage. The nuclear spin precession
in the external magnetic field and in the Knight field tunes
up the electron spin precession frequency and leads to a
very pronounced mode-locking of electron spin coherence
seen in Fig. 3(c). One can see a clear rise of Sz(t) before
pulse arrival. The NIFF effect also significantly increases
the Sz(t) amplitude relative to those shown in Fig. 3(b).
For the parameters used in this calculation, αmTR/(2π ) ≈ 1.5,
the main contribution to Sz(t) comes from the two �eff’s
satisfying the PSC �effTR/2π = 8 and 9.

We note that if the NIFF effect is a consequence of random
fluctuations of the NSP as suggested in Refs. 1,13, the rate
of this process can be estimated as γn ∼ (1 − Q2)α2/(�2TR).
The current classical model leads to a much faster NIFF in the
QD ensemble studied in Ref. 1 because 1/(γnτnf) ∼ αm/ω ∼
10 in these experiments. Quantum-mechanical extension of
the suggested model was carried out by M. Yu. Petrov.25

In summary, we have suggested a new physical mechanism
of the NIFF effect for the electron spin precession.1 This
mechanism leads to a monotonic shift of the electron spin
precession frequency with time and allows this frequency to
reach phase synchronization condition with the train repetition
period much faster than in the case when the NIFF is a
consequence of random fluctuations of the nuclear spins as
was suggested earlier. Further experimental studies of the NIFF
time dependence on a magnetic field and a pulse area should
provide evidence for the suggested mechanism.
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