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Condensed exciton polaritons in a two-dimensional trap: Elementary excitations
and shaping by a Gaussian pump beam
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An exciton-polariton condensate (EPC) confined in a parabolic two-dimensional trap is considered
theoretically. In the realistic limit of weakly interacting polaritons, the nonlinear term in the Gross-Pitaevskii
equation describing the properties of the condensate can be considered as a perturbation with respect to the trapping
potential, which allows for a convenient analytical description of the EPC ground state and Bogolyubov-type
elementary excitations around it. The excitation modes with the energies and wave functions depending on the
polariton-polariton coupling strength are derived for the condensate, neglecting interaction with uncondensed
polaritons can be neglected. The energies of these modes are shown to be almost equidistant, even for a
rather strong polariton-polariton interaction inside the condensate. This makes lateral parabolic traps promising
candidates for realization of bosonic cascade lasers based on exciton polaritons. Another physical scenario is also
considered where the interaction with a reservoir of uncondensed polaritons is more important than that inside
the EPC. In this case, it is shown that the condensate is “reshaped” by the repulsive interaction with the reservoir,
namely, pushed out from the center of the trap in real space and blue-shifted in energy, in agreement with the
results obtained in a number of recent experiments.
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I. INTRODUCTION

In recent years, the Bose-Einstein condensation of micro-
cavity exciton polaritons has been demonstrated1 and its dra-
matic effects on the properties of this two-dimensional matter-
light system have been shown.2–10 Free electrons and holes in
a semiconductor quantum well (QW) are created by pumping
with a beam of photons, usually of an energy well above the
QW band gap. The electrons and holes relax into lower energy
states, form excitons that couple to the microcavity photons,
and occupy the lowest exciton-polariton states. These mixed
light-matter bosons can eventually condense.1 Even though
the short polariton lifetime permits only the formation of a
quasiequilibrium steady state, in which photons escaping from
the cavity must be continuously replenished by the external
pump,8 exciton-polariton condensates (EPCs) can propagate
over macroscopic distances outside the excitation area while
preserving their spatial coherence.6 The repulsive exchange
interaction between QW excitons of the same spin orientation
results in a repulsive potential acting on the condensate,
induced by photogenerated excitons within the excitation
area.1 If the pumped spot is located within the condensate,
the polaritons feel an outward force and the EPC expands.10

On the contrary, if the reservoir of uncondensed excitons is
spatially separated from the condensate, the repulsive potential
allows for Bose-Einstein condensate (BEC) localization in a
trap with optically controlled dimensions.6,9

Alternatively, the Bose-Einstein condensate of exciton
polaritons in a semiconductor microcavity can be confined
in a lateral trap.11–14 A two-dimensional (2D) parabolic trap
can be induced by local elastic strain, shifting excitonic
states downwards in energy.11,12 Interestingly, the repulsive

potential induced by uncondensed excitons created by two
laser spots also appears parabolic along the line between the
spots, thus forming a (one-dimensional) parabolic trap for
EPC.10 Moreover, symmetric parabolic traps can be created
for exciton polaritons by a ring-shaped optical excitation:
repulsive interaction between the optically injected excitons
on the ring and the condensate of exciton polaritons is expected
to induce the Bose-Einstein condensation in the bottom of the
trap. Full optical control of the condensate would be achieved
if the injection of polaritons into the trap could be provided
by a second laser beam, additional to that creating the trap.
In particular, such configuration is important for realization
of bosonic cascade lasers recently described theoretically.15

Such experiments have not yet been realized, to the best of our
knowledge. Here we aim at providing a theoretical analysis that
would help in designing new experiments on the realization of
bosonic cascades in lateral polariton traps.

In this work we consider a polariton condensate excited
nonresonantly in an external parabolic trap. We analyze the
Bogolyubov-type elementary excitations of the condensate and
its shape modified by a Gaussian pump beam focused in the
center of the trap. Because of the parabolic confinement of
the condensate, the elementary excitations are also localized,
i.e., they are not characterized by a certain wave number, in
contrast with those considered for unconfined EPCs (see, for
example, Ref. 16). While in most of the previous works the
theoretical approach was based on numerical solution of a
generalized Gross-Pitaevskii equation,3,5,7,8,10,16 here we use
a semianalytical perturbation theory approach. In the realistic
limit of weakly interacting polaritons, the nonlinear term in
the Gross-Pitaevskii equation17 (GPE) can be considered as a
perturbation with respect to the trap potential, which allows
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for a convenient analytical description of the EPC ground
state.18 In the next section, the generalized time-dependent
GPE and its simplified limiting forms are discussed. In Sec. III,
Bogolyubov-type elementary excitations19 in a parabolically
confined EPC are considered. The effect of the repulsive
potential produced by uncondensed excitons generated by a
pump beam focused in the center of the trap is considered
and discussed in Sec. IV. The last section is devoted to
conclusions.

II. MEAN-FIELD DESCRIPTION OF EPC

Within the mean-field theory approach, the steady-state
and dynamics of an exciton-polariton condensate confined
in a potential trap are determined by the time-dependent
Gross-Pitaevskii equation.17 In the past, several theoretical
works were published, devoted to the description of the
collective excitations in atomic condensates within the GPE
framework.20–24 For instance, in Ref. 22 Bogolyubov ex-
citations in two-species condensates were considered and
it was shown that the interspecies interaction leads to a
metastable state of the alkali-metal condensate. Ruprecht
et al.23 studied the matter wave response and the resonance
conditions of the cooled alkali-metal atoms under a sinusoidal
perturbation of the trapping potential; the phenomenological
damping method24 was employed to describe the damping
of excitations at thermal equilibrium. Applying the GPE
to the condensates formed by lower branch exciton po-
laritons, several problems have been tackled, such as the
formation of vortices,25 solitons,26 and fluid dynamics,27

among others. A generalized GPE, which includes local
interactions between the excitons, was derived in Ref. 28
within the local density approximation, and the nonlinear
dynamic effects in coupled quantum wells were studied,
showing the appearance of a turbulent state. This approach
seems to be valid at temperatures much lower than the Bose-
Einstein condensation transition temperature under small trap
potential.

We shall consider the time-dependent complex GPE which
includes the loss (�) and generation (R) terms, and the
repulsive interaction with uncondensed excitons (reservoir):16

ih̄∂t� =
[

− h̄2

2m
∇2 + V (r) + ih̄(R − �)

+ g|�|2 + Vres(r)

]
� . (1)

Here g is the polariton-polaritons interaction parameter, m

is the polariton mass, and V (r) = 1
2mω2

0(x2 + y2) is the
parabolic trap potential.29 The last term in Eq. (1) describes
the repulsive interaction of the condensate with the reservoir
close to the pump spot, which is proportional to the number
of uncondensed polaritons (Nr ). We assume that they are
generated by a laser beam focused in the center of the trap, so
this potential is axial-symmetric.

Assuming the cw excitation regime, i.e., putting (R − �) =
const , and using the transformation

� = exp [(R − �)t]ψ ,

we obtain

ih̄∂tψ =
[

− h̄2

2m
∇2 + V (r) +

g exp [2(R − �)t]|ψ |2 + Vres

]
ψ . (2)

It is important to note that the dynamic stability condition
of the condensate described by Eq. (2) requires that R � �.
Equation (2) can be conveniently rescaled by introducing
l0 = √

h̄/ mω0, � = gmNp/h̄2, (x,y) = l0(ξ,η), and ψ =√
Np	/l0, with Np denoting the number of polaritons in the

condensate.
Starting from Eq. (2), we can investigate different physical

scenarios of the evolution of the condensate by considering
two limiting cases described below.

(I) Under cw conditions, R ≈ �, and for low pump
power, such that the number of polaritons in the reservoir is
small compared to the condensate, Nr � Np, the repulsive
interaction with the reservoir can be neglected, Vres ≈ 0.
Thus we recover the usual stationary GPE by substituting
ψ(ρ,t) = exp(−iμt/h̄)	0(ρ):

[Ĥ0 + �|	0|2 − μ]	0 = 0 . (3)

Here Ĥ0 = − 1
2∇2 + 1

2ρ2, the operator ∇ is defined in terms
of the dimensionless coordinates ξ and η, ρ2 = ξ 2 + η2, μ =
μ/(h̄ω0), and μ is the chemical potential. This situation will be
considered in the next section where the Bogolyubov-type ele-
mentary excitations in EPC uncoupled from the reservoir will
be derived in terms of the dimensionless interaction parameter
� = g/(h̄ω0). For exciton polaritons in a semiconductor
microcavity, this coefficient can be expressed as30 � = (α1 +
α2)mNp/(2h̄2), where α2 = −α1(Eex−ph + δ)/(2Eex−ph) and
α1 = 6Eba

2
b |X|2 denote the interaction constants for exci-

tons with antiparallel and parallel spins, respectively. Here,
X = 1/

√
1 + [h̄R/(εLP − εph)]2 is the excitonic Hopfield

coefficient,28,31 R denotes the Rabi splitting, εLP (εph) is
the lower polariton branch energy (cavity photon energy),
Eex−ph stands for the exciton-photon coupling energy, Eb is
the exciton binding energy, ab is the exciton Bohr radius, and
δ denotes the exciton-photon detuning. In Ref. 18 the range of
applicability of the perturbation theory has been reported for
the GPE (3):

|(α1 + α2)Np| < 6h̄2/m , (4)

i.e., the model is valid in the weak interaction limit. Using
typical parameters of a GaAs/AlGaAs microcavity,32 the
variation of the coefficient �/Np on exciton-photon detuning
δ is displayed in Fig. 1(a). From this figure, by comparison
with Eq. (4) one can conclude that the perturbation theory can
be applied in the detuning interval, −10 meV< δ < 3 if the
number of particles Np is smaller than 104, but for 3 meV <

δ < 7 meV Np it can be as large as 105–106.
(II) A qualitatively different situation occurs when the

intensity of the beam generating the polariton reservoir is
so high that the number of uncondensed polaritons becomes
large and the interaction between the EPC and the reservoir
cannot be neglected anymore. The limiting case here is the
domination of the condensate-reservoir repulsion over the
internal interactions within the EPC. Under the conditions
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FIG. 1. (Color online) (Panel a) Dependence of the dimensionless
polariton-polariton interaction parameter �, normalized to the num-
ber of particles Np , on the detuning δ in a GaAs/GaAlAs microcavity.
(Panel b) Bogolyubov excitation’s spectrum ωN,0 dependence on
� for N = 2 and 4. Solid line with open dots shows the reduced
ground-state energy of the condensate ε. (Panel c) Normalized energy
levels EN,0 are the solutions of Eq. (10) for the EPC coupled to
uncondensed polaritons created at the center of the trap as a function
of the laser excitation power (�res). Solid lines are for a = 0.2l0 and
solid lines with full circles correspond to a = l0.

Nr � Np and R < �, the nonlinear term in Eq. (2) can
be neglected in comparison with Vres, after a certain time,
t ∼ |R − �|−1.33 In this case the EPC can be described by a
linear partial differential equation, including the repulsion and
the 2D parabolic confinement. The effect of the interaction
with the reservoir on the EPC shape will be considered in
Sec. IV. The main purpose of the present work is to describe
both limiting cases within the same approach and to compare
the excitation spectrum dependence on the EPC parameters of
the microcavity.

III. BOGOLIUBOV EXCITATIONS

First, we consider the cw regime with Vres = 0, where
Eq. (2) is transformed into the time-dependent GPE with
R = �. Applying Bogolyubov’s method,19 the collective
excitations with frequencies ω are obtained by expressing the

solution as

ψ(ρ,t) = exp

(
− iμt

h̄

)
{	0(ρ) + δ	[u,v∗]} (5)

and linearizing it in terms of the amplitudes u(ρ,t) and v∗(ρ,t).
Owing to the axial symmetry, the excitation modes can

be classified according to the z component of the angular
momentum mz and the principal quantum number N . Also,
by virtue of the inversion symmetry, the space of solutions
of the linearized equations can be split into two independent
subspaces, I and II for mz even and odd, respectively.
Since in real experiments exciton-polariton condensates can
be considered as a weakly interacting gas, one can obtain
approximate solutions of the stationary GPE (3) and the
corresponding Bogolyubov–de Gennes equations for the u

and v∗ components using a perturbation theory approach.
In the following, the term �|	2

0| is taken as a perturbation
with respect to the harmonic trap potential V (ρ) = 1

2ρ2, the
ground-state wave function (or order parameter) 	0(ρ), and
the amplitudes u(ρ,t) and v∗(ρ,t) can be sought in terms of
the complete set of the 2D harmonic oscillator wave functions
ϕN,mz

(see Appendix A). In Ref. 18, compact solutions for
the reduced chemical potential μ and the dimensionless order
parameter 	0(ρ) are presented up to the second and the first
order in �, respectively. Following the procedure described
in Ref. 18, it is possible to obtain the Bogolyubov excitation
mode’s frequencies ωN,mz

. From the calculation it follows, in
particular, that the dipole (mz = 1) mode is harmonic, that
is, ωN=0,mz=1 = ω0.34 Notice that this result (corresponding
to Kohn’s theorem35) is quite general and independent of the
approximation considered (it has been demonstrated also in
the hydrodynamic limit21).

Below we limit ourselves by considering the EPC states
with zero angular momentum mz = 0, which refers to the
macroscopic motion of the condensate. In experiments, EPCs
are probed through the (spatially resolved) emission that
escapes from the cavity. That related to the mz = 0 states
corresponds to a Gaussian beam and can be distinguished from
the higher order (Laguerre-Gaussian) modes [which have been
used to detect vortices in EPC (Ref. 5)]. For this case, we have

ωN,0

ω0
= N +

[
N !

2N−1
[(

N
2

)
!
]2 − 1

]
�

2π
+ βN,0�

2 , (6)

where N = 2,4, . . . . and βN,0 are some numbers.36

The perturbation of the order parameter δ	N,0 to the first
order in � is given by

δ	N,0 ≡
(

uN,0(ρ) exp(−iωN,0t)
v∗

N,0(ρ) exp(iωN,0t)

)
with(

uN,0

v∗
N,0

)
= exp

( − ρ2

2

)
√

π

(
LN/2(ρ2) + 2�F −

N (ρ)
−�F +

N (ρ)

)
, (7)

and the functions F ±
N (ρ) are given in Appendix A.

In Fig. 1(b), the eigenfrequencies of the Bogolyubov
collective oscillations for N = 2 and 4 are plotted against the
interaction parameter �. Also, the ground-state energy of the
condensate per particle ε is displayed. It should be pointed out
that the chemical potential and the ground-state energy (per
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particle) are not the same.37 The (dimensionless) energy per
particle can be calculated as

ε =
∫

V

	0

(
Ĥ0 + 1

2
�|	0|2

)
	0dr ,

which differs from μ by the 1/2 factor in the nonlinear term.
Thus μ and ε coincide only when the particles do not interact. It
is possible to obtain an identity relating the energy per particle
and the chemical potential, that is,38

ε = 1

�

∫ �

0
μ(z)dz . (8)

Substituting in Eq. (8) the previously obtained expression18

for the chemical potential, we have

ε = 1 + 1

4π
� − ln 4/3

8π2
�2 .

From Fig. 1(b) it follows that the excitation modes are only
weakly dependent on �; thus the total energy of the excited
state, EN,0(�) = Npε(�) + ωN,0(�)/ω0, shows almost the
same blue-shift dependence on � as the ground-state energy
Npε(�). Using Eq. (6), a direct calculation of the level
spacing between the EPC excited states (N + 2,0) and (N,0)
yields �EN,m=0 
 2, only very slightly decreasing with �.
Therefore the spectrum of the Bogolyubov-type excitations
is nearly equidistant, even for rather large values of the
polariton-polariton interaction parameter.

As is known,16,19 the spectrum of elementary excitations
around the stationary state of a spatially homogeneous Bose-
Einstein condensate can be described as a function of their
wave vector multiplied by so-called healing length,

√
h̄/(mμ).

For small values of this product (�1), a linear (phonon-
type) dispersion of the Bogolyubov’s excitations is expected
and its observation for a very weakly confined EPC has
been reported.2 In the present case of laterally confined
EPC, the wave vector is not a good quantum number and
the Bogolyubov’s excitation spectrum is described by the
“cylindrical” quantum numbers N and mz. The equidistant
spectrum of Fig. 1(b) is just characteristic of the phononlike
regime for these localized excitations.

IV. EPC COUPLED TO UNCONDENSED POLARITONS

As defined in Sec. II, Vres is the power-dependent potential
resulting from the repulsive interactions with uncondensed
excitons.9 As the exciton diffusion coefficient is very small,16

we can assume that the interaction with the reservoir is propor-
tional to the pump profile, i.e., the dimensionless potential can
be cast as vres = Vres/h̄ω0 = �res exp(−ρ2/ā2) with �res =
gres/h̄ω0. Here ā is an effective spatial size of the polariton
reservoir created by the pumping laser beam (measured in
units of l0) and gres is the coupling constant describing the
repulsive interaction with uncondensed excitons. As explained
at the end of Sec. II, we neglect the nonlinear term and then
Eq. (2) becomes

ih̄∂tψ = [Ĥ0 + vres]ψ . (9)

We seek the axial-symmetric solution of Eq. (9) with
mz = 0 in the form ψ(ρ,t) = exp(−iEω0t)	con−res(ρ) and
arrive at the following stationary differential equation for the

order parameter function “reshaped” by the interaction with
the reservoir:

[Ĥ0 + vres]	con−res = E	con−res . (10)

The external potential fulfills the condition vres(ρ) −→ 0 as
ρ −→ ∞; thus it is possible to show that the eigenfunctions
ϕN,0(ρ), which are the solutions of Ĥ0 with mz = 0 and
N = 0,1, . . . (see Appendix A), represent a complete set for
the Hamiltonian Ĥ = Ĥ0 + vres.

39 Therefore the solution of
Eq. (10) can be cast in the form

	con−res(ρ) =
∞∑

N=0

cNϕN,0(ρ) . (11)

The set {ϕN,0(ρ)} ensures the convergence, at least in mean,
of the series (11) to the solution 	con−res.40 It takes place if
and only if the coefficients {cN } obey the relation, which is
obtained by inserting Eq. (11) into Eq. (10),

[(N + 1 − E)I + �resM]C = 0 , (12)

where I is the unity matrix, C =(c0,c1,..), and M is defined in
Appendix B.

We solved Eq. (12) in a finite basis of dimension Nmax,
requiring that |E(Nmax)

N − E
(Nmax−1)
N | < η

(Nmax )
N , where η

(Nmax)
N

is the desired accuracy for the energy EN . To warrant the
accuracy of η = 10−6 for all considered excited states in the
range of values 0 � �res � 15, a basis set smaller than 50
oscillator wave functions {ϕN,0(ρ)} is sufficient. Thus the order
of the symmetric matrix M is lower than 50 × 50.
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FIG. 2. (Color online) Ground-state condensate density profiles
plotted against the energy (right vertical axis) for several values of
�res and the dimensionless reservoir spot size ā = 0.2 (left) and 1
(right).
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Figure 1(c) presents the renormalized energy E versus �res

for the nondegenerate states (mz = 0) of the condensate with
the principal quantum number N ranging from 0 to 8 and
for two different values of the dimensionless beam radius ā.
(Remember that �res = 0 corresponds to the 2D harmonic
oscillator energy levels.) The influence of the pumping spot
size is clearly seen in the figure. Two limiting cases of Eq. (12)
can be compared. If ā → 0, the matrix M → 0 and the energy
levels tend to the harmonic oscillator eigenvalues, EN =
N + 1. In the opposite case of ā → ∞ we have M → δN,N1

(see Appendix B) and EN ≈ N + 1 + �res. In both cases,
the level spacings, �EN = EN+2 − EN , are the same, even
though they show a strong dependence on the laser spot size
in the intermediate regime (ā ∼ 1). For example, if ā = 0.2,
�EN ≈ 2, as for the 2D harmonic potential. On the contrary,
if ā increases to unity, �EN = 2 [solid lines with circles in
Fig. 1(c)] and it depends on the number of polaritons in the
reservoir.

Figure 2 shows the influence of the reservoir size ā

on the EPC density |	con−res(ρ)|2 for several values of
the dimensionless coupling constant �res. From this figure
it can be seen that the position of the density maximum
is pushed away from the origin as �res increases. This
effect is linked to the repulsive interactions produced by the
Gaussian density profile of uncondensed polaritons created
in the trap. The condensate is repelled from the origin as
the number of uncondensed excitons Nr (proportional to the
pumping beam intensity) increases. This “push-out” effect
has clearly been demonstrated experimentally in Ref. 9 for
a condensate confined in a micropillar cavity. Moreover, the
blue shift of the condensate emission associated with the
increase of the EPC ground state due to the action of Vres

has been observed in laterally confined condensates.9,14 It
is also clear from Fig. 2 that the condensate becomes more
delocalized as the spot width increases because its ground-state
energy grows, an effect characteristic of “soft” parabolic
confinement.

Using Eqs. (11) and (12), we can also obtain the dependence
of the condensate density profile on �res for the excited states.
These profiles are shown in Fig. 3 for the states with N = 1,

a=0.2lo res=0 res= 6 res=25

N=1
mz=0

N=2
mz=0

N=3
mz=0

FIG. 3. (Color online) Spatial distribution of the density
|	con−res(ρ)|2 of EPC coupled to the reservoir for the excited states
N = 1, 2, and 3 (mz = 0). The influence of �res on the density profile
is shown for the values of 0 (no interaction), 6, and 25 (ā = 0.2l0).

2, and 3. Indeed, the condensation of polaritons in several
quantized states of a trap has been observed by taking their
snapshots in real and reciprocal space.9,10,14 The shape of
the emission pattern observed in these works qualitatively
corresponds to the dependence of the condensate density on ρ

(oscillations in real space) and E (several spectral peaks under
intense pumping) that comes out from our calculated results,
even though the form of the lateral confinement potential is
different.

V. CONCLUSIONS

In summary, we applied the perturbation theory approach to
the Gross-Pitaevskii equation describing a Bose-Einstein con-
densate of exciton polaritons in a semiconductor microcavity
confined in a parabolic lateral trap. This approach allows for a
convenient analytical description of the condensate’s ground
state and Bogolyubov-type elementary excitations around it.
We derived phonon-type modes with the energies and wave
functions depending on the polariton-polariton interaction
parameter. This set of states can be used to describe the
dynamics of the polariton BEC, for instance, vortices and their
interaction,4,6 which is planned for a future work. We point out
that the spectrum of these Bogolyubov-type excitations in a
condensate whose interaction with uncondensed polaritons can
be neglected is almost equidistant, even for rather larger values
of the polariton-polariton interaction parameter inside the
condensate. This makes polariton parabolic traps promising
candidates for realization of bosonic cascade lasers.

We also considered a qualitatively different physical situ-
ation where the interaction with a reservoir of uncondensed
polaritons is more important than that inside it. (To avoid
confusion, note that our model is valid if no dynamic process
is described by a characteristic time shorter than |R − �|−1.)
In this “quasi-steady-state” case, we obtained a semianalytical
solution for the ground and excited states of the condensate,
which shows how it is “reshaped” by the repulsive interaction
with the reservoir, namely, pushed out from the center
of the trap in real space and blue-shifted in energy. Our
results are in agreement with those obtained in a number
of recent experiments and numerical simulation studies.9,10,14

In particular, we show that the level spacings between the
condensate states increase with the pump power [Fig. 1(c)],
similar to the recent experimental observation.10 It can imply
that the experimentally observed emission patterns in confined
condensates pumped through the polariton reservoir are not
related to the Bogolyubov-type elementary excitations in the
condensate itself; rather, they are determined by the repulsive
condensate-reservoir interaction reshaping the density profile
of the former.
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APPENDIX A: COMPLETE BASIS SET AND RELATED
FUNCTIONS

The 2D harmonic oscillator functions, solutions of the
equation Ĥ0ϕN,mz

= εNϕN,mz
, in cylindrical coordinates are

ϕN,mz
= 1√

2π
eimzθRN,m(ρ) . (A1)

Here

RN,m(ρ) = 1√
NN,m

e− ρ2

2 ρmL(m)
nr

(ρ2) ,

where mz = 0, ± 1, ± 2, . . . m = |mz|, nr = 0,1,2 . . . , is
the radial quantum number, N = 2nr + m, εN = N + 1 are
the dimensionless energy levels, NN,m = (N+m

2 )!/2(N−m
2 )!

(independent of mz), and L(m)
nr

(z) denotes the generalized
Laguerre polynomials.42 Notice that for a given energy εN ,
the solutions ϕN,mz

(ρ,θ ) are DN = N + 1 times degenerate.
The functions F ±

N (ρ) can be expressed as34

F ±
N (ρ) =

∑′ C
(0)
N,N2

N ± N2
LN/2(ρ2) ,

where the sum
∑′ is taken for N − N2 = 0 and

C
(0)
N,N2

= 1

π
×

∫ ∞

0
LN/2(t)LN2/2(t) exp(−2t)dt

= 1

π

(N/2 + N2/2)!

(N/2)!(N2/2)!
2−N/2−N2/2−1 . (A2)

Thus

F ±
N = 1

π

1

2N/2+1(N/2)!

×
∑′ (N/2 + N2/2)!

2N2/2+1(N2/2)!

1

N ± N2
LN/2(ρ2) . (A3)

Using the identity∑
k=0

zkLk(t) = (1 − z)−1 exp

(
tz

z − 1

)
; |z| < 1 , (A4)

it is possible to show that

F +
N = 1

π

1

(N/2)!

dN/2−1

dzN/2−1

[
zN/2−1

1 − z
exp

(
tz

z − 1

)]∣∣∣∣
z=1/2

and

F −
N =

∫ 1

1/2

F +
N (t,z)

2N/2zN/2+1
dz − N !

π2N+1[(N/2)!]2
Ln(t) ln 2 ,

with N = 2,4, . . .

APPENDIX B: MATRIX ELEMENTS

The elements of the matrix M introduced in Eq. (12) are
defined as

MNN1 = 〈N | exp(−ρ2/ā2)|N1〉

=
∫ ∞

0
LN/2(t)LN1/2(t) exp[−(1 + ā−2)t]dt

=
(

N+N1
2
N
2

)
ā2

(ā2 + 1)
N+N1

2 +1

×F

(
−N

2
, − N1

2
; −N + N1

2
,1 − ā4

)
, (B1)

where N and N1 are even numbers and F (a,b; c,z) is the
hypergeometric function.42

From Eq. (B1) we have the following properties:
(i) MNN1 = MN1N ;
(ii) For N = 0,

M0N1 = ā2

(ā2 + 1)
N1
2 +1

; (B2)

(iii) If ā = 0, MNN1 = 0;
(iv) If ā → ∞, the function exp(−ρ2/ā2) → 1 and

MNN1 = 〈N N1〉 = δNN1 .
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Y. Yamamoto, Nat. Phys. 7, 129 (2011).

9L. Ferrier, E. Wertz, R. Johne, D. D. Solnyshkov, P. Senellart,
I. Sagnes, A. Lemaı̂tre, G. Malpuech, and J. Bloch, Phys. Rev. Lett.
106, 126401 (2011).

10G. Tosi, G. Christmann, N. G. Berloff, P. Tsotsis, T. Gao,
Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, Nat. Phys.
8, 190 (2012).

195441-6

http://dx.doi.org/10.1103/RevModPhys.82.1489
http://dx.doi.org/10.1103/RevModPhys.82.1489
http://dx.doi.org/10.1038/nphys1034
http://dx.doi.org/10.1038/nature07640
http://dx.doi.org/10.1126/science.1177980
http://dx.doi.org/10.1038/nphys1668
http://dx.doi.org/10.1038/nphys1668
http://dx.doi.org/10.1038/nphys1750
http://dx.doi.org/10.1103/PhysRevLett.106.115301
http://dx.doi.org/10.1103/PhysRevLett.106.115301
http://dx.doi.org/10.1038/nphys1841
http://dx.doi.org/10.1103/PhysRevLett.106.126401
http://dx.doi.org/10.1103/PhysRevLett.106.126401
http://dx.doi.org/10.1038/nphys2182
http://dx.doi.org/10.1038/nphys2182


CONDENSED EXCITON POLARITONS IN A TWO- . . . PHYSICAL REVIEW B 87, 195441 (2013)

11R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, Science
316, 1007 (2007).

12R. Balili, B. Nelsen, D. W. Snoke, L. Pfeiffer, and K. West, Phys.
Rev. B 79, 075319 (2009).

13V. B. Timofeev, A. V. Gorbunov, and D. A. Demin, Low Temp.
Phys. 37, 179 (2011).

14D. Sanvitto, A. Amo, L. Viña, R. André, D. Solnyshkov, and
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