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Hanle effect in (In,Ga)As quantum dots: Role of nuclear spin fluctuations
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The role of nuclear spin fluctuations in the dynamic polarization of nuclear spins by electrons is investigated in
(In,Ga)As/GaAs quantum dots. The photoluminescence polarization under circularly polarized optical pumping
in transverse magnetic fields (Hanle effect) is studied. A weak additional magnetic field parallel to the optical
axis is used to control the efficiency of nuclear spin cooling and the sign of nuclear spin temperature. The
shape of the Hanle curve is drastically modified when changing this control field, as observed earlier in bulk
semiconductors and quantum wells. However, the standard nuclear spin cooling theory, operating with the mean
nuclear magnetic field (Overhauser field), fails to describe the experimental Hanle curves in a certain range of
control fields. This controversy is resolved by taking into account the nuclear spin fluctuations owed to the finite
number of nuclei in the quantum dot. We propose a model considering cooling of the nuclear spin system by
electron spins experiencing fast vector precession in the random Overhauser fields of nuclear spin fluctuations.
The model allows us to accurately describe the measured Hanle curves and to evaluate the parameters of the
electron-nuclear spin system of the studied quantum dots.
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I. INTRODUCTION

The hyperfine interaction of electron spins with the spins
of lattice nuclei is able to create a considerable dynamic
nuclear polarization (DNP) in semiconductors under optical
pumping by circularly polarized light.1 In this process, the
angular momentum received by the electron from a photon is
transferred to the nuclear spin system. In turn, the magnetic
moment of polarized nuclei affects the electron spin as an
effective magnetic field (Overhauser field), giving rise to
splitting of electron spin states. Under conditions of strong
optical pumping the splitting can reach tens of micro-eV so
that the nuclear polarization becomes detectable via spectral
shift by high-resolution optical spectroscopy.2–5

An alternative approach to detection of nuclear polarization,
which does not require high spectral resolution, is to measure
the electron polarization created by optical pumping in an
external magnetic field. As the nonequilibrium electron spin
polarization is in many cases magnetic field dependent, the
Overhauser field can be detected using its effect on the
mean electron spin, for example, by observing the associated
changes in the circular polarization of photoluminescence
(PL).1 In a magnetic field parallel to the optical axis (lon-
gitudinal magnetic field), the nuclear polarization created by
the pumping may influence the PL polarization by suppressing
electron spin relaxation.1,5–7 For optical pumping in a magnetic
field perpendicular to the optical axis, the electron spin
polarization is usually destroyed with increasing magnetic field
(Hanle effect). In this case the Overhauser field modifies the
width and shape of the dependence of the circular polarization
of the PL on the magnetic field (Hanle curve), which can
become nonmonotonous, and even hysteresis.1,5,8–15

The Hanle effect in the presence of nuclear spin polarization
in bulk semiconductors and quantum wells has been theoret-
ically treated in the model of mean Overhauser field, which

has provided good qualitative and quantitative agreement with
experimental data. The validity of the mean-field approach in
these systems is justified by the fact that the correlation time
τc of the electron spin at the position of a certain nucleus
is much shorter than the electron spin lifetime Ts . Indeed,
electrons localized at shallow impurity centers or structural
imperfections rapidly lose their spin polarization to other
localized or itinerant electrons via exchange scattering;16,17

as this process is spin conserving, the mean polarization of the
entire electron ensemble lives over a much longer time scale
determined by spin-orbit or hyperfine interactions. As a result,
the fluctuations of the Overhauser field BN are effectively
averaged out and give rise only to the electron spin relaxation,
which is in this case exponential, with the decrement τ−1

s =
γe

2(〈BN
2〉 − 〈BN 〉2)τc, where γe is the electron gyromagnetic

ratio.1 This approach, called approximation of short correla-
tion time,8 often fails in quantum dots (QDs), where electron
states are strongly localized and effectively isolated from all
the other electrons. In this case, the electron spin is exposed
to a virtually static nuclear spin fluctuation (NSF)18–22 during
its entire lifetime (note that the correlation time of nuclear
spins, which is of the order of their transverse relaxation time
T2 ≈ 10−4s, is orders of magnitude longer than typical electron
spin lifetimes). The Larmor precession of the electron spin
in the fluctuating nuclear field was predicted to result in a
specific nonexponential pattern of electron spin decay,19 which
was subsequently experimentally observed.23 The influence of
NSF on the evolution of the regular Overhauser field and,
eventually, on the Hanle effect under dynamic polarization of
nuclear spins has so far not been studied experimentally.

In this paper, we report on detailed measurements of the
Hanle effect in (In,Ga)As/GaAs QDs in the weak-field range
(0–20 mT field strength), where the effect of the NSF is
expected to be the strongest. We have measured a set of

235320-11098-0121/2013/87(23)/235320(9) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.87.235320


M. S. KUZNETSOVA et al. PHYSICAL REVIEW B 87, 235320 (2013)

Hanle curves under optical excitation of moderate intensity
and at different strengths of an additional magnetic field
applied along the optical axis (longitudinal magnetic field).
The experimental Hanle curves are compared with the results
of calculations using two models, one including NSF and the
other one taking into account only mean Overhauser fields. In
both theories, the mean Overhauser field has been calculated
within the spin temperature approach.1 Our analysis shows
that the mean-field model fails to describe the features of the
Hanle curve around zero transversal field, where the so-called
W structure appears in a certain range of longitudinal fields
Bz. The model including NSF, on the other hand, yields good
fits of the experimental data, with a reasonable choice of
parameters, for all experimental conditions except for the exact
compensation of the Knight field with Bz. In the latter case,
nuclear quadrupole effects due to strain in the QDs probably
play the dominant role.

II. EXPERIMENTAL DETAILS

A heterostructure containing 20 layers of self-assembled
(In,Ga)As/GaAs QDs separated by Si-δ-doped GaAs barriers
was studied. The heterostructure was annealed at temperature
TA = 980 ◦C, which resulted in the considerable decrease of
mechanical stress in the QDs and in enlarging the localization
volume for resident electrons due to interdiffusion of Ga and
In atoms.

The sample was immersed in liquid helium at a temperature
T = 1.8 K in a cryostat with a superconducting magnet.
Magnetic fields up to 100 mT were applied perpendicular
to the optical axis (Voigt geometry) along to the [110] crys-
tallographic direction of the sample. To create an additional
magnetic field, perpendicular to the main magnetic field and
parallel to the optical axis, a pair of small Helmholtz coils was
installed outside the cryostat.

The PL of the sample is excited by circularly polarized light
from a continuous-wave Ti:sapphire laser, with the photon
energy tuned to the optical transitions in the wetting layer
of the sample. The degree of circular polarization of the
PL is detected by a standard method using a photoelastic
modulator and an analyzer (a Glan-Thompson prism). The
modulator creates a time-dependent phase difference, �ϕ =
(π/4) sin(2πf t), between the linear components of the PL,
thus converting each of the circular components (σ+ and
σ−) into linear ones (x and y) at frequency f = 50 kHz.
The analyzer selects one of the linear components, which
was dispersed with a 0.5-m monochromator and detected by
an avalanche photodiode. The signal from the photodiode
was accumulated for each circular component separately in
a two-channel photon-counting system. The PL polarization
was recorded at the wavelength corresponding to the maximum
of the PL band of the sample. Typical polarization-resolved PL
spectra for the sample under study are shown in Fig. 1(a). A
detailed description of these spectra can be found in Refs. 12
and 24.

The degree of PL polarization of the QDs is negative;
i.e., the PL is predominately σ− polarized for σ+-polarized
excitation. The mechanism of negative circular polarization
(NCP) has been extensively discussed in Refs. 25–27, where
it was shown that the presence of NCP is the result of optical
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FIG. 1. (Color online) (a) The spectra of circularly cross-
polarized (solid blue line) and copolarized (dashed red line) PL
relative to polarization of excitation and the PL polarization degree
for (In,Ga)As/GaAs QDs (black curve). (b) Overall shape of Hanle
curves measured at different longitudinal magnetic fields Bz indicated
at each curve. The inset shows the configuration of the experiment.

orientation of the resident electrons provided by ionization
of donors outside the QDs (the doping level of our structure
corresponds to one resident electron per QD on average). The
amplitude of NCP is proportional to the projection of electron
spin onto the optical axis z, averaged over the QD ensemble,13

ANCP ∼ 2 〈Sz〉 . (1)

The amplitude of the central peak increases with rising
excitation power at relatively low excitation levels. A further
rise of the power results in saturation of the peak amplitude,
which indicates a high level of electron spin polarization. The
pump powers used in our experiments were sufficient to totally
polarize the electron spin.

In this paper we use the absolute value of NCP as a measure
of the electron spin orientation. We studied the dependence of
PL polarization on magnetic field applied perpendicular to
the optical axis. The central part of the Hanle curve, where
the W-like structure is observed, was studied most carefully to
understand the role of the Knight field in the optical orientation
of nuclear spins. In particular, modifications of the W structure
under application of small magnetic fields parallel to the
optical axis were studied.

III. EXPERIMENTAL RESULTS

The general form of Hanle curves measured in the absence
of longitudinal magnetic fields Bz as well as in the presence
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FIG. 2. (Color online) Comparison of Hanle curves calculated in the framework of the standard cooling model (solid lines) with the
experimental data (points) for (a) positive and (b) negative longitudinal external fields Bz. Values of Bz are given for each curve.

of small Bz are shown in Fig. 1(b). Each curve shows the
pronounced W structure consisting of the narrow central peak
and two maxima positioned symmetrically relative to the peak.
Application of Bz considerably affected the shape of the Hanle
curve.

Namely, the central-peak width increases with Bz irrespec-
tive of its sign. At the same time, the width of the Hanle
curve significantly drops when Bz is changed from −3 to
+3 mT. This difference in behavior of the Hanle curve and
its central peak is an indication that they are controlled by
different components of the hyperfine interaction. According
to Ref. 1, the width of the central peak and the shape of the W
structure are determined by the dynamic nuclear polarization,
creating an effective field parallel to the external magnetic
field. The large width of the Hanle curve is due to partial
stabilization of the electron spin orientation along the optical
axis by the longitudinal component of the effective nuclear
field of quadrupole-split nuclear spin states.28,29 The analysis
of this effect and the variation of the Hanle curve width with
Bz requires a separate study; we consider hereafter only the
behavior of the central part of the Hanle curve.

The effect of longitudinal magnetic fields, ranging from
−20 to +20 mT, on the Hanle curve is shown in Fig. 2.
The experiment shows that application of a positive Bz is
accompanied by a monotonous increase of the width of the
central peak and of the dips near the peak. The depth of the
dips remains almost unchanged. At negative Bz, the behavior
of the dips is not monotonous. The change of Bz from 0 to −1
mT results in almost total disappearance of the dips without
noticeable change of their width. A further increase of the Bz

value to −2 mT leads to the increase of both depth and width
of the dips.

IV. ANALYSIS

A. Standard model for nuclear spin cooling

The electron spin orientation maintained by optical exci-
tation is the source of a continuous flux of angular momen-
tum into the nuclear spin system. The nuclear spin-cooling

model1,8,9,30 is based on the fact that nuclear spin orientation
along the magnetic field changes the Zeeman energy of
nuclear spins. As distinct from the nonequilibrium angular
momentum, which decays on the time scale of hundreds of
microseconds because of nuclear dipole-dipole interaction,
the energy of the nuclear spin system conserves during the
spin-lattice relaxation time, which is orders of magnitude
longer. Because of strongly disparate time scales of spin-spin
and spin-lattice relaxation, the nuclear spin system comes to a
quasiequilibrium state described by an effective temperature.31

Lowering the spin temperature corresponds to a consider-
able magnetization along the magnetic field or opposite to it
(depending on the sign of the spin temperature), which gives
rise to the Overhauser field acting on the electron spin. The
Overhauser field is parallel or antiparallel to the nuclear spin,
depending on the sign of the electron g factor. In particular,
it is antiparallel for the negative sign of ge,1 as in our case.
The effective magnetic field, to which nuclei are subjected
in our experiment, is the sum of the external magnetic field
and of the Knight field created by spin-polarized electrons.
Thus the dynamics of electron spin is determined by the joint
action of the external and nuclear fields, while the dynamics
of the nuclear polarization depends, in turn, on the electron
spin through the Knight field. It is essential that the efficiency
of nuclear spin cooling is proportional to the scalar product
of the electron spin times the total field acting on the nuclei.
When the external magnetic field is strictly perpendicular to
the optical axis, the nuclear spin cooling occurs only due to
the Knight field.

The above consideration allows one to derive a system of
coupled equations for the electron spin and the effective field
of nuclear polarization acting on the electron. According to
Ref. 1, the system can be represented in the form

S − S0 = (
B(e)

tot · S
)
/B1/2, (2)

BN = B(N)
tot βbN

(I + 1)μ

3
= B(N)

tot

bN

(
B(N)

tot · S‖
)

(
B

(N)
tot

)2 + ξB2
L

4I (I + 1)

3
,

(2′)
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where B(e)
tot = B + BN is the sum of external and nuclear fields

acting on the electron spin, B1/2 = π/(μBgeTe) is the half
width of the Hanle curve in the absence of nuclear field (ge,
μB , and Te are the electron g factor, the Bohr magneton, and
the electron spin lifetime, respectively), B(N)

tot = B + Be is the
sum of the external magnetic field and of the Knight field
acting on the nuclear spin from the electron, β is the reciprocal
temperature of the nuclear spin system, and parameter bN is the
effective field of totally polarized nuclei affecting the electron
spin. The magnitude of bN is determined by the properties
of the particular electron-nuclear spin system and should not
depend on external conditions. The term ξB2

L describes the
interaction between nuclear spins causing the relaxation of
nuclear polarization, where BL is the local field, which the
nuclear spin “feels” from its neighbors.

Solution of these equations yields a cubic equation for
the average projection of electron spin onto the direction of
observation. This equation for the case when magnetic field Bx

is perpendicular to the optical axis is given in Ref. 1. Simple
generalization of the equation is possible for the case when an
additional magnetic field Bz directed along the optical axis is
present:

Sz

(
1 + K2

B2
1/2

B2
x

)
− S0

(
1 + K2

B2
1/2

B2
z

)
= 0, (2′′)

where

K = 1 + S0Bz + beS0Sz

B2
x + 2beS0Bz + b2

eS0Sz + ξB2
L

.

In the above equations S0 is the initial electron spin orientation
created by excitation, and Sz is the z projection of the electron
spin averaged over time.

To model the experimentally measured Hanle curve, we
have numerically solved Eq. (2′) and obtained Sz as a function
of the transverse magnetic field Bx for different values of
the longitudinal magnetic field Bz in the range from −3 to
+3 mT. The following values of the other parameters were
used in the calculations: S0 = 1/2, B1/2 = 60 mT, BL = 0.3
mT, and be = 2.0 mT. Most of them approximately correspond
to our experimental conditions and the properties of the sample
studied. The exception is the value of B1/2 extracted from
the experimentally measured width of the Hanle curve. It
corresponds to the electron spin life time Te, of the order
of 10−10 s, which is several orders of magnitude smaller than
the real value in the structures of this type (see, for example,
Ref. 32).

Examples of the calculated dependences are shown in
Fig. 2. They indeed demonstrate behaviors similar to the
measured Hanle curves. This is in particular true for positive
Bz [see Fig. 2(a)], which, for the helicity of excitation used in
our experiments, is codirected to the Knight field. The analysis
shows that the effective nuclear field in this case is codirected
to the external magnetic field and thus “amplifies” it. This
amplification results in a gradual decrease of spin polarization
and, correspondingly, of PL polarization beyond the central
peak with rising Bz, as seen both from the calculations and
from the measured curves.

When Bz is negative, the effective field is antiparallel to the
Knight field, Be = S0be. If Bz = −Be, the compensation of

the longitudinal component of total field occurs. According to
Refs. 1 and 9, nuclear spin cooling is not possible in this case.
This should result in the disappearance of the W structure, as
it is indeed seen in Fig. 2(b) for the Hanle curve calculated for
Bz = −1 mT. At more negative Bz, the W structure appears
again, but the additional maxima run away from the central
peak with increasing |Bz|, maintaining the same amplitude as
the central peak. This behavior of the calculated Hanle curves
is explained by the fact that in this case the nuclear field is
directed against the total effective magnetic field affecting the
nuclei. The x component of the nuclear field BNx is compen-
sated by the transverse magnetic field Bx at some magnitude of
Bx , giving rise to the additional maxima. The efficiency of the
nuclear-spin pumping increases with the increase of |Bz|. As
a result, BNx increases, and the positions of the compensation
points where BNx + Bx = 0 are shifted to larger |Bx |.

These numerical results, however, are in strong contradic-
tion to our experimental observations; see Fig. 2(b). The central
peak of the measured Hanle curves is higher than the other parts
of the Hanle curve at any negative Bz. We want to stress that the
disagreement between the theory and the experiment cannot be
eliminated for any set of values of the adjustable parameters.
Therefore this contradiction is of principal importance and
indicates that the model of mean nuclear field ignores some
mechanism causing depolarization of the electron spin at
nonzero transverse magnetic field, including points where it is
totally compensated by the nuclear field. The discrepancy is
evident also from the unrealistically large value of B1/2 needed
to fit, at least partly, the experimental Hanle curves within the
mean-field model.

B. Effect of nuclear spin fluctuations

To extend the standard cooling model in order to account for
the effects of NSF, we suppose that the effective nuclear field
consists of a regular component, BN , created by the nuclear
polarization, and a fluctuating component, Bf , appearing due
to the random orientation of the limited number of nuclear
spins interacting with the electron spin.18 The estimates given
in Refs. 10 and 33 for similar QDs show that the average
magnitude of the fluctuating nuclear field is of the order of
tens of milliteslas. The frequency of electron spin precession
about the field is orders of magnitude larger than the rate
of relaxation of the electron spin Te. Therefore the width of
the Hanle curve is determined by the fluctuating nuclear field
rather than by electron spin relaxation. This allowed us to fit
the experimental curves without using nonrealistic values of Te

as was done in the previous paragraph. Due to fast precession
only the projection of electron spin onto the field is conserved.
The magnitude and the direction of the fluctuating field are
randomly distributed in the QD ensemble. In the absence of
other fields, such as the external magnetic field and the field
of nuclear polarization, the depolarization of the electron spin
by the fluctuating field reduces the observable z component of
spin polarization to 1/3 of its initial value.19,33

An effective optical pumping can create a dynamic nuclear
polarization, whose magnitude can considerably exceed the
nuclear spin fluctuations. If the transverse magnetic field is
zero, the effective field of nuclear polarization is directed
along the optical axis and is able to suppress the effect of
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NSF. This results in the increased amplitude of the central
peak of the Hanle curve. Experiments show13,34 that the PL
polarization at zero transverse magnetic field can reach 50%
or even more. When Bx 	= 0, the nuclear polarization deviates
from the optical axis, and its z component decreases, so that the
NSF can reduce the electron spin polarization. In particular, the
electron spin polarization at the point of mutual compensation
of the external field and the field of nuclear polarization
is smaller than the polarization at zero Bx . This qualitative
consideration explains the small amplitudes of the additional
maxima of the Hanle curves, which cannot be explained by
the mean-field model.

In order to include NSF in the theory, we use the fact
that the buildup time of the nuclear polarization is much
longer than the correlation time of the nuclear spin fluctuation
(≈T2), which is, in turn, orders of magnitude longer than
the electron spin lifetime. For this reason, the nuclear spin
temperature can be calculated using the value of the electron
mean spin averaged over possible realizations of the NSF,
while each NSF realization can be considered “frozen” (i.e., the
evolution of nuclear spin during the electron spin lifetime can
be neglected).19 The dependence of the average electron spin
polarization on the transverse external magnetic field within
this approximation is a bell-like curve, which can be well fitted
by a Lorentzian:

ρ(Bx) ≈
〈
B2

f z

〉
B2 + 〈

B2
f

〉 . (3)

Here 〈B2
f 〉 = 〈B2

f x〉 + 〈B2
fy〉 + 〈B2

f z〉, where 〈B2
f α〉 is the

squared α component (α = x,y,z) of the NSF averaged over
the QD ensemble. Equation (3) has a simple geometrical
interpretation. In each QD with realization of a particular
fluctuating field Bf , only the projection of the electron spin
onto the total field, B(e)

tot = Bx + Bf , survives: S‖ = S0 cos ϕ,
where ϕ is the angle between the vector B(e)

tot and the z

direction. The experimentally observable quantity ρ(Bx) is
proportional to the z projection of the electron spin, Sz =
S‖ cos ϕ = S0 cos2 ϕ, where S0 = 1/2. It is obvious that in
such conditions cos2 ϕ = B2

f z/(B(e)
tot )2. Averaging over the QD

ensemble gives rise to Eq. (3) if we neglect the correlations
of the quantities in the numerator and the denominator of this
equation.

Some generalization of Eq. (3) is required to describe
electron spin polarization under our experimental conditions.
We need to take into account the regular nuclear field BN with
nonzero components BNx and BNz created by the dynamic
polarization of nuclei. Similar to the standard mean-field
model, we assume for simplicity that the electron density
is homogeneously distributed over the nuclei (the so-called
box model approximation),35 which allows us to neglect the
spatial variation of the Knight field. Also, since we consider
weak magnetic fields, we describe all the nuclear species
with a single spin temperature.1 Since the effective field of
nuclear polarization has a certain direction (in contrast to the
NSF field) its components are either added to or subtracted
from the respective components of the external magnetic field,
depending on the experimental conditions. In addition, in
our experiments, the external magnetic field has not only the

transverse component but also some longitudinal one. For this
case we can write down the following expressions for the z

and x components of the averaged electron spin S‖:

Sz = S0

(Bz + BNz)2 + 〈
B2

f z

〉
(Bx + BNx)2 + (Bz + BNz)2 + 〈

B2
f

〉 , (4)

Sx = S0
(Bz + BNz)(Bx + BNx)

(Bx + BNx)2 + (Bz + BNz)2 + 〈
B2

f

〉 . (4′)

Here we assume that the regular nuclear field BN is directed
along the total effective field B(N)

tot acting on the nuclei, which
consists of the external magnetic field Bx + Bz and the Knight
field Be = beS‖, created by hyperfine interaction with the
electron spin. As done in the previous paragraph, the nuclear
field BN is determined by Eq. (2′).

The above equation allows one to obtain the following
expressions for the x and z components of the nuclear field:

BNx = (Bx + beSx)

× bN

(
BzSz + BxSx + beS

2
x + beS

2
z

)
(Bx + beSx)2 + (Bz + beSz)2 + ξB2

L

4(I + 1)

3
, (5)

BNz = (Bz + beSz)

× bN

(
BzSz + BxSx + beS

2
x + beS

2
z

)
(Bx + beSx)2 + (Bz + beSz)2 + ξB2

L

4(I + 1)

3
.

(5′)

The coefficient be is given, in principle, by1 be =
−(16π/3)μBζ 2, where μB is the Bohr magneton and ζ is
the electron density on a nuclear site. The negative sign means
that the direction of the Knight field is opposite to that of the
electron spin. Because the electron density is dependent on the
QD size, which can sufficiently vary from dot to dot, the value
of ζ is unknown a priori.

Equations (4), (4′), (5), and (5′) contain the Cartesian
components of the electron spin and of the dynamic nuclear
polarization as unknown quantities. We found them by
numerical solution of these equations for transverse magnetic
fields in the range from −20 to +20 mT and for the several
values of the longitudinal magnetic field used in experiment.

In the calculations, the coefficient be has been chosen such
that the Knight field compensates the z component of the
magnetic field at the point where the dips near the central
peak of the Hanle curve disappear (see Fig. 3). The quantities
bN , Bf z, and ξB2

L were considered fitting parameters and
varied to get the best correspondence with the experimentally
obtained Hanle curves. To compare the calculated results
with experimental data we multiplied the calculated values
of Sz by a factor α, which takes into account the reduced
magnitude of PL polarization. This reduction is presumably
due to the fact that some QDs are charge neutral and their PL is
nonpolarized. α = 0.2 ± 0.02 for curves measured at negative
Bz and 0.16 ± 0.01 for positive values of Bz. The latter curves
were measured at a slightly lower power of excitation. The
possible reason for the pump-power dependence of α is the
creation of photoinduced electrons, which slightly change the
fraction of charged QDs.
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FIG. 3. (Color online) Experimentally measured Hanle curves (noisy lines) and results of calculations taking into account the NSF (smooth
solid lines) for (a) negative and (b) positive longitudinal external fields Bz. Values of Bz are given near each curve. The inset shows the central
parts of experimental and calculated Hanle curves in the case of mutual compensation of Bz and Be. The fitting parameters are bN = 400 mT,√〈B2

f 〉 = 25 mT, be = 2 mT.

We should note that Eqs. (4), (4′), (5), and (5′) are
interconnected cubic equations. Their solution is unstable in
the most general case, complicating the determination of fitting
parameters. To simplify the calculations, we performed them
in two steps. In the first one, we excluded the x component
of electron spin from the equations because it weakly affects
the nuclear polarization. In addition, we neglected the small
difference in orientation of effective fields B(e)

tot and B(N)
tot and

also introduced a fitting parameter:

b′
N = bN

(
B

(N)
tot

)2(
B

(N)
tot

)2 + ξB2
L

, (6)

which characterizes the real nuclear field acting on the electron
spin. This reduces the system of equations to one equation of
fifth order for Sz:

ρ = Sz

S0
= 2Bez

be

=
[
BzB

2
x + (Bz − S0b

′
N )(Bez + Bz)2

]2 + 〈B2
f z〉

[
B2

x + (Bez + Bz)2
]

B2
x

[
B2

x + (Bez + Bz)2 − S0b
′
N (Bez + Bz)

]2 + [
BzB2

x + (Bz − S0b
′
N )(Bez + Bz)2

]2 + 〈B2
f 〉 [

B2
x + (Bez + Bz)2

] . (7)

We solved Eq. (7) numerically, which allowed us to determine
the range of possible values for quantities bN and Bf z. In the
second step, we solved the whole system of Eqs. (4), (4′), (5),
and (5′) and used their real roots for modeling the Hanle curves,
slightly varying the fitting parameters determined in the first
step. We find that the best coincidence with the experimental
data is achieved with virtually the same values of bN and Bf z

as in the first step of the fitting.
Examples of the calculated Hanle curves are shown in

Fig. 3. As seen there, reasonable agreement between calculated
and measured curves is observed for positive as well as for
negative Bz. Some deviations from the experiment occur for
magnetic fields Bz in the range from −0.5 to −1 mT, where
the theoretically calculated amplitude of the central peak is
considerably smaller than the one observed experimentally
(see inset in Fig. 3). The strong decrease of the peak amplitude
obtained in the calculations is due to the depolarization

of the electron spin by the nuclear spin fluctuations, when
the longitudinal component of total field disappears and the
nuclear field does not build up. Experiments also show a
decrease of the central peak of about 20%, which is, however,
significantly smaller than the one predicted theoretically. A
possible reason for this discrepancy between the theory and
the experiment could be related to the spread of Knight fields
in the QD ensemble, which is ignored in the theory. Another
possible reason is the polarization of quadrupole-split nuclear
spin states, which can stabilize the electron spin polarization.28

Further study is needed to clarify this problem.
The results of the calculations allow us to conclude that

the effect of nuclear spin fluctuations is indeed important
for the QDs under study. The good agreement between
theory and experiment for the whole range of Bz (with the
only exception mentioned above) allows us to consider in
more detail the physical meaning of the parameters obtained
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FIG. 4. (Color online) Evolution (a) of Knight field Be and (b) of
nuclear field BN at Bz = 0 under changing external magnetic field
Bx . Values of Bx (in mT) are given for some curves (points at the
trajectories). The step between points is not constant. Arrows show
respective Be and BN vectors.

from the fitting and their dependence on the longitudinal
magnetic field.

We find that the NSF amplitude
√

〈B2
f 〉 can be chosen

close to 25 mT for all the Hanle curves measured at various
longitudinal magnetic fields. This value is somewhat larger
than the one obtained in another experiment with similar
QDs.13 A possible reason for this overestimation of the NSF
amplitude is the increase of the wings of the Hanle curves
due to polarization of quadrupole–split nuclear spin states,
which becomes noticeable at magnetic fields |Bx | ∼ 20 mT
and larger.24 By adding this polarization phenomenologically
into the model, we were able to reduce the calculated NSF
amplitude. We ignore here the quadrupole effects to avoid a
complication of the analysis.

We have also verified the validity of the assumption of an
isotropic distribution of NSF by replacing 〈B2

f z〉 → β〈B2
f z〉

in the numerator of Eq. (7) and optimizing the factor β. The
optimal value of β was found to be in the range from 1.2 to
1.4. We suppose that some asymmetry of the distribution of
nuclear spin fluctuations can also be due to the quadrupole
stabilization of nuclear spins along the growth axis.

The good overall correspondence of the simulated and
measured Hanle curves confirms the validity of the model
developed. In the framework of this model, we can get a
clear idea about the vector representation of the time-averaged
electron spin and nuclear polarization in the system under
study. Figure 4 schematically shows the evolution of the
respective vectors under variation of the transverse magnetic
field Bx and for zero longitudinal field. For uniformity, the
electron spin and the nuclear polarization are presented as
effective fields, Be and BN , respectively. The diagrams are
shown only for positive values of Bx . For negative Bx , the
x components of vectors Be and BN are negative so that the
diagrams are symmetrical relative to the vertical axes.

The nuclear field at zero Bx is controlled only by the
Knight field, which is directed along the z axis. When a

small transverse magnetic field, Bx � Be, is applied, the
nuclear field deviates from the z axis, so that its x component
becomes orders of magnitude larger than the magnetic field Bx .
For example, BNx ≈ 50 mT at Bx = 0.1 mT; see Fig. 4(b).
This is a clear illustration of the “amplification” of the
external magnetic field by the nuclear field.1 The electron spin
polarization follows the nuclear field, which becomes quickly
tilted with magnetic field and depolarizes the electron spin.
This behavior of the electron spin explains the small width
of the central peak of the Hanle curve. For a further increase
of the magnetic field, the magnitude of the nuclear field rapidly
drops so that |BN | � |Bx | at Bx � 10 mT.

Application of a longitudinal magnetic field with a magni-
tude larger than that of the Knight field significantly changes
the behavior of the electron and nuclear polarizations, as
demonstrated in Fig. 5 for |Bz| = 2 mT. An increase of the
transverse magnetic field Bx is accompanied by inclination and
reduction of the Knight field; however, the reduction is not as
fast as at Bz = 0. The direction of the Knight field inclination
depends on the sign of the longitudinal magnetic field; see
Figs. 5(a) and 5(b). The nuclear field BN is directed along the
z axis at zero transverse magnetic field and has the maximal
value BN = bNS0 = 200 mT at positive Bz when the Knight
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field and the longitudinal magnetic field add up [Fig. 5(d)]. At
opposite (negative) sign of Bz when the fields are subtracted
from each other, the total effective field acting on the nuclei
is smaller, which results in some reduction of the nuclear
polarization [Fig. 5(c)]. The direction of inclination of the
nuclear field is also dependent on the sign of Bz. In particular,
the x component of the nuclear field is negative at negative Bz,
so that compensation of the transverse magnetic field occurs at
Bx ≈ 10 mT. This compensation results in partial restoration
of the electron spin polarization and its reorientation again
along the z axis; see Fig. 5(a). The decrease of the magnitude
of the Knight field relative of its initial value at Bx = 0 mT
is the effect of the nuclear spin fluctuations, as discussed
above.

V. CONCLUSION

The experimental study of electron spin polarization in
singly charged (In,Ga)As/GaAs QDs as a function of an
applied transverse magnetic field for simultaneously applied
small longitudinal magnetic field highlights a number of
specific features of the hyperfine interaction in these systems.
The analysis of experimental data has confirmed the prediction
of Ref. 19 about the significant influence of nuclear spin
fluctuations on the electron spin orientation due to strong
localization of the electron in QDs. The observed behavior
is considerably different from that in extended semiconductor
alloys studied in many works,1 in which the electron density
is spread out over a huge number of nuclei and the effect of
the NSF, as a rule, is negligibly small. The analysis allows
us to evaluate the maximal value of the effective field of
nuclear polarization created in studied quantum dots by optical
pumping to be about 200 mT. We have also found that the

effective field acting on the nuclei from the electron spin
(Knight field) in the sample under study is near 1 mT when
the electron spin is almost fully oriented.

We have restricted our analysis to the range of transverse
magnetic fields |Bx | < 20 mT (see Figs. 2) for two reasons:
(i) the effect of the NSF is most prominent in this range, and
(ii) the effect of the quadrupole splitting of the nuclear
spin states is small. However, the results of our calculations
show that the quadrupole effect cannot be totally ignored.
In particular, it may be responsible for an anisotropy of the
nuclear spin fluctuations and a rise of the wings of the Hanle
curve. Another possible manifestation of the quadrupole effect
is the relatively large amplitude of the central peak for mutual
compensation of the Knight field and the z component of the
external magnetic field.

The consideration of the NSF field has allowed us to
quantitatively describe the Hanle curves in the range of
relatively small external field and to evaluate random and
regular nuclear fields acting on the electron. We have also
found that the magnitude of the nuclear polarization obtained
from the simplified analysis based on neglecting the transverse
component of the Knight field gives rise to almost the same
result as the exact calculation. Therefore the simplified model
can be useful for an express analysis of the experimentally
measured Hanle curves.
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