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Polariton transport in one-dimensional channels
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We study theoretically the transport of linearly polarized exciton-polaritons in a quasi-one-dimensional
microcavity channel separating two polariton condensates generated by optical pumping. The direction and
value of mass and spin currents are controlled by the relative phase and polarization of two condensates, as in the
stationary Josephson effect. However, due to dissipation and particle-particle interactions, the current density is in-
homogeneous: it strongly depends on the coordinate along the axis of the channel. A stationary spin domain can be
created in the channel, its position would be sensitive to the phase difference between two bordering condensates.
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I. INTRODUCTION

Exciton-polaritons are electrically neutral bosonic spin car-
riers. They offer a valuable alternative to the traditional spin-
tronics based on the charged fermionic spin carriers, electrons
and holes.1–3 Recent experiments demonstrated a high poten-
tiality of the exciton-polaritons for the ballistic transport over
macroscopic distances.4,5 Spin Josephson,6 optical spin Hall,7

and optical Aharonov-Bohm8 effects based on the exciton-
polaritons are widely discussed. The spin currents carried
by the exciton-polaritons are being studied experimentally by
the polarization-resolved microphotoluminescence.9,10 Mean-
while, the theory of bosonic spin transport in dissipative media
is far from being built. The concept of bosonic spin conduc-
tivity is not clearly established yet. The interplay between
nonlinear amplification effects and dissipation induced by the
radiative decay of exciton-polaritons makes building up of
the theory of the polariton spin currents an interesting and
nontrivial task.

This work is aimed at a theoretical description of the
bosonic transport in a dissipative environment by considering
the simplest model system, a one-dimensional channel. Such
a system can be realized in a semiconductor microcavity with
embedded quantum wells, in the regime of the strong exciton-
photon coupling.11 We shall assume that the temperature is low
enough to allow for formation of a spatially coherent polariton
condensate12 able to expand over the macroscopic distances
without significant dephasing, as it has been experimentally
observed in Ref. 10.

A one-dimensional channel similar to those studied in
fermionic systems13 can be formed by the etching of the
upper Bragg mirror of a microcavity in order to create a
lateral confinement for exciton-polaritons, which would be
free to move along the axis of the channel.5,14 In contrast
to the system studied in Ref. 5, where the channel has been
closed on both sides, we consider an open channel connecting
two semi-infinite microcavity areas in which the polariton
condensates are created by quasiresonant optical pumping [see
the scheme in Fig. 1(a)]. In this configuration, the chemical
potentials of the polariton condensates to the left and right
sides of the channel are set by the energies of two pumping
beams [see Fig. 1(b)]. Moreover, the polarization and the phase
of both condensates are also controlled by the pumping beams
(see, e.g., Refs. 15–18).

We shall study the spin transfer through the channel
separating two condensates as a function of their chemical
potentials, phases, and polarizations. All these parameters can
be efficiently controlled by the quasiresonant pumping. We
shall account for the spin-dependent polariton-polariton inter-
actions and the radiative decay of the polaritons everywhere
in the structure, including the channel.

The paper is organized as follows. In Sec. II, we formulate a
basic concept of the model based on the mean-field approach.
Section III presents the results of numerical calculations
of polariton currents in the channel at different boundary
conditions. In the last section, we conclude on the specificity
of bosonic spin transport in dissipative systems.

II. THE MEAN-FIELD MODEL

In microcavities based on zinc-blend semiconductors like
GaAs, exciton-polaritons formed by heavy-hole excitons have
two allowed spin projections to the structure axis: σ = ±1. In
a coherent system, the state of the polariton condensate can
be described by a two-component order parameter �(r,t):15

�(r,t) = [ψ+1(r,t); ψ−1(r,t)] where ψσ (r,t) is the many-
body wave function of the condensate of polaritons with
a spin projection σ at a position r and a time t . The
dynamics of �(r,t) is described by the Gross-Pitaevskii (GP)
equation.15,16,19–26 The stationary state for the two-component
wave function satisfies

h̄ωpψ+(r) =
[
ÊLP(−i∇) + α1|ψ+(r)|2 + α2|ψ−(r)|2

+V (r) − ih̄

2τ

]
ψ+(r) + Fp+(r), (1a)

h̄ωpψ−(r) =
[
ÊLP(−i∇) + α1|ψ−(r)|2 + α2|ψ+(r)|2

+V (r) − ih̄

2τ

]
ψ−(r) + Fp−(r). (1b)

Here, ÊLP(k) is the kinetic energy operator for the lower
polariton (LP) branch, V (r) is the position dependent external
potential, τ is the polariton lifetime, α1 and α2 are the polariton-
polariton interaction constants in parallel and antiparallel spin
configurations, respectively, and Fpσ (r) describes the pumping
of polaritons with spin projection σ . The term h̄ωp in the
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FIG. 1. (Color online) (a) Sketch showing the narrow channel
defined by the spatial variation of the external potential for exciton-
polaritons in a planar microcavity, V = 0 in the channel and V = ∞
in the barrier regions. Two pumping beams excite polaritons in the
semi-infinite open areas near the channel ends. (b) The scheme of
a model experiment, which implies that the continuous-wave laser
excitation splits into two pumping beams passing through the delay
line �t and polarizers P1 and P2. The detection system allows for
collecting the spatially resolved photoluminescence signal from the
channel. (c) The dispersion of the lower-polariton branch in semi-
infinite open areas (dashed line) and in the channel (solid line). The
pumping energy Ep is tuned slightly above the lower-polariton branch
energy (see Fig. 2).

left-hand side of Eqs. (1a) and (1b) sets the chemical potential
of the polaritons created by pumping (we shall assume equal
energies of left and right pumps).

The pumping terms that describe the quasiresonant optical
injection of polaritons at the lower polariton branch at the left
and right ends of the channel are introduced as follows:19

Fpσ (r,t) = Aσ

{
exp

[−(r − rL)2/δ2 + ikL
p · r

]
+ exp

[−(r − rR)2/δ2 + ikR
p · r

]}
e−iωpt . (2)

Here, rL = −rR and kL
p = −kR

p are the positions and the wave
vectors of the incident light field, δ is the size of the laser-
pumping spot, Aσ is the amplitude of σ component of the
pumping field, and ωp is the pumping frequency tuned so that
Ep = h̄ωp is slightly above the lower-polariton branch energy
[see Fig. 1(c)]. Due to the lateral confinement potential V (r)
in Eqs. (1a) and (1b), the polariton dispersion in the channel is
blue shifted by Ech with respect to the dispersion of polaritons
in the semi-infinite areas to the left and right from the channel.

We solve the coupled stationary GP equations (1a) and (1b)
using the Newton-type iteration procedure based on the
spatial discretization with the finite element method.27 The
following parameters are used in the calculations. The channel
width is Dch = 5 μm and its length is Lch = 30 μm. The
lower polariton dispersion is approximated by a parabola
characterized by polariton effective mass mLP = 5 × 10−5m0,
where m0 is the mass of a free electron. The polariton lifetime
is taken either τ = 30 ps, which is close to the values achieved
experimentally in high Q-factor cavities, or 300 ps, which is
unrealistic in the existing semiconductor microcavities, for the
sake of comparison. Polariton-polariton interaction constants
α1 = 2 × 10−10 meV cm2 and α2 = −0.1α1 are taken from

Ref. 28. The coordinates of pumping spots are chosen as
y = 0 in x = ±16.5 μm. The spot size is δ = 0.25Dch and
the wave vectors are kx = ±0.6 μm−1. The pumping energy
Ep is tuned above the bare polariton branch by 0.015 meV and
the amplitude Aσ is a variable parameter.

III. RESULTS AND DISCUSSION

We shall limit our consideration to the case of equal
chemical potentials of the condensates formed at the left
and right ends of the channel. We consider linearly polarized
pumping beams so that A+1 = A−1 = A. No spin is injected
to the system by the pumping lasers in this case. Let us
first discuss the effect of the pumping energy Ep and the
pumping amplitude Aσ on the polariton density profile in
the channel. At low pumping, the nonlinear effects due to
polariton-polariton interactions are negligible. In this case,
the classical interference effect leads to the formation of a
stationary wave with a sinusoidal profile in the channel [see
Figs. 2(a) and 2(b)]. Once A increases so that the nonlinear
terms in Eqs. (1a) and (1b) start dominating over radiative
losses, the interference pattern disappears and the polariton
density in the channel becomes constant, dependent on the
chemical potential set by the two pumps [see Figs. 2(c) and
2(d)]. The channel may be open or closed for the polaritons
if their chemical potential is either larger or smaller than Ech,
respectively [compare panels (a) versus (b) and (c) versus
(d) in Fig. 2]. The most interesting and unusual bosonic
spin transport phenomena are expected in the regime where
Ep > Ech and the pumping power is sufficiently large. This is
the regime we are going to consider in the rest of this paper.

Let us consider now the spatial behavior of the phase of
the polariton condensate in the channel. According to the con-
ventional definition,29 its order parameter can be represented
as ψσ (r) = √

nσ (r)eiSσ (r), where n(r) = [n+(r); n−(r)] and
S(r) = [S+(r); S−(r)] are two-component functions, which
characterize the polariton density and phase, respectively. As
shown above, the density profile of the ground state is almost
constant along the channel axis [see Fig. 2(d)]. However, due
to the dissipation, the phase of the wave function can vary as
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FIG. 2. (Color online) The calculated polariton density distribu-
tions in the channel in the regimes of weak pumping [(a) and (b)] and
strong pumping [(c) and (d)]. The energy of the pumping beams is
tuned below Ech [(a) and (c)] and above [(b) and (d)].
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FIG. 3. (Color online) (a) and (b) The phase of the condensate in the channel S(x) calculated for the different polariton lifetimes and for the
different phase shifts between pumping beams (symbols). Thin lines show the fit of numerical results with Eq. (3). (c) and (d) The profiles of
the phase of the condensate in the channel calculated for τ = 30 ps and the same �
 as in (a) and (b), respectively. Arrows show the direction
and value (in log scale) of the polariton current density.

a function of x. In general, it has a nearly parabolic shape as
Figs. 3(a) and 3(b) show. The spatial variation of the phase can
be found analytically by substituting the parabolic ansatz into
the GP equation and separating its real and imaginary parts
(see Appendix for details). The coordinate dependence of the
phase writes

S(x) = −mLP

6h̄τ
x2 + �


Lch
x + S0. (3)

Here, �
 is the phase difference between two pumping beams
governed by the time delay �t [see Fig. 1(b)].

As the phase profile of the order parameter is a nonlinear
function of the coordinate along the axis of the channel, the
current density defined as29

j(r) = h̄

mLP
n(r)∇S(r) (4)

is not conserved along the channel. As S is a parabolic function
of the coordinate, the current density is a linear function of
the coordinate. The zero current point is in the center of the
channel if the phases of two condensates coincide. It can be
shifted from the center to the left or right side by changing the
phase difference, �
, between two condensates.

The most interesting effect occurs if the phase shift
between the left and right condensates is large, i.e., |�
| >

L2
chmLP/(12h̄τ ). The polariton flows become unstable: two

solutions of the GP equations (1a) and (1b) have been found
in this case [see Fig. 4(a)]. The first one [circles in Fig. 4(a)]
corresponds to a strong variation of the density profile as it is
shown in Fig. 4(b). The second one [squares in Fig. 4(a)] allows
for a weaker spatial variation of the phase of the condensate.
In order to maintain the phase difference �
 between two
ends of the channel, the dependence S(x) bounces by π in the
middle point. The phase jump corresponds to the break in the
condensate profile, which is seen in Fig. 4(c). The position of
the “hole” in the polariton density of a given spin component
is sensitive to �
.

This fragmentation effect manifests the spontaneous pattern
formation in a nonlinear bosonic system. Similar effects have
been observed in polariton condensates excited in planar
cavities by nonresonant optical pumping with an elliptically

polarized light.30 Manni et al. (see Ref. 30) observed a single-
energy condensed state featuring a density and polarization
pattern detectable in the polarization-resolved photolumines-
cence. Also, in the microcavity stripes,5 the standing-wave
states have been observed, which manifest themselves by
patterns in near-field photoluminescence spectra.

In our case, however, there is no standing wave along the
channel. The effect predicted here is a consequence of the
destructive interference of two polariton fluids coming from
the opposite ends of the channel, in a nonlinear regime.

Further nontrivial effects may be observed if the polar-
izations of two pumps do not coincide. As an example, we
consider pumping with two linearly polarized laser beams
having orthogonal polarization planes. Figures 5(a)–5(d)
demonstrate the density profile of the condensate and the
corresponding spatial distribution of the circular polarization
degree. The circular polarization degree of the condensate is
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FIG. 4. (Color online) (a) The polariton phase profiles along the
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parabolic fits with Eq. (3) (lines). (b) and (c) The corresponding
density profiles of the components of the condensate. The color bar
shows the scale of the corresponding blue shift.
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FIG. 5. (Color online) Polariton density distribution in the channel calculated for zero phase shift between right and left pumping beams
�
 = 0 (a) and for �
 = π (b). (c) and (d) The profiles of the circular polarization degree corresponding to the density distributions shown
in (a) and (b). Arrows indicate orientations of the Stokes vector of the condensate at different points along the axis of the channel at y = 0.
(e) The evolution of the Stokes vector on a Poincaré sphere as one goes along the axis of the channel between its left and right ends. The
dotted (black) line corresponds to �
 = 0 and the triangled (blue) line corresponds to �
 = π . (f) The phase profile of the order parameter
components calculated along the channel axis at y = 0 for �
 = π .

defined as

ρc = |ψ+|2 − |ψ−|2
|ψ+|2 + |ψ−|2 . (5)

One can see that the density profile of the order parameter
remains uniform along the channel. However, due to the
interference of two linearly polarized waves, a domain of
circular polarization is formed in the middle of the channel.
In the nonlinear regime, this effect is strongly modified due
to attraction of polaritons having opposite spins, which is
accounted for in the GP equations by the terms proportional
to α2. The polarization and spin distribution in the channel are
described by variation of the Stokes vector of the polariton
condensate along the axis of the channel. The trajectory of the
Stokes vector on a Poincaré sphere calculated along the x axis
(y = 0) is shown in Fig. 5(e).

If the pumping beams have exactly opposite phases, the
order parameter patterning appears right in the center of the
channel. A bright spot appears between two dark areas [see
Fig. 5(b)]. This effect is very clearly seen in the circular
polarization degree profile [see Fig. 5(d)]. The stationary
domains of left- and right-circular polarizations are clearly
seen in this regime. The domains may be shifted along the axis
of the channel by changing the phase difference between two
bordering condensates.

The circular polarization domains (spin domains) are
formed if the fragmentation of the polariton density occurs
at the locations placed symmetrically around x = 0. The
break in polariton density for one of the spin components is
accompanied by the phase jump by π as it is shown in Fig. 5(d).
At the same time, in the opposite polarization, the signal varies
smoothly. The appearance of circular polarization domains
manifests separation of phases in the spinor bosonic system.
This effect may be seen as a topological transition in a driven
and dissipative nonlinear system. Experimentally, the spin

domains may be detected by near-field photoluminescence.
The positions of domain walls are strongly sensitive to the
phase shift �
. In particular, the deviation of �
 from ±π

points by π/6 shifts the circular domains by a half of their size.
Increasing further the phase difference between two pumps one
destroys the domain structure.

IV. SUMMARY

To summarize, we have studied theoretically the polariton
mass and spin transport in a one-dimensional microcavity
channel. We have shown that in the stationary regime, under
continuous-wave quasiresonant excitation by two pumping
beams, the polariton current in the channel is sensitive to the
energy and intensity, relative phase, and polarization of the
pumping beams. In the nonlinear regime, we have found that
the value and direction of polariton currents varies along the
axis of the channel. The polariton flow is found to be very
sensitive to the phase difference between pumping beams. At
the phase differences between two pumps close to ±π , the
fragmentation of the condensate takes place. If the two pumps
have orthogonal linear polarizations, the spin domains appear.
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APPENDIX: DERIVATION OF EQ. (3)

To derive the coordinate dependence of the phase profile of
the polariton wave function given by Eq. (3), one can use a
simplified 1D model. In this case, by applying the Madelung
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transformation of the wave function ψ± = √
n±eiS± and by

substituting it into the GP equations (1a) and (1b), one easily
obtains a system of two interconnected differential equations
for real and imaginary parts of the order parameter. The
imaginary part is described by a continuity equation

− h̄

m
(∇n±∇S± + n±∇2S±) = n±

τ
. (A1)

Assuming that the density of the polaritons smoothly varies
along the channel, we neglect the quantum pressure term
(Thomas-Fermi limit) in the real part of the GP equation. It
writes

h̄2

2m
(∇S)2 + α1n± + α2n∓ = h̄ωp. (A2)

As we are interested here only in the dependence of functions
n± and S± on x coordinate, we substitute them by parabolic
functions

S± = S±
2 x2 + S±

1 x + S±
0 , (A3a)

n± = n±
2 x2 + n±

1 x + n±
0 . (A3b)

Additionally, the pumping defines the boundary condition

S±

(
Lch

2

)
− S±

(
−Lch

2

)
= �
, (A4)

from which S±
1 = �
/Lch. The remaining coefficients

can be found by substituting Eqs. (A3a) and (A3b) into
Eqs. (A1) and (A2) and by equating the factors at equal
powers.
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B. Deveaud-Plédran, Phys. Rev. Lett. 107, 106401 (2011).

035308-5

http://dx.doi.org/10.1103/PhysRevB.70.035320
http://dx.doi.org/10.1103/PhysRevB.70.035320
http://dx.doi.org/10.1088/0268-1242/25/1/013001
http://dx.doi.org/10.1088/0268-1242/25/1/013001
http://dx.doi.org/10.1103/RevModPhys.85.299
http://dx.doi.org/10.1038/nphys676
http://dx.doi.org/10.1038/nphys676
http://dx.doi.org/10.1038/nphys1750
http://dx.doi.org/10.1103/PhysRevB.87.125307
http://dx.doi.org/10.1103/PhysRevB.87.125307
http://dx.doi.org/10.1103/PhysRevLett.95.136601
http://dx.doi.org/10.1103/PhysRevLett.95.136601
http://dx.doi.org/10.1103/PhysRevLett.102.046407
http://dx.doi.org/10.1038/nphoton.2010.79
http://dx.doi.org/10.1103/PhysRevLett.107.146402
http://dx.doi.org/10.1038/nature05131
http://dx.doi.org/10.1103/PhysRevLett.56.1198
http://dx.doi.org/10.1103/PhysRevB.85.235102
http://dx.doi.org/10.1103/PhysRevB.85.235102
http://dx.doi.org/10.1103/PhysRevLett.98.236401
http://dx.doi.org/10.1103/PhysRevLett.101.016402
http://dx.doi.org/10.1103/PhysRevLett.101.016402
http://dx.doi.org/10.1103/PhysRevLett.105.216402
http://dx.doi.org/10.1038/nmat2787
http://dx.doi.org/10.1103/PhysRevLett.93.166401
http://dx.doi.org/10.1103/PhysRevLett.94.010403
http://dx.doi.org/10.1103/PhysRevLett.99.140402
http://dx.doi.org/10.1103/PhysRevLett.98.206402
http://dx.doi.org/10.1103/PhysRevB.78.041302
http://dx.doi.org/10.1038/nphys1364
http://dx.doi.org/10.1103/PhysRevB.82.245315
http://dx.doi.org/10.1103/PhysRevB.82.245315
http://dx.doi.org/10.1103/PhysRevB.83.045412
http://dx.doi.org/10.1103/PhysRevB.83.045412
http://dx.doi.org/10.1103/PhysRevB.79.115325
http://dx.doi.org/10.1103/PhysRevB.79.115325
http://dx.doi.org/10.1103/PhysRevLett.107.106401



