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Spin noise of exciton polaritons in microcavities
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We develop a theory of spin fluctuations of exciton polaritons in a semiconductor microcavity under nonresonant
unpolarized pumping. It is shown that the corresponding spin noise is sensitive to the scattering rates in the system,
occupation of the ground state, statistics of polaritons, and interactions. The spin noise spectrum drastically
narrows in the polariton lasing regime due to formation of a polariton condensate, while its shape can become
non-Lorentzian owing to interaction-induced spin decoherence.

DOI: 10.1103/PhysRevB.88.041309 PACS number(s): 72.25.Rb, 72.70.+m, 71.36.+c, 03.75.Kk

Introduction. Quantum microcavity is a system where a
semiconductor quantum well is placed between the Bragg
mirrors making it possible to achieve a strong coupling
between the light and matter. In this system the energy is
coherently transferred back and forth between the photon
trapped in the microcavity and the exciton, the elementary
excitation of the semiconductor. First observed by Weisbuch
et al.,1 the strong coupling results in the formation of mixed
light-matter quasiparticles, exciton polaritons, extensively
studied since then.2,3 The exciton polaritons combine an
extremely small effective mass, inherited from the photon,
and strong interactions between themselves and with the
environment due to the excitonic fraction in this quasiparticle.
These quasiparticles are at the origin of several fascinating
phenomena, which primarily include polariton lasing:4 macro-
scopic accumulation of polaritons in a single quantum state
(nonequilibrium condensate) accompanied by spontaneous
emission of coherent light by this state.

In semiconductor microcavities exciton polaritons are char-
acterized by the spin projections sz = ±1 onto the structure
growth axis z corresponding to the right or left circular
polarization of the photon and to the same spin component of
the exciton. Superpositions of sz = ±1 states give rise to the
linear or elliptical polarization of exciton polaritons. Polariton
lasers represent a model bosonic system where the polarization
of light emitted by a microcavity directly corresponds to
the spin state of quasiparticles. This allows one to study
the polariton spin dynamics by optical methods.5 A great
amount of prominent spin-related effects has been realized
in microcavities, including self-induced Larmor precession,6,7

linear polarization inversion,8 optical spin Hall effect,9–11 spin
Meissner effect,12–14 spin multistability,15,16 etc. (see Refs. 2
and 17 for reviews). Hence, quantum microcavities became
a solid state playground to study interacting and, generally,
nonequilibrium Bose systems.

In polariton lasers, the spontaneous symmetry breaking
results in the appearance of a stochastic vector polarization
including circular polarization related to the spin of a po-
lariton condensate.18,19 The Stokes vector (pseudospin) of a
condensate may be pinned to one of the crystal axes,20 due
to the structure anisotropy. In this case the time-averaged

polarization of emission of polariton lasers is defined by
pinning, while its momentary value fluctuates. The spin
fluctuations give rise to the “spin noise” which may be studied
by optical measurements. The spin fluctuations, being inherent
to any system at equilibrium or not, were first observed in 1981
in Na vapor.21 The studies of spin fluctuations have become an
important part of spintronics. The measurements of spin noise
provide crucial information on the spin dynamics of carriers,
excitons, and nuclei, including spin precession and relaxation
rates and statistics of spin fluctuations. These characteristics
are hardly accessible otherwise.22–27

Here we study theoretically the spin noise spectra of
polariton lasers both below and above the laser threshold
and demonstrate that they are extremely sensitive to the
mean occupation number of the condensate and to the
statistics of polaritons. A similar approach can be used for
a variety of systems where condensates of spin polarized
bosons interact with an incoherent reservoir. An appropriate
example is given by magnon condensates in crystals, either
strongly driven by periodic fields28 or imposed to sufficiently
strong static magnetic fields at a low temperature.29 Here the
noise is seen as fluctuations in the sample magnetization.
The finite-temperature Bose-Einstein condensates of atoms
in optical traps with synthetic spin-orbit coupling represent
another important example of the direct applicability of our
approach.30

Model. The dynamics of the exciton-polariton spin doublet
can be described with the pseudospin approach where the
density matrix of polariton state with the wave vector k can be
written as ρ̂k = Nk Î + Sk · σ̂ . Here Î is the unit 2 × 2 matrix,
σ̂ is a pseudovector composed of Pauli matrices, Nk is the
spin-average occupancy of the state k, and Sk is the pseudospin
of polaritons in this state. In what follows we focus on the
dynamics of the ground state, corresponding to k = 0, treat
all other states as a reservoir, and omit the k subscript in the
notations. The pseudospin components Sα , where α = {x,y,z}
is the Cartesian index, corresponds to the polarization of
emission: Sz/N gives its circular polarization degree, while
Sx/N and Sy/N give the linear polarization degree in the
axes frames (xy) and (x ′y ′) rotated by 45◦ with respect to
each other.2 The dynamics of the occupation number and
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the polariton pseudospin is governed by the set of kinetic
equations17

dN

dt
+ N

τ0
+ Qn{N,S} = 0, (1)

dS
dt

+ S × � + S
τ0

+ Qs{S,N} = 0, (2)

where τ0 is the lifetime of polaritons in the ground state and �

is the effective magnetic field arising from anisotropy of the
system and from polariton-polariton interactions; its explicit
form will be given below. The scalar, Qn{N,S}, and vector,
Qs{S,N}, collision integrals describe the arrival and departure
of the particles into the ground state (see Refs. 17 and 6 for
general expressions). Here we adopt their simplest form:

Qn{N,S} = W outN − W in(1 + N ), (3)

Qs{S,N} = (
W out − W in + τ−1

s

)
[S − S0(�)]. (4)

Here W out and W in are out- and in-scattering rates, related to
the presence of the reservoir, as schematically illustrated in
Fig. 1(a). In particular, W in is proportional to the occupation
of the reservoir and it is determined by the pumping rate.
The term proportional to 1 + N describes the stimulated
transitions due to the bosonic statistics of quasiparticles. In
the collision integral for the polariton spin, Qs{S,N}, τs is the
spin-relaxation time and S0(�) is the steady-state spin induced
by the effective field �. If polariton exchange with reservoir
is efficient, one can introduce the effective temperature T of
the polariton system. The steady-state spin is −〈N〉�/|�| for
T � � and 0 for T � �. In what follows, unless otherwise
specified, we consider the case of high temperatures, where
〈S〉 ≡ 0, and the occupancy of the polariton ground state

FIG. 1. (Color online) (a) Illustrative scheme of the pumping. The
reservoir and the ground state are shown as well as the in- and out-
scattering processes. (b) Temporal dependence of spin fluctuations
calculated for 〈N〉 = 10 [green (solid)], 100 [blue (dotted)], and 1000
[black (dash-dotted)]. Other parameters are τ0 = 25 ps, W out = 0,
and τs = 10 ns. The dashed curve is calculated for τs → ∞ and
〈N〉 = 1000. (c) Spin noise power spectra calculated for the same
parameters. (d) Spin noise power spectra calculated with allowance
for the anisotropic splitting �a = 2 ns−1. Other parameters are the
same as in panels (b) and (c).

given by the balance of in- and out-scattering processes is

〈N〉 = W in

τ−1
0 + W out − W in

, (5)

where the condition W in < τ−1
0 + W out should hold.31 The

straightforward generalization of our approach to account
for the entire ensemble of polaritons following Refs. 17
and 6 using the full density matrix is not expected to yield
qualitatively different results.

The fluctuations of the condensate occupation number
δN (t) ≡ N (t) − 〈N〉 and pseudospin δS(t) ≡ S(t) − 〈S〉 =
S(t) are described by the correlation functions, namely,K(t) ≡
〈δN(t ′)δN (t ′ + t)〉 and Cαβ(t) ≡ 〈Sα(t ′)Sβ(t ′ + t)〉, where the
angular brackets denote the averaging over the time t ′
for a given shift t . According to the general theory of
fluctuations32–34 the correlation functions obey the same set
of kinetic equations for t or t ′ dependence as fluctuating
quantities.35 The solution of Eqs. (1) and (2) in the absence
of effective magnetic fields and interactions (� ≡ 0) results in
the exponential time decay of correlations and isotropic spin
fluctuations:

K(t) = K(0)e−|t |/τc , Cαβ(t) = δαβCαα(0)e−|t |/τc,s , (6)

where δαβ is the Kronecker δ symbol, single time correlators
(mean-square fluctuations) K(0) = 〈(δN)2〉, Cαα(0) = 〈S2

α〉0

will be found below, while the particle-spin correlations
〈δN(t ′)Sα(t ′ + t)〉 vanish and will be disregarded. We intro-
duced the correlation times τc and τc,s according to

1

τc

= 1

τ0
+ W out − W in = τ−1

0 + W out

1 + 〈N〉 ,
1

τc,s

= 1

τc

+ 1

τs

.

(7)

Equations (6) and (7) clearly show that the particle number
and spin fluctuations of exciton polaritons decay exponentially
with time and the correlation time of the particle number
fluctuations is τc, while the spin fluctuations vanish faster,
at τc,s < τc. The spin fluctuation spectra defined as C(ω)

αβ ≡∫ ∞
−∞ Cαβ(t)eiωt dt are Lorentzian:

C(ω)
αα = Cαα(0)

2τc,s

1 + ω2τ 2
c,s

, (8)

with the half-width at half maximum τ−1
c,s determined by the

inverse spin correlation time. It follows from Eq. (7) that
the correlation time of fluctuations is strongly enhanced and
the spin noise spectrum is strongly narrowed, if 〈N〉 � 1,
i.e., where the ground state is macroscopically occupied. In
particular, if τs → ∞ and W out → 0, which corresponds to the
negligible spin flip in the ground state and negligible depletion
of the condensate due to the scattering of polaritons back to
the reservoir, we have for the correlation time of particle and
spin fluctuations τc = τ0(1 + 〈N〉). The lifetime of exciton
polaritons in the state-of-the-art structures varies from ∼1 ps
to ∼100 ps with the corresponding maximum 〈N〉 being
between 103 and 105, yielding τc in the range of 1 ns–10 μs.
Hence, the spin noise frequencies range from MHz to GHz for
the macroscopically occupied ground state. The typical spin
noise spectra and temporal dependence of the correlators in
Figs. 1(b) and 1(c) make the drastic effect of the ground state
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occupation clear. The several orders of magnitude enhance-
ment of the spin correlation time and narrowing of the noise
spectrum is a general bosonic effect. Indeed, any fluctuation is
amplified by the bosonic stimulation, factor 1 + N in Eq. (3).

The mean square of the particle and pseudospin fluctu-
ations can be found using the master equation approach.3

In the absence of interactions and effective magnetic
fields, the system is spin isotropic and can be described
by the independent occupations of two orthogonal spin
states, N↑ and N↓, described by the same distribution
functions P (N↑,↓). Using these distribution functions one
can express the mean-square fluctuations, that is, t = 0
correlators 〈(δN )2〉 = ∑

N↑,N↓ P (N↑)P (N↓)[(N↑ + N↓)/2 −
〈N〉]2 and 〈S2

α〉0 = ∑
N↑,N↓ P (N↑)P (N↓)[(N↑ − N↓)/2]2, as

〈
S2

α

〉
0 = 〈(δN )2〉 = 1

2 〈N〉[1 + (g(2) − 1)〈N〉], (9)

where 〈S2
α〉0 corresponds to isotropic fluctuations, and g(2)

is the second-order coherence of a single state. In particular,
g(2) = 2 corresponds to the thermal statistics,36 where particle
and spin square fluctuations are ∝〈N〉(1 + 〈N〉) and grow
quadratically with the ground state occupation. This situation
is realized for equilibrium Bose gas37 or if the ground state
feedback on reservoir is negligible. By contrast, g(2) = 1
corresponds to the coherent statistics, where the mean-square
fluctuations are suppressed, being ∝〈N〉. In the limit of low
occupancy, 〈(δN )2〉 = 〈N〉 in agreement with the theory of
classical gas. Moreover, the statistics of spin fluctuations
can be determined, as a convolution of distribution functions
P (N − Sα) and P (N + Sα). In the limit 〈N〉 � 1 we obtain

pcoh(Sα) = (π〈N〉)−1/2 exp
( − S2

α/〈N〉), g(2) = 1, (10)

pth(Sα) = 〈N〉−1 exp (−2|Sα|/〈N〉), g(2) = 2. (11)

The full statistics of polariton condensates can be determined
by numerical integration of Langevin equations for the
condensate wave functions, as was done, e.g., in Ref. 19 for
stochastic polarization under pulsed excitation. Here we resort
to an analytical approach based on kinetic equations treating
g(2) phenomenologically.

Role of effective magnetic fields. We begin the discussion
of the effective magnetic fields with the case of an anisotropic
system where the polariton doublet is split into a pair of
states, linearly polarized along the x and y axes. In such
a case the vector � = (�a,0,0) determines the anisotropic
splitting,6,38–40 and we assume that the effective temperature
T of the system exceeds the anisotropic splitting to neglect
the steady spin polarization. The Sz and Sy rotate, while the
dynamics of Sx remains purely dissipational. As a result,
the fluctuations become anisotropic with nonzero spectrum
components (cf. Ref. 41)

C(ω)
xx〈

S2
α

〉
0

= 2τc,s

1 + ω2τ 2
c,s

,
C(ω)

yy〈
S2

α

〉
0

=
∑
±

τc,s

1 + (ω ± �a)2τ 2
c,s

,

(12)

C(ω)
yz = 2iω�aτ

2
c,s

1 + τ 2
c,s

(
ω2 + �2

a

)C(ω)
yy , (13)

and C(ω)
zz = C(ω)

yy , C(ω)
yz = [C(ω)

zy ]∗, 〈S2
α〉0 is given by Eq. (9),

and τc,s is given by Eq. (7). Figure 1(d) shows the spin
noise spectra calculated with the allowance for the anisotropic
splitting for different occupations of the ground state. It is
seen that the single peak is transformed into a two-peak
structure even for a very small value of h̄�a taken in our
calculation. This is because the spin correlation time τc,s

depends strongly on the ground state occupation: For small
pumping rates and small 〈N〉 the product �aτc,s � 1 and the
splitting is not visible, however, for larger pumping �aτc,s

becomes comparable or larger than 1, making the anisotropic
splitting h̄�a resolvable, as demonstrated in Fig. 1(d). If
the temperature is so low that T � h̄�a , the polaritons are
predominantly polarized along the effective field direction x.
In this case, 〈Sx〉 = −〈N〉, 〈Sy〉 = 〈Sz〉 = 0, while the mean-
square fluctuations take the form 〈(Sx − 〈Sx〉)2〉 = 〈(δN )2〉,
〈S2

y 〉 = 〈S2
z 〉 = 〈N〉/2. Moreover, the nontrivial single time

correlation appears: 〈SySz〉 = 〈SzSy〉∗ = −i〈N〉/2. The spin
noise spectrum in this case can be obtained in a similar way.
Equation (12) holds here, albeit with different mean-square
fluctuations found above.

Now let us consider the effect of polariton-polariton
interactions on the spin noise. As follows from multiple
experimental and theoretical works8,12–14,16,42 these interac-
tions are strongly spin anisotropic: The exciton polaritons
with the same z pseudospin components, i.e., with the same
circular polarizations, repel each other efficiently due to the
exchange interaction of electrons/holes with the same spin,
while the polaritons with opposite circular polarizations can
weakly attract each other; the latter is neglected. Hence, the
interactions create an effective fluctuating field � = (0,0,�i),
directed along the z axis. Its magnitude h̄�i ≡ α1Sz (α1 > 0
is the interaction constant) is related to the fluctuations of
the polaritons pseudospin z component. This effective field
has two important effects on polariton spin dynamics and
spin noise: (i) it induces precession of the pseudospin around
the z axis, known as self-induced Larmor precession,6,7 and
(ii) it suppresses fluctuations of the z pseudospin component,
favoring linear polarization of the macro-occupied state.12,43

It is instructive to start the analysis with the spin precession
effect assuming that the effective temperature is high enough,
T � α1〈S2

z 〉1/2
0 . In addition, we neglect below the anisotropic

splitting (�a = 0). Clearly, the effective field �i induces
dephasing of the in-plane pseudospin components. It follows
from Eq. (2) that

dCαβ(t)

dt
+ Cαβ(t)

τc,s

±α1

h̄
Cαβ(t)Sz(t) = 0. (14)

Here the upper (lower) sign corresponds to α = x (y), corre-
lations between z and in-plane components are disregarded,
since the field � does not couple them, and Sz can be
considered as an independent parameter whose fluctuations
are given by Eqs. (6) and (8). The set of linear equations (14)
can be readily solved as

Cαα(t)〈
S2

α

〉
0

= e−|t |/τc,s

〈
exp

[
i
α1

h̄

∫ |t |

0
Sz(t1)dt1

]〉
z

, (15)

with 〈· · · 〉z meaning the averaging over the fluctuations of Sz.
The treatment of the general case is beyond the scope of this
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work. Here we consider two limiting cases: the regimes of fast
and slow fluctuations, respectively.

If α1〈S2
z 〉1/2

0 τc,s/h̄ � 1, the interaction-induced effective
field changes much faster than the pseudospin rotates. This
case corresponds to the motional narrowing and

Cαα(t)〈
S2

α

〉
0

= exp

(
− |t |

τc,s

− α2
1

h̄2

〈
S2

α

〉
0τc,s |t |

)
. (16)

In this limit the spin fluctuations decay exponentially, resulting
in the Lorentzian spectrum of spin noise. This spectrum is,
however, anisotropic: The width of C(ω)

xx and C(ω)
yy is larger than

that of C(ω)
zz because the interaction-induced field � ‖ z does

not affect Sz.
In the opposite limit, where the fluctuations of the spin z

component are slow enough and the in-plane spin components
make several oscillations during the correlation time of Sz,
i.e., α1〈S2

z 〉1/2
0 τc,s/h̄ � 1, the fluctuations of Sz and of the

effective field �i can be assumed frozen. In this case, the
spin dephasing takes place on the time scale of �−1

i . The
particular t dependence of the correlator Cαα(t) is determined
by statistics of the condensate.44 For 〈N〉 � 1 we obtain for
two important limiting cases of coherent and thermal statistics
(t � τc,s),

Cαα(t)〈
S2

α

〉
0

= exp
( − 
2

coht
2
)
, g(2) = 1, (17)

Cαα(t)〈
S2

α

〉
0

= 1

1 + 
2
tht

2
, g(2) = 2, (18)

where the dephasing rates are 
2
coh = α2

1〈N〉/4h̄2 and 
2
th =

α2
1〈N〉2/4h̄2 = 〈N〉
2

coh. In this limit, the temporal dependence
of the spin fluctuations is directly related to the ground state
statistics: Gaussian fluctuations of Sz described by pcoh(Sz)
in Eq. (10) result in the Gaussian decay of the in-plane spin
components, while the sharply peaked pth(Sz) in Eq. (11) for
thermal statistics results in the slow power-law decay of the
fluctuations due to high probability of small Sz, corresponding
to low precession rates. As a result, the noise spectrum of
the in-plane pseudospin components deviates strongly from
Lorentzian. Fourier transform of Eqs. (17) and (18) yields

C(ω)
αα〈

S2
α

〉
0

=
√

π


coh
exp

(−ω2/4
2
coh

)
, g(2) = 1, (19)

C(ω)
αα〈

S2
α

〉
0

= π


th
exp (−|ω|/
th), g(2) = 2. (20)

The calculated nonanalytical dependence of the spin fluctu-
ations for the thermal statistics at ω → 0 is related to the
power-law temporal decay of the fluctuations. The typical
temporal dependence of the in-plane pseudospin correlators

(a) (b)

FIG. 2. (Color online) (a) Temporal dependence of the in-plane
pseudospin fluctuations calculated with allowance for interactions
according to Eqs. (17) and (18) for 〈N〉 = 1000, α1 = 10−2 ns−1

(Ref. 42) for coherent statistics [red (solid)] and thermal statistics
[blue (dotted)]. (b) Spin noise power spectra calculated for the same
parameters as in (a).

and noise power spectra are plotted in Figs. 2(a) and 2(b),
respectively. The figure clearly shows different qualitative
behavior of the noise of the in-plane pseudospin components
for different statistics of the polaritons. We stress that the
drastic difference in the decoherence times and noise spectral
widths for coherent and thermal statistics is related to the
different dependencies of 〈S2

z 〉 on the ground state occupancy
〈N〉 [see Eq. (9)].

Note, that if α1〈S2
z 〉 is comparable with or larger than the

effective temperature T of the system, the fluctuations of the
pseudospin z component would be suppressed. This effect can
be modeled by multiplying the distribution function of Sz in
Eqs. (10) and (11) by the Boltzmann factor exp (−h̄α1S

2
z /T )

for the probability of thermal fluctuations.12 As a result, in
the limit of T → 0 we obtain 〈S2

z 〉 = T/2h̄α1. In this case,
the dephasing rate, which determines the spin noise spectral
width, can be estimated as ∼√

α1T/h̄.
Conclusions. We have developed an analytical theory of

spin fluctuations of polaritons in microcavities in the lasing
regime and demonstrated that the spin noise spectra, being
a fundamental property of any spin system, qualitatively
depend on the occupation numbers, statistics, and interactions
between the particles. Various regimes of spin noise have
been identified. Thus, spin noise spectroscopy allows one
to study a large variety of spin-related properties of bosonic
systems in a single experiment. Experimental verification of
these predictions can be done by Fourier spectroscopy of
Kerr or Faraday rotation. Extension of this model to other
spin-polarized bosonic systems is straightforward.
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G. Baldassarri Höger von Högersthal, E. Feltin, J.-F. Carlin, and
N. Grandjean, Phys. Rev. Lett. 101, 136409 (2008).

19D. Read, T. C. H. Liew, Y. G. Rubo, and A. V. Kavokin, Phys. Rev.
B 80, 195309 (2009).
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