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Nonlinear optical probe of indirect excitons
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We propose the application of nonlinear optics for studies of spatially indirect excitons in coupled quantum
wells. We demonstrate that despite their vanishing oscillator strength, indirect excitons can strongly contribute to
the photoinduced reflectivity and Kerr rotation. This phenomenon is governed by the interaction between direct
and indirect excitons. Both dark and bright states of indirect excitons can be probed by these nonlinear optical
techniques.
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I. INTRODUCTION

Studies of spatially indirect excitons (IX) in semiconductors
have attracted considerable research efforts since 1970s, fueled
by the prediction of the remarkable quantum properties [1,2].
This resulted in recent demonstration of quantum coherent
effects including spontaneous coherence [3–5], long-range
spin currents, and associated polarization textures [6,7] of
indirect excitons. An IX can be formed by an electron and
a hole confined in separate coupled quantum wells (CQW).
Application of the electric field across the CQWs bends the
band structure so that the IX state became the ground state of
the system [8,9]. The spatial separation of electrons and holes
within IX allows them to achieve long lifetimes, which may
be orders of magnitude longer than the lifetimes of spatially
direct excitons (DX). At the same time, the spatial separation
of electrons and holes strongly reduces the oscillator strength
of IXs, with respect to DXs. This determines the choice of
the experimental methods for studies of these quasiparticles.
The most frequently used optical methods are based on the
emission [photoluminescence (PL)] spectroscopy. The PL
signal scales linearly with the emission rate in time-resolved
experiments and is nearly independent on the emission rate
in cw experiments for the samples with low nonradiative
recombination. A set of the linear optics methods was em-
ployed for studies of IXs, including the imaging spectroscopy
[10], the time-resolved imaging [11], the polarization-resolved
imaging [6], and the first-order coherence measurements
[3–5]. However, the powerful methods of nonlinear optics,
which have been successfully applied for DXs in quan-
tum wells (QW) [12,13] remain unexplored in the studies
of IXs.

A nonlinear optical process, in its broadest definition, is
a process in which the optical properties of the medium
depend on the light field itself [14]. In the case of optical
pumping in semiconductors, light-induced modifications of
the optical properties of the medium can persist for a long
time after the perturbing light is turned off. In this case,
a pump-probe arrangement can be used, with pump and
probe interactions separated in time [15]. This allows for
time-resolved studies of optical and spin coherence in the

medium. In semiconductor QWs, resonant optical pumping of
DX resonance with circularly polarized light, and subsequent
detection of the pump-induced dispersive response is widely
used to study exciton population and spin dynamics [16].
Experimentally, either modification of intensity (photoinduced
reflectivity) or the rotation of the polarization plane of the lin-
early polarized probe pulse (photoinduced Kerr rotation) upon
reflection from the sample are measured [17]. These signals
are proportional to the square of the oscillator strength of the
excitonic transition and have a pronounced resonant character
[14]. Thus, because the oscillator strength of IX is orders of
magnitude lower than for DX, it is impossible to simply trans-
pose the ideas developed for nonlinear spectroscopy of DX
to IX.

In this paper, we show how IXs, despite their vanishing
oscillator strengths, can induce measurable photoinduced
reflectivity and Kerr rotation. Our proposal relies on two
peculiar properties of the CQW structures. The first essential
property is the spin-conserving tunneling of electrons between
the QWs [18]. It allows for substantial spin polarization of IX
via optical orientation of DXs. This has been unambiguously
demonstrated by polarization-resolved photoluminescence ex-
periments [19]. Thus, optical pumping of IXs can de realized
via the DX state. The second important effect is the spin-
dependent coupling between DX and IX states. This coupling
is quite strong in CQW, where each IX and each DX have
either holes or electrons located in the same QW. This is
why the presence of IX population in the structure alters
DX resonance properties, mainly via spin-dependent exchange
interactions.1 Therefore, we suggest that the detection of
IX population and spin polarization can also be realized by

1We note that probing an exciton subsystem with a low oscillator
strength using an exciton subsystem with a higher oscillator strength
was earlier explored in the studies of indirect excitons by linear
methods: the optically dark excitons with spin ±2 [20] or with high
momenta beyond the radiative zone [21–23] were probed via the
energy shift and optical decay rate of bright indirect excitons (with
spin ±1 and momenta within the radiative zone) (see e.g. [11,24]).
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exploiting the DX resonance. The Kerr rotation measured at the
DX resonance is a sensitive method to access populations and
spin polarizations of both bright and dark IX states. It may be
used, in particular, for studies of dark excitons which strongly
affect spin properties of excitonic condensates [6,7,25,26].
We study the effect of DX-IX interaction quantitatively,
calculating the spin-dependent shifts of the DX resonances
in the presence of spin-polarized gas of IXs within Hartree-
Fock and effective mass approximation. A phenomenological
model based on nonlocal dielectric response model predicts
the spectral dependence of photoinduced Kerr rotation and
reflectivity induced by IXs and allows us to analyze the impact
of bright and dark IXs and DXs on these spectra. We also
apply spin density matrix formalism to describe the dynamics
of pump-probe signal in a realistic CQW structure.

This paper is organized as follows. In Sec. II, we describe
phenomenologically the spectral dependence of the reflectivity
and Kerr rotation induced by spin-polarized IXs in the vicinity
of DX resonance. Section III is devoted to the explicit
calculation DX-IX and IX-IX interaction energies. In Sec. IV,
we formulate the spin density matrix model of excitons in
CQWs. It accounts for optical generation of DX excitons,
tunneling between the QWs, and spin relaxation. We use the
basis of 16 exciton states (both DX and IX have four possible
spin projections on the growth axis) and calculate typical
reflectivity and Kerr rotation signals as a function of delay
between pump and probe pulses. Section V summarizes and
concludes the paper.

II. PHENOMENOLOGICAL MODEL

In this section, we analyze phenomenologically the effect of
the IX population in the CQW structure on the polarization and
intensity of the linearly polarized weak probe wave, resonant
with the DX transition. Let us consider a CQW structure
schematically shown in Fig. 1. It consists of two QWs,
separated by a potential barrier of the width d and covered
by a thick barrier layer of the width l. A static electric field
is applied along the z axis, perpendicular to the CQW plane.
Two optically active ground DX levels in this system with total
spin ±1 are denoted as Ee and Eh, and the corresponding wave

FIG. 1. (Color online) Sketch of pump-probe experiment on
CQWs sample. DX and IX optical transitions are shown. Both pump
and probe frequencies are resonant with one of DX resonances.

functions as �e and �h, respectively.2 Hereafter, the indices e

(h) denote the QW where electrons (holes) are driven by the
static gate voltage. In the case of two identical quantum wells,
DX levels split into symmetrical and antisymmetrical states
with very small energy difference [8] that we will ignore here
and assume Ee = Eh.

The electric field of the incident probe beam can be written
as E = exE0e

i(kz−ωt). Here, we consider the normally incident
probe beam characterized by the wave vector k, propagating
along the z axis and linearly polarized along the x axis. The
amplitude reflection coefficient from QW for such wave in the
vicinity of one of the DX transition frequencies ω0 = Ee(h)/�

is related to the exciton wave function � = �e(h)(ρ,zel,zhh)
by a textbook formula [27,28] taken in the limit of kd � 1:

rQW(ω) = i�0

ω0 − ω − i(�0 + �)
, (1)

where the radiative decay rate is given in

�0 = π

2
kωLT a3

BS

[∫
�(ρ = 0,z,z)dz

]2

, (2)

ωLT is the longitudinal-transverse splitting, aB is the bulk
exciton Bohr radius, S is the sample normalization area, and
� is the exciton nonradiative broadening, ρ is the in-plane
separation of electron and hole, zel (hh) are electron (hole) z

coordinates.
In the most experimentally relevant case, |rQW(ω)| � 1.

Taking into account the interference between waves reflected
from the surface of the cap layer having a refractive index n

and those reflected from CQWs, neglecting re-reflections, re-
flections from deeper layers of the structure and the difference
of the refraction indices of the CQWs, the barrier, and the
covering layer, the total reflectivity coefficient is

r = 1 − n

1 + n
+ e2ikl 4n

(n + 1)2
rQW. (3)

The presence of IXs can affect the DX transition parameters
ω0, �0, and � through various mechanisms. Spin-dependent
Coulomb interactions between IXs and DXs lead to the
blue-shift of DX levels and, in the case when IXs are polarized,
their spin splitting. IXs also saturate DX transitions due to
the phase space filling effect since IXs consist of electrons
or holes in the same QWs as DXs. This effect is again
spin dependent. Finally, IXs may affect the nonradiative
decay of DXs through the scattering processes involving
spin-dependent transitions between DX and IX levels, or
by screening the disorder potential. The renormalization of
exciton resonance frequencies and spin splittings due to these
interactions is responsible for the modulation of reflectivity
and Kerr rotation spectra.3 Indeed, all the interaction effects
listed above can be accounted for by correcting the reflection

2Dark DX states characterized by total spin ±2 have zero oscillator
strength and do not contribute to the reflectivity spectra.

3We note that exciton resonance frequency renormalization due to
the interaction with the carriers at other levels was also studied for
excitons in dense electron-hole magnetoplasma [29] and for bright
and dark indirect excitons [30].
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coefficients for two circularly polarized components of the
probe pulse σ±:

δr± = ∂r

∂ω0
δω±

0 + ∂r

∂�0
δ�±

0 + ∂r

∂�
δ�±. (4)

The electric field of the reflected probe wave can be expressed
in terms of these corrections as

Er = E0
1√
2

[(r + δr+)e+ + (r + δr−)e−]ei(kz−ωt).

Here, the basis of right and left circularly polarized waves
e± = (ex ± iey)/

√
2 is used. One can see that in the most

general case, the corrections of the reflection coefficient may
induce (i) circular dichroism, which leads to the buildup of
circular polarization, (ii) circular birefringence, which leads
to the rotation of the polarization plane, or Kerr rotation, and
(iii) modification of the probe intensity. In the limit of |δr±| �
|rQW| � 1, the Kerr rotation angle is linear in (δr+ − δr−)
[31], while photoinduced reflectivity is linear in (δr+ + δr−):

δθ = −Im

{
δr+ − δr−

2r

}
, δR = |r|2Re

{
δr+ + δr−

r

}
.

(5)

Substituting Eqs. (3) and (4) into (5), we express the three
contributions to the photoinduced Kerr rotation and reflectivity
as a function of corresponding modification of the excitonic
characteristic ξ , which spans over the resonant frequency,
radiative, and nonradiative decay rates ξ = ω0,�0,�:

δθξ = 2n

n2 − 1
Im

{
e2ikl ∂rQW

∂ξ

}
(δξ+ − δξ−),

δRξ = −4n(n − 1)

(n + 1)3
Re

{
e2ikl ∂rQW

∂ξ

}
(δξ+ + δξ−), (6)

δθ =
∑

ξ

δθξ , δR =
∑

ξ

δRξ .

Figure 2 shows the contributions of different mechanisms to
photoinduced Kerr rotation and reflectivity spectra in the vicin-
ity of the DX resonance, calculated using Eqs. (6), assuming
2kl � 1 and n > 1, δω−

0 = δ�−
0 = δ�− = 0, and normalized

so that δω+
0 /� = −δ�+

0 /�0 = δ�+/�. This corresponds to
blue-shift of the DX energy δω0 (red solid line), reduction
of the DX oscillator strength δ�0 (blue dashed line), and
enhancement of nonradiative decay of DX, δ� (green dotted
line). One can see that the spectral profiles are qualitatively
different. Thus, measuring photoinduced spectra should make

FIG. 2. (Color online) Kerr rotation (δθξ ) and photoinduced re-
flectivity (δRξ ) spectra, calculated from Eq. (6) assuming different
nonlinearities: DX energy shift (ξ = ω0, red solid line), DX tran-
sition saturation (ξ = �0, blue dashed line), and DX nonradiative
broadening (ξ = �, green dotted line).

possible the identification of the underlying nonlinearity. Note
also that spectral shape depends on the value of the phase
factor 2kl in Eq. (6), so that δθ and δR transform as imaginary
and real parts of a complex value between the braces.

The roadmap for the measurement of the pump-probe signal
induced by IX and determination of the underlying nonlin-
earities can be as follows. First of all, in real time-resolved
pump-probe experiments, one operates with short pulses of
light rather than with monochromatic waves. Therefore, to
measure spectral dependence of the nonlinear signal, the probe
spectral width must be smaller than the DX linewidth (� + �0),
which is accessible experimentally [32]. Second, one should
avoid any contribution of DX population to the nonlinear
signal. This can be easily realized by setting the delay between
pump and probe pulses sufficiently long because DX lifetime
does not exceed 500 ps, while IX lifetime is at least an order of
magnitude longer. Finally, fitting the measured pump-induced
reflectivity and Kerr rotation spectra to Eq. (5) assuming
different excitonic nonlinearities, it should be possible to
determine the relative importance of different mechanisms of
DX-IX interaction.4 In the next section, we show that at least
one of the discussed mechanisms, namely, energy shift of DX
resonance, should produce a measurable nonlinear signal in
realistic CQW structures.

III. IX-DX INTERACTION ENERGY

In this section, we estimate the strength of DX-IX Coulomb
interaction in a typical CQW structure. Following the approach
of [26,33,34], we use the Hartree-Fock and effective mass
approximations to find matrix elements of the Coulomb
interaction Hamiltonian. Our objective is to calculate the
energy shifts of the bright DX levels E±1

e and E±1
h induced

in the first order by the population of both bright (n±1
I ) and

dark (n±2
I ) IX states. We also give estimations for IX-IX

interaction energy within the same model, to compare with
the PL lineshifts observed experimentally and with existing
theoretical results.

We operate with a wave function of a single 1s exciton char-
acterized by a center-of-mass wave vector Q with decoupled
translational motion in the QW plane, electron and hole motion
along the z axis, and relative in-plane motion of electron and
hole:

�Q(ρ,zel,zhh) = 1√
S

exp(i Q Rc.m.)�z(zel,zhh)�ρ(ρ), (7)

where Rc.m. = (mel r
‖
el + mhhr‖

hh)/(mel + mhh), ρ = r‖
el −

r‖
hh, r‖

el,hh are electron and hole radius vector projections on
the CQW plane, mel,hh are electron and hole in-plane effective
masses. The relative motion part of this wave function �ρ(ρ)
for both DXs and IXs can be found from the solution of a
two-dimensional (2D) radial Schrödinger equation [35] or

4The Faraday rotation spectroscopy provides the same information
as the Kerr rotation spectroscopy with the only difference in the
detection geometry: the transmitted signal is studied in the Faraday
configuration, while in the Kerr configuration the reflected signal is
detected.
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FIG. 3. (Color online) (a) Parameters of the IX wave function
obtained via variational procedure and the resulting in-plane radius.
(b) Interaction constants computed by Monte Carlo method. DX-
IX carrier exchange constant V D-I

exch (blue dotted-dashed line), IX-IX
carrier exchange constant V I-I

exch (red dashed line), and direct or exciton
exchange interaction constant V I-I

dir (red solid line). (c) PL shifts of IX
and DX lines calculated from Eq. (15).

using the variational approach with the trial function of the
form [26]

�ρ(ρ) = 1√
2πb(b + r0)

exp

(−
√

ρ2 + r2
0 + r0

2b

)
, (8)

with r0 and b as variational parameters. The corresponding
mean square of in-plane radius for this exciton wave function
is given by

p2 = 2b

b + r0

(
r2

0 + 3br0 + 3b2
)
. (9)

Figure 3(a) shows the ψρ parameters p, b, and r0 as a
function of QWs separation d, as obtained from the variational
procedure. In the limiting case of d = 0, Eq. (9) coincides
with the exact solution for the in-plane radius of the DX
wave function with r0 = 0 and b = aB/4. When the separation
between QWs increases, the in-plane extension of the IX
wave function grows sublinearly. The wave function in the
z direction in the limit of two infinitely thin QWs reads as

�e(h)
z = δ(zel − Ze(h))δ(zhh − Ze(h))

for the DX state, and for the IX state

�I
z = δ(zel − Ze)δ(zhh − Zh),

where Ze(h) are the QW coordinates in the growth direction.

In the Born approximation, the renormalization of DX and
IX energies induced by the presence of a thermalized IX gas is
governed by the Coulomb exciton-exciton interaction operator

V̂ = e2

ε

[
1

|rel − r ′
el|

+ 1

|rhh − r ′
hh|

− 1

|rel − r ′
hh|

− 1

|rhh − r ′
el|

]
. (10)

Here, ε is material permittivity and e is the electron charge.
The shifts of DXs and IXs energy levels are simply the

matrix elements of the Coulomb exciton-exciton interaction
operator over two-exciton wave functions. These wave func-
tions are obtained by antisymmetrization of the product of
two single-exciton ground state (Q = 0) wave functions with
respect to the permutation of either electrons or holes. In the
general case of two excitons with spin projections on the z

axis S, S ′, corresponding to electron spin projections se, s ′
e

and heavy hole angular momentum projections jh, j ′
h, this

average has the following form [33]:

VSS ′ = Vdir + δSS ′V X
exch + δses ′

e
V el

exch + δjhj
′
h
V hh

exch, (11)

where δij is the Kronecker delta operator. The first term Vdir is
the direct Coulomb term which corresponds to the classical
electrostatic interaction between the two excitons. V X

exch is
the term describing the simultaneous exchange of the two
identical electrons and the two identical holes between two
excitons. The third term V el

exch is the term due to the electron-
electron exchange, while V hh

exch is the analogous contribution
arising from the hole-hole exchange. In the limit of zero
transferred momentum, one can approximate Vdir = V X

exch and
V el

exch = V hh
exch [26,33]. In realistic systems, the electron and

hole exchange integrals may be different for several reasons,
including the differences in Bloch amplitudes of electrons
and holes and differences in penetration depths of their wave
functions into the barrier layer. Aside from this, if two quantum
wells are not identical, V el

exch �= V hh
exch in general. It turns out

that in this case, the Kerr rotation and differential spectra
provide information not only on population, but also on spin
polarization of the dark IX states. In the following, we shall
discuss the system of symmetric QWs, where V el

exch = V hh
exch

is assumed as well as the system of asymmetric QWs, where
V el

exch �= V hh
exch for the sake of comparison.

Table I provides a convenient visual representation of all
the interaction terms in Eq. (11). Along the vertical axis, all IX
spin states are listed. Four columns show the matrix elements
responsible for their interaction with a pair of bright excitons in
each QW. Mutual orientation of electron and hole spin in each

TABLE I. Matrix elements contributing to the interaction of four
possible IX spin states with bright DX states. Indices e, h, and I refer
to DX in electron and hole QWs and IX states, and direction of arrows
defines electron (↑↓) and hole (⇑⇓) angular momentum projection.

e↓⇑(+1) e↑⇓(−1) h↓⇑(+1) h↑⇓(−1)

I↑⇑(+2) 0 V D-I
exch V D-I

exch 0
I↓⇑(+1) V D-I

exch 0 V D-I
exch 0

I↑⇓(−1) 0 V D-I
exch 0 V D-I

exch

I↓⇓(−2) V D-I
exch 0 0 V D-I

exch
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TABLE II. Matrix elements contributing to the interaction of four
possible IX spin states with bright IX states. Direction of arrows
defines electron (↑↓) and hole (⇑⇓) angular momentum projection.

I↓⇑(+1) I↑⇓(−1)

I↑⇑(+2) V I-I
dir + V I-I

exch V I-I
dir + V I-I

exch

I↓⇑(+1) 2(V I-I
dir + V I-I

exch) V I-I
dir

I↑⇓(−1) V I-I
dir 2(V I-I

dir + V I-I
exch)

I↓⇓(−2) V I-I
dir + V I-I

exch V I-I
dir + V I-I

exch

exciton state is shown by arrows. Analogous representation of
interactions between all four IX spin states and bright IX states
are given by Table II.

For IX-DX interaction, it can be shown that Vdir = V X
exch =

0 due to the absence of stationary dipole moment for DXs
and the assumed zero overlap of DX and IX wave functions.
Therefore, energy shifts of DXs due to IXs are governed by just
one carrier exchange matrix element V el

exch = V hh
exch ≡ V D-I

exch.
As can be seen from Table I, carrier exchange interaction for
bright IXs is only possible with DXs with the same spin in
both QWs, while DXs interacting with dark IXs have different
spin projection signs in left and right QWs.

In the case of IX-IX interaction, the direct Coulomb
term does not vanish in the Born approximation due to the
oriented dipole moments of IXs and energy shifts of IXs are
expressed in terms of two interaction constants Vdir = V X

exch =
V I-I

dir and V el
exch = V hh

exch ≡ V I-I
exch. Direct Coulomb term is spin

independent and enters every line in Table I, while carrier
exchange between two IXs is only possible if either electrons
or holes have the same spin projections. Two IXs with both
electrons and holes having the same spin projections can also
exchange them simultaneously. This gives factor 2 before V I-I

dir
in corresponding cells of Table I.

Using Table I, one can write the expressions for the DX
and IX energy shifts, induced by the IX population. The bright
DXs energy shifts depend on the population of the IXs with
different spin projections on the growth axis as

δE±
e = V D-I

exch

(
n±1

I + n∓2
I

)
, δE±

h = V D-I
exch

(
n±1

I + n±2
I

)
. (12)

Energy shifts of bright IXs are related to IXs populations
in a similar way (see Table II):

δE±
I = (

V I-I
dir + V I-I

exch

)(
n+2

I + n−2
I

)
+ 2

(
V I-I

dir + V I-I
exch

)
n±1

I + V I-I
dir n

∓1
I . (13)

Listed interaction constants are the matrix elements of
interaction operator (11):

V D-I
exch =

∫
d3reld

3rhhd
3r ′

eld
3r ′

hh�
D
0 (rel,rhh)�I

0(r ′
el,r

′
h)

× V̂ (rel,rhh,r ′
el,r

′
hh)�D

0 (r ′
el,rhh)�I

0(rel,r ′
hh),

V I-I
dir =

∫
d3reld

3rhhd
3r ′

eld
3r ′

hh�
I
0(rel,rhh)�I

0(r ′
el,r

′
h)

× V̂ (rel,rhh,r ′
el,r

′
hh)�I

0(rel,rhh)�I
0(r ′

el,r
′
hh),

V I-I
exch =

∫
d3reld

3rhhd
3r ′

eld
3r ′

hh�
I
0(rel,rhh)�I

0(r ′
el,r

′
h)

× V̂ (rel,rhh,r ′
el,r

′
hh)�I

0(r ′
el,rhh)�I

0(rel,r ′
hh). (14)

While V I-I
dir can be found analytically [26], V I-I

exch and V D-I
exch

should be calculated numerically using, e.g., Monte Carlo
integration method. The result of matrix elements calculation
by the Monte Carlo method is shown in Fig. 3(b) in the
units of Ra2

B , where R and aB are bulk exciton Rydberg
energy and Bohr radius, respectively. One can see that V D-I

exch
almost does not depend on the separation between the QWs
(dashed-dotted line). In contrast, both V I-I

exch (solid line) and
V I-I

dir (dashed line) terms increase in absolute value with
increasing distance between QWs, but have different signs.
This result is in a good agreement with the calculations of
Refs. [26,33].

To further check the validity of this approach, it is
instructive to calculate using Eqs. (12) and (13) the PL shifts
of IX and DX lines in a typical CQW structure. We consider
the situation where most of IXs are depolarized, so that energy
shifts of light-emitting states should be averaged over IX spin
projections. This gives

δEe = δEh = 1
2V D-I

exchnI , δEI = (
5
4V I-I

dir + V I-I
exch

)
nI , (15)

where nI is the total density of IXs. The resulting energy
shifts normalized to the unitary IX density nI0 = a−2

B are
shown in Fig. 3(c). Note that the shifts are obtained assuming
negligible tunnel coupling between QWs and is incorrect in
the vicinity of d = 0, where transition from weak to strong
tunnel coupling occurs. In the latter case, the DX PL shift
is twice higher. One can see that for a given density of IX
excitons, the PL shift of the IX line exceeds the DX line
shift. This difference dramatically enhances with increasing
separation between QWs. For IXs densities ∼1010 cm−2 and
d ∼ 10 nm, DX and IX PL shifts are of the order of 0.1 and
1 meV, respectively. This is consistent with the experimental
observations [36].

We can now write the expressions for both Kerr rotation and
photoinduced reflectivity in the vicinity of each DX resonance.
Substituting Eq. (12) into (6) with Ee(h) as ξ we relate these
signals to the IX populations:

δθe = 2n

n2 − 1
V D-I

exchIm {Se}
[
n+1

I − n−1
I + n+2

I − n−2
I

]
,

δθh = 2n

n2 − 1
V D-I

exchIm {Sh}
[
n+1

I − n−1
I − n+2

I + n−2
I

]
,

(16)

δRe = 4n(1 − n)

(n + 1)3
V D-I

exchRe {Se}
∑

s

ns
I ,

δRh = 4n(1 − n)

(n + 1)3
V D-I

exchRe {Sh}
∑

s

ns
I ,

where s = −2,−1,+1,+2 numerate IX spin projections
and the complex values between the braces are defined
by

Se(h)(ω) = e2ikl ∂rQW

∂Ee(h)
. (17)

Numerical application of these formulas for IXs densi-
ties ∼1010 cm−2, d ∼ 10 nm, and 100% spin polarization
of IXs gives for both photoinduced differential reflectivity
and Kerr rotation angle the values of the order of 10−2.
This allows predicting a measurable nonlinear signal in
differential reflectivity and Kerr rotation even for weakly
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spin polarized IXs. Moreover, measurement of Kerr rotation
at both DX resonances Ee and Eh allows for determi-
nation of spin-polarization degree of dark and bright IX
separately:

n+1
I − n−1

I ∼ δθe + δθh, n+2
I − n−2

I ∼ δθe − δθh, (18)

as well as for determination of the total density of IXs:

n+1
I + n−1

I + n+2
I + n−2

I ∼ δRe ∼ δRh. (19)

Note that the determination of dark IX polarization degree is
only possible for the asymmetric CQW structure, where |Ee −
Eh| � �, and two resonances at direct transitions provide
independent signals. In symmetric CQWs δE±

e = δE±
h , which

means that only total IXs density and polarization of bright
IXs can be determined, while polarization of dark IXs remains
hidden in this case.

In principle, the same effects may be observed at the IX
transition frequency, although its magnitude is proportional
to the radiative decay �0 entering Eq. (1), which decays
exponentially for IX resonance with separation of QWs.
Indeed, in the IX resonance case, the integrand of Eq. (2)
describes vanishing tails of the electron (hole) wave function
in the hole (electron) QW. Substituting Eq. (13) into (6) in a
similar manner yields the following expressions:

δθI = 2n

n2 − 1

(
V I-I

dir + 2V I-I
exch

)
Im {SI }

[
n+1

I − n−1
I

]
,

δRI = 4n(1 − n)

(n + 1)3

(
3

2
V I-I

dir + V I-I
exch

)
Re {SI }

[
n+1

I + n−1
I

]
+ 4n(1 − n)

(n + 1)3

(
V I-I

dir + V I-I
exch

)
Re {SI }

[
n+2

I + n−2
I

]
,

(20)

where SI is defined in the same manner as in Eq. (17).
Equations (16) and (20) form a closed nondegenerate

system of linear equations on IXs spin-state occupancies ns
I ,

therefore measurements of nonlinear effects on both DX and
IX transition frequencies in asymmetric CQWs allow for
resolving all spin components of IXs system. In particular,
bright and dark state populations can be resolved.

IV. SPIN DENSITY MATRIX MODEL

In this section, we shall specifically describe the time-
resolved optically induced reflectivity and Kerr rotation in
CQWs. The proposed formalism is similar to the formalism
which was developed and successfully applied to QW micro-
cavities in Ref. [37]. In this type of experiment, short and
circularly polarized pump pulse is tuned to direct resonance
and creates DXs with certain spin. Short living DXs either relax
into the IX state or recombine, leaving a partially polarized IX
system. Linearly polarized probe pulses, also set to the DX
transition frequency and weak comparing to the pump, act as
analyzers of the current exciton density and polarization.

We use density matrix formalism to model the dynamics
of a system containing both DXs and IXs between pump
and probe pulses arrival. The state of the system can be
conveniently described by a 16 × 16 density matrix with
elements denoted as ρ

s,s ′
e,h,e′,h,′ , where e,h,e′,h′ = 0,1 indicate

the positions of electron and hole (0 or 1 for the electron or
hole QW, respectively), s,s ′ = −2,−1,+1,+2 is the exciton
spin state. This basis is convenient for the description of the
electron and hole tunneling which converts DXs to IXs.

The initial conditions for the density matrix are governed
by pump polarization and frequency. In the considered case of
circularly polarized pumping, only diagonal elements of initial
density matrix ρ

s,s
e,h,e,h, with s = ±1 for σ± pump helicity,

are nonzero. Furthermore, if CQWs are asymmetric, DXs in
both QWs can be pumped independently, so that only one
diagonal component of the initial density matrix is nonzero,
ρ

±1,±1
0,0,0,0 if the pump is tuned to the electron QW resonance, or

ρ
±1,±1
1,1,1,1 if it is set to the hole QW resonance. In the case of

symmetric CQWs, both diagonal components with the same
spin are initially nonzero.

The evolution of the density matrix is generally described
by a quantum Liouville equation

i�
∂ρ

∂t
= [H,ρ] − i�L (ρ) , (21)

where the Hamiltonian H
s,s ′
e,h,e′,h′ = �δe,e′δh,h′(δe,1 + δh,0),

with � = d|eE| and e for the electron charge, accounts for
electon and hole energy level splittings, induced by a normal
to the QW plane electric field E, while Lindblad superoperator
L describes all incoherent processes. We concentrate on the
second term of Eq. (21) to model relaxational dynamics of
the system. We shall account for (i) tunneling and energy
relaxation of electrons from the hole QW to the electron QW
and of holes vice versa, described by the rates γe and γh,
respectively, (ii) radiative recombination rate of bright DXs
in both QWs �e

0 = �h
0 = �D

0 , the one of bright IXs �I
0 and

corresponding nonradiative recombination rates �D
NR and �I

NR,
(iii) separate spin flips of electrons and holes, described by
spin-relaxation rates γe,s and γh,s , and simultaneous electron
and hole spin flips, its rate γX,s is defined by electron-hole
exchange and is only present for DXs since this mechanism
is suppressed for IXs by spatial separation of electron and
hole [19,20,38]. Note that the nonraditive recombination
rate �NR does not coincide with the excitonic resonance
nonradiative broadening �, as the latter includes collisions
and inhomogeneity contributions on par with nonradiative
recombination. The Lindblad term reads as

L
(
ρ

s,s ′
e,h,e′,h,′

)
= [(

�D
0 δe,hδe′,h′ + �I

0δe,1−hδe′,1−h′
)
(δs,+1 + δs,−1)

+�D
NRδe,hδe′,h′ + �I

NRδe,1−hδe′,1−h′
]
δs,s ′ρ

s,s ′
e,h,e′,h,′

+ γes

[
δs,+1δs ′,+1ρ

+2,+2
e,h,e′,h′ + δs,+2δs ′,+2ρ

+1,+1
e,h,e′,h′

+ δs,−1δs ′,−1ρ
−2,−2
e,h,e′,h′ + δs,−2δs ′,−2ρ

−1,−1
e,h,e′,h′

]
+ γhs

[
δs,+1δs ′,+1ρ

−2,−2
e,h,e′,h′ + δs,−2δs ′,−2ρ

+1,+1
e,h,e′,h′

+ δs,−1δs ′,−1ρ
+2,+2
e,h,e′,h′ + δs,+2δs ′,+2ρ

−1,−1
e,h,e′,h′

]
+ δe,hγXs

[
δs,+1δs ′,+1ρ

−1,−1
e,h,e′,h′ + δs,−1δs ′,−1ρ

+1,+1
e,h,e′,h′

+ δs,+2δs ′,+2ρ
−2,−2
e,h,e′,h′ + δs,−2δs ′,−2ρ

+2,+2
e,h,e′,h′

]
+ γeδe,0δe′,0ρ

s,s ′
1,h,1,h,′ + γhδh,1δh′,1ρ

s,s ′
e,0,e′,0. (22)
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Only the lowest in energy IX state, for which e = 0
and h = 1, is populated in our model via carrier tunneling
and energy relaxation, while the one with e = 1 and h = 0
remains unpopulated and can be safely ignored. Neglecting
nondiagonal elements of the density matrix, we reduce Eq. (21)
to a linear matrix differential equation on the 12-component
vector of DX and IX spin state populations ns

e = ρ
s,s
0,0,0,0,

ns
h = ρ

s,s
1,1,1,1, and ns

I = ρ
s,s
0,1,0,1:

d

dt

⎛
⎜⎝

ns
e

ns
h

ns
I

⎞
⎟⎠ =

⎛
⎜⎝

LD 0 0

0 LD 0

γhI γeI LI

⎞
⎟⎠

⎛
⎜⎝

ns
e

ns
h

ns
I

⎞
⎟⎠ , (23)

where I is the 4 × 4 identity matrix, LD and LI describe decay
and spin relaxation of DXs and IXs, respectively:

LD =

⎛
⎜⎜⎜⎝

−�D
NR γes γhs γXs

γes −�D
0 − �D

NR γXs γhs

γhs γXs −�D
0 − �D

NR γes

γXs γhs γes −�D
NR

⎞
⎟⎟⎟⎠ ,

(24)

LI =

⎛
⎜⎜⎜⎝

−�I
NR γes γhs 0

γes −�I
0 − �I

NR 0 γhs

γhs 0 −�I
0 − �I

NR γes

0 γhs γes −�I
NR

⎞
⎟⎟⎟⎠ .

(25)

The solution of Eq. (23) can be expressed using the matrix
exponent(

ns
e ns

h ns
I

)T = (
ns

e ns
h ns

I

)T ∣∣
t=0 exp(tM), (26)

where M is the 12 × 12 relaxation matrix given explicitly in
the right part of (23).

The model formulated above neglects several nonlinear
effects which may become important in realistic structures.
In particular, it neglects all possible nonlinearities in the
Lindblad superoperator, which may come from the effective
exchange field arising in a circularly dense polarized exciton
system, the decrease of radiative decay rate with increase of
the exciton density, supplementary decoherence mechanism
due to the collisional broadening of the exciton states, which
is sensitive to the exciton density, pair scattering, and resulting
conversion of bright to dark excitons and vice versa [39]. We
emphasize that our goal is to show on a simplest example
how the Kerr rotation and differential reflection measured at
the DX frequency can be used to obtain information on the
population and polarization of bright and dark IX states. A
detailed microscopic modeling of any particular CQW system
is beyond the scope of this work.

Substituting different initial conditions into Eq. (26), one
can address various experimental scenarios. In the numerical
analyses we focus on the three important cases: (i) DXs in
both symmetric QWs are pumped simultaneously, (ii) CQWs
are asymmetric, and we excite selectively DXs in the electron
QW, in which case IXs are formed due to the hole tunneling,
(iii) CQWs are asymmetric, and we excite selectively DXs

FIG. 4. (Color online) Exciton relaxation dynamics in CQWs
after a short circularly polarized pump pulse: (a) the normalized
exciton populations in equally pumped symmetric CQWs; (b) the
same for the pumping of an “electron” QW in asymmetric CQWs;
(c) the same for the pumping of a “hole” QW in asymmetric CQWs;
(d) DX and IX bright exciton polarization degrees. For all panels, solid
and dashed curves correspond to bright and dark states, respectively,
blue and purple curves are related to DXs in electron and hole QWs,
while red curves describe IXs. The parameters used in this calculation
are γh = (300 ps)−1, γe = (30 ps)−1, �D

NR � �D
0 = (100 ps)−1,

�I
NR � �I

0 = (10 ns)−1 [40], γes = (1 ns)−1, γhs = (10 ps)−1, γXs =
(50 ps)−1 [41].

in the hole QW, so that IXs are formed due to the electron
tunneling. The cases (ii) and (iii) will be referred to as “electron
QW pumping” and “hole QW pumping,” respectively, to
emphasize that in the case (ii) we optically create electrons
in the same well where electrons of the lowest-energy IXs are,
while in the case (iii) we excite holes in the same well where
the holes of the lowest-energy IXs stay.

Figures 4(a)–4(c) show populations of bright and dark
DX and IX states as functions of time in the cases (i)–(iii),
respectively. In all cases, the main features or IX and DX
population dynamics are the same: the IXs population initially
increases, while the DX population shows a fast decay due
to the tunneling of electrons (ii), holes (iii), or both (i),
and radiative recombination of DXs. At longer times, the
IX population slowly decreases. Bright and dark exciton
populations quickly equalize due to the hole spin relaxation.
Note that maximum amount of IXs left after vanishing of
DXs depends on the rate of conversion from DXs to IXs,
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which is different for listed cases. The conversion due to
the electron tunneling is faster than one due to the hole
tunneling because of the lighter electron than heavy hole
effective mass in the structure growth direction. Figure 4(d)
shows the dynamics of polarization degrees of bright DXs
and IXs, which is the same for all considered cases. The
DX polarization induced by light quickly decays due to the
γX,s relaxation term describing simultaneous electron and
hole spin flips. IX polarization lives much longer as for IXs
this term is inhibited. Interestingly, the fast depolarization of
holes does not lead to the decay of polarization degree of
either bright or dark excitons [42]. Indeed, the transformations
from +1(+2) to −1(−2) spin states or vice versa require both
electron and hole spin flips. Fast hole spin flips, however, do
lock bright and dark exciton polarization degrees to the same
absolute values and different signs, which is why we only
plot bright exciton polarization. The simulations presented
in Fig. 4 neglect nonradiative recombination of excitons.
This approximation is well justified for high-quality CQW
structures where the nonradiative recombination rate is much
lower than the radiative recombination rate [43]. We note
also that re-polarization of DXs due to the effective Zeeman
splitting induced by polarized IXs is negligibly small in the
chosen range of parameters.

Figure 5 shows the differential reflectivities and Kerr
rotation angles obtained for asymmetric [Figs. 5(a) and
5(b)] and symmetric [Fig. 5(c)] CQWs. These quantities are

FIG. 5. (Color online) Calculated dynamics of the photoinduced
reflectivity (dashed curves) and Kerr rotation (solid curves) signals
in CQWs after a short circularly polarized pump: (a) symmetric
CQWs, both QWs are pumped, (b) asymmetric CQWs, electron
QW pumping, (c) asymmetric CQWs, hole QW pumping. Blue and
purple lines describe signals on electron and hole QWs resonant
frequencies, respectively, black curves describe folded signals from
both symmetric CQWs. Parameters of calculation are the same as in
Fig. 4.

obtained using Eqs. (16) for the IXs contributions and the
following expressions for the DXs contributions obtained
within the same assumptions as in Sec. III:

δθe(h) = 4n

n2 − 1
V D-D

exch Im{Se(h)}
[
n+1

e(h) − n−1
e(h)

]
,

(27)

δRe(h) = 8n(1 − n)

(n + 1)3
V D-D

exch Re{Se(h)}
∑

s

ns
e(h),

where V D-D
exch = V I-D

exch(d = 0) = V I-I
exch(d = 0) are the exchange

interaction constants calculated in [33]. In the present calcu-
lation, we have assumed equality of the interaction constants
V D-D

exch = V I-D
exch, which is reasonable due to the weak dependence

of V I-D
exch on the distance between the QWs d (see Fig. 3). One

can see that the Kerr rotation signal decays faster than the
differential reflectivity signal, in general. This is not surprising
as the Kerr effect is sensitive not only to the population
of IXs, but also to their spin polarization, which decays
faster than population. There are two time scales in the Kerr
signal corresponding to the hole and electron spin-relaxation
times. In the case of asymmetric CQWs, both reflectivity
and Kerr signals are initially much stronger at the exciton
resonance in the pumped QW, while at the characteristic time
scale of the tunneling transfer the reflectivity signals from
both wells become comparable. The Kerr signal is always
stronger in the electron QW than in the hole QW as the
electron spin-relaxation time is much longer than the hole spin
relaxation time. The dynamics of Kerr rotation and differential
reflectivity gives a direct access to DX and IX spin relaxation
and recombination times, but also to the electron and hole spin
relaxation and tunneling times.

V. CONCLUSION

We have shown that time-resolved pump-probe experiments
offer new possibilities for studies of indirect excitons in
coupled quantum well structures. To circumvent the problem
of vanishing oscillator strength of IX state, we propose to
detect the IX population and spin polarization via modifica-
tions of DX resonance properties. Three different types of
nonlinearities due to DX-IX interactions can be identified.
Namely, DX resonance can shift in energy, change of its
oscillator strength, and/or broadening. We have shown that
relative contribution of these three mechanisms in measured
time-resolved Kerr rotation and reflectivity can be identified
via spectral profile of the photoinduced signal.

The calculation of DX-IX interaction energy allows us
to predict measurable nonlinear signals in CQW structures.
Moreover, in asymmetric CQW structures where two distinct
DX resonances can be addressed, Kerr rotation may provide
information on both bright and dark exciton spin density.

To go further, we built up the spin density matrix formalism
accounting for both DX and IX dynamics, relevant for realistic
pump-probe experiments. Kerr rotation and reflectivity mea-
sured as a function of pump-probe delay can be described by
the model. Fitting the experimental data to the model should
give direct access to DX and IX decay, electron and hole
depolarization, and tunneling times.
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