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Effect of uniaxial stress on the interference of polaritonic waves in wide quantum wells

D. K. Loginov,1 A. V. Trifonov,2 and I. V. Ignatiev2

1St. Petersburg State University, St. Petersburg 198504, Russia
2Spin Optics Laboratory, St. Petersburg State University, St. Petersburg 198504, Russia

(Received 24 April 2014; revised manuscript received 23 July 2014; published 12 August 2014)

A theory of polaritonic states is developed for a nanostructure with a wide quantum well stressed perpendicular
to the growth axis of the heterostructure. The role of the K-linear terms appearing in the exciton Hamiltonian
under the stress is discussed. Exciton reflectance spectra are theoretically modeled for the nanostructure. It is
predicted that the spectral oscillations caused by interference of the excitonlike and photonlike polariton modes
disappear with the increase of applied pressure and then appear again with the opposite phase relative to that
observed at low pressure. Effects of gyrotropy and convergence of masses of excitons with heavy and light holes
due to their mixing by the deformation are also considered. Numerical estimates performed for the GaAs wells
show that these effects can be experimentally observed at pressure P < 1 GPa for the well widths of a fraction
of a micron.
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I. INTRODUCTION

Carrier motion in direct-gap semiconductors is usually
described by a parabolic dispersion low that is by quadratic
dependence of energy on wave vector K. In many cases,
however, K-linear terms in the carrier Hamiltonian may
play an important role. These terms become important, in
particular, when the inversion asymmetry is broken for bulk
crystal (bulk inversion asymmetry, BIA) or the asymmetry
of the heteropotential, e.g., in quantum wells (QWs) and
superlattices, is present (structure inversion asymmetry, SIA).
Both the BIA and SIA give rise to the K-linear splittings
of carrier states with opposite spins [1–4]. These splittings
manifest themselves in such effects as spin orientation and
relaxation [5], weak antilocalization (WAL) [6–8], circular
photogalvanic effect [9], and gyrotropy [10–13].

Recently, a new type of semiconductor structures, in which
the carrier energy is linearly dependent on the wave vector,
has become actively studied [14,15]. Several unusual effects
are observed for such structures. For example, the finite
conductivity at low carrier concentrations and an anomalous
quantum Hall effect are observed in graphene [16]. Basic
physics of topological insulators is also related to K-linear
dispersion of edge states which are, as a rule, protected against
disorder (see, e.g., Refs. [15,17]).

When the electron and hole, whose energy depend on K-
linear terms, are combined into an exciton, its Hamiltonian
should include the K-linear terms also. These terms affect such
phenomena as ballistic spin transport [18] and vortices [19] in
exciton condensates. In wide QWs, excitons with large wave
vectors become observable [20,21] and the effects caused by
the K-linear terms should reveal themselves as strongly as
possible.

The interaction of excitons with light can be described as
polaritonic excitations of crystal. A wide QW is a resonator
for polaritons and therefore they become standing waves,
which manifest themselves as oscillations in the reflection
or absorption spectra [20,21]. Theoretical calculations of
reflection spectra for ZnSe/ZnSSe and GaAs/AlGaAs QWs
show reasonable agreement with experimental data in the
framework of the simplest model, in which the exciton energy

quadratically depends on the exciton wave vector K [22,23],
although the K-linear terms should be present in the exciton
Hamiltonian at least due to the BIA effect in the QWs. The
reason for that is the relatively small effect of K-linear terms
for unstrained heterostructures.

The role of the K-linear terms can dramatically increase
if a uniaxial stress is applied to the structure with the BIA
and SIA. The stress results in the K-linear splitting of the
lowest conduction band and the upper valence band (see,
e.g., [24]). Although the effect of uniaxial stress has been
known for several decades, its possible impact on the exciton
and, accordingly, on the polariton spectra of wide QWs has
not been investigated yet.

In this paper, we present a theoretical analysis of the
interference of polariton waves in a wide QW subject to the
uniaxial stress. We discuss the effects induced by the stress
applied perpendicular to the direction of the propagation of
polariton waves. As will be shown, the stress leads to K-linear
contributions to the energy of the electrons and holes. This
results in the modification of polaritonic states in the QW
and, as a consequence, in the dramatic change of reflection
spectra. In addition, the uniaxial stress leads to intermixing of
the heavy-hole and light-hole excitons and to a “convergence”
of their effective masses.

Theoretical modeling of polariton spectra is fulfilled for a
GaAs/AlGaAs QW. The quality of GaAs-based QWs grown
by molecular-beam epitaxy is high enough now to observe
effects related to the K-linear splitting of exciton states. The
estimates given below show that the theoretically predicted
effects can be observed at pressures available experimentally.

Analysis of the effect of uniaxial stress on the polariton
states will be performed in the following sequence. In Sec. II,
we consider the Hamiltonian of an exciton in the presence of
the uniaxial stress without an interaction with light. Section III
is devoted to a description of the permittivity of the strained
crystal in the presence of the exciton-light interaction. In
addition, calculations of the dispersion relations for the
polariton modes are given in this section. In Sec. IV, we define
the boundary conditions for the polariton modes. The main
results are present in Secs. V and VI. The microscopic nature
of the suppression and recovery of oscillations in the polariton
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spectra is discussed in Sec. VII. The last section summarizes
the main findings and conclusions.

II. HAMILTONIAN OF AN EXCITON IN THE PRESENCE
OF STRESS

Consider an exciton in a crystal with the zinc-blende
symmetry, propagating along the Z axis, which coincides with
the [001] crystallographic axis. Such exciton is characterized
by only one nonzero component of the exciton wave vector
K = Kz,Kx = Ky = 0. In what follows, we consider this
direction as the quantization axis for the angular momenta
of carriers.

The exciton states observed in the optical experiments in
crystals such as GaAs are formed from the states of the doubly
degenerate conduction band �6 and the fourfold degenerate
valence band �8. The wave functions of electrons and holes in
this approximation are, respectively, two- and four-component
plane waves [25].

We derive the excitonic Hamiltonian from the Hamiltonians
of free electrons and holes. In what follows, we neglect the
terms related to the corrugation of the valence band [25], which
are responsible for mixing heavy and light holes. These effects
are weak compared to those caused by the terms included in the
spherically symmetric part of the valence-band Hamiltonian
and do not affect the phenomena discussed in the present paper.

To construct the excitonic Hamiltonian, we replace the
coordinates of free electrons, re, and of heavy and light holes,
rhh, rlh, by coordinates of motion of the exciton as a whole,
Z = (zeme + zhh,lhmhh,lh)/(me + mhh,lh), and of the relative
motion of the electron and hole, r = re − rhh,lh. Here, me,
mhh, and mlh are effective masses of the electron, heavy hole,
and light hole, respectively.

The effects considered below are observed in the spectral
range where the kinetic energy of the exciton is comparable
with its binding energy. Excitons with such kinetic energy
can be described in the approximation of the “large” wave
vector [26]. According to this approximation, operators of the
wave vectors for free electrons and holes can be expressed as
follows:

k̂(e,hh,lh)
x = ± p̂x

�
, k̂(e,h)

y = ± p̂y

�
,

k̂(e,hh,lh)
z = ± p̂z

�
+ me,hh,lh

me + mhh,lh

K̂z,

(1)

where the signs “+” and “−” refer to electrons and holes,
respectively. Here, mhh,lh = m0/(γ1 ± γ2), where m0 is a free-
electron mass and γ1,γ2 are the Luttinger parameters [25].
Operator p̂x(y,z) = −i�∂/∂x(y,z) is the momentum operator
of relative motion of the electron and hole; K̂z = −i∂/∂Z

is the operator of wave vector of the exciton motion as a
whole; Mh,l = me + mhh,lh denote translational masses of the
heavy-hole and light-hole excitons. The Hamiltonian of the
excitons is

Ĥ
(0)
Xh,l = Ĥ

(0)
Kh,l + Ĥ (0)

p , (2)

where

Ĥ
(0)
Kh,l = Eg + �

2K̂2

2Mh,l

(3)

is the Hamiltonian of the exciton motion as a whole; and

Ĥ (0)
p = p̂2

2μ
− e2

ε0r
(4)

is the Hamiltonian of relative motion of the electron and hole.
In Eqs. (2)–(4), Eg is a band gap, μ = 1/me + γ1/m0 is a
reciprocal exciton mass, ε0 is a background permittivity of the
crystal, and e is the electron charge. The coordinate part of the
wave function of exciton has the form

�(K) = eiKZFNLM, (5)

where FNLM is the hydrogenlike wave function of the
relative motion of electron and hole. This function can be
represented as FNLM = RNLYLM , where RNL and YLM

are radial and spherical functions, respectively. Subscript
N is the principal quantum number and subscripts L,M
are the orbital angular momentum and its projection on the
quantization axis, respectively.

The Hamiltonian given by Eq. (2) does not mix orbital
states of the exciton. Uniaxial stress can lead to mixing of
1s- and p-exciton states; however, this effect can be neglected
because of its smallness (see below). Hence we consider only
the 1s-exciton state with N = 1, L = 0, and M = 0. The wave
function of this state contains the components R10 = 2e−r/aB

and Y00 = 1/
√

4π , where aB = ε0�
2/μe2 is the exciton Bohr

radius. Note that the coordinate parts of wave functions for the
heavy-hole and light-hole excitons are the same up to some
constant [27]. The energy of the 1s exciton in the unstrained
crystal has the form

H
(0)
Xh,l = EX + �

2K2

2Mh,l

, (6)

where EX = Eg − R is the energy of an optical transition to
the exciton ground state, and R = μe4/(2�

2ε2
0 ) is the exciton

binding energy, which is the eigenvalue of the operator given
by Eq. (4).

The Hamiltonian of the exciton motion in the unstrained
crystal can be written as a matrix 8 × 8 consisting of two
identical blocks 4 × 4, which have the form

Ĥ
(0)
X =

⎛
⎜⎜⎝

H
(0)
Xh 0 0 0
0 H

(0)
Xl 0 0

0 0 H
(0)
Xl 0

0 0 0 H
(0)
Xh

⎞
⎟⎟⎠. (7)

One of these blocks describes the optically active exciton
states with spin projections ±1, and the second one is the
optically inactive states with spin projections ±2 and 0 for
light-hole and heavy-hole excitons, respectively. The matrix of
the Hamiltonian (7) is written in the basis of eight-component
plane waves, which we denote as

|j,s〉K = νj,s�(K). (8)

Here, νj,s are the eight-component spinors, in which one
component is equal to the unit, and others are zero. j =
±3/2, ± 1/2 and s = ±1/2 are the projections of the spin
moment of electron and hole, respectively, and �(K) is given
by Eq. (5).

Uniaxial stress leads to two main effects. One of them is
a change of the energy structure of the �8 valence band. This
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effect is described by the Bir-Pikus Hamiltonian [28]:

Ĥε = −aISp(ε) + b
∑

α

J 2
α

[
εαα − 1

3
Sp(ε)

]

+ d
∑
α �=β

εαβ{Jα,Jβ}, (9)

where I denotes the unit matrix, εαβ is the strain tensor,
and Sp(ε) = ∑

α εαα . Matrices Jα denote the hole angular
momentum, where α,β = x,y,z. Quantities a, b, and d are
the deformation potentials.

The second effect, considered here in more detail, is the
appearance of k-linear terms in the Hamiltonian of electron
and holes for crystals without inversion symmetry [24]:

Ĥ (εk)
c = 1

2

(
C3

∑
γ

σγ ϕ̂γ + C ′
3

∑
γ

σγ ψ̂γ

)
, (10)

Ĥ (εk)
v = C5

∑
γ

Jγ ϕ̂γ + C6

∑
γ

Jγ ψ̂γ + C7

∑
α

J 3
γ ϕ̂γ

+C8

∑
γ

J 3
γ ψ̂γ + C9

∑
γ

Vγ χ̂γ , (11)

where γ = x,y,z; quantities σγ are the Pauli matrices,
Vz = Jz(J 2

x − J 2
y ), and Cj ,C

′
j are material constants for a

crystal under consideration (j = 3,4, . . . ,9). Components of
operators ϕ̂γ , ψ̂γ , and χ̂γ required for further consideration
read

ϕ̂z = εxzk̂x − εyzk̂y,

ψ̂z = k̂z(εxx − εyy), (12)

χ̂z = k̂z

[
εzz − 1

3 Sp(ε)
]
.

Other (x and y) components of these operators can be obtained
by the cyclic permutation of subscripts.

Analysis shows that to describe the phenomena under
discussion, one should consider only terms C6Jzψz, C7J

3
x ϕx ,

C7J
3
y ϕy , and C8J

3
z ψz (see Appendix A).

In what follows, we assume that pressure P is applied
along axis x, which coincides with the C4 ([100]) axis of the
crystal lattice. Under such conditions, all of the off-diagonal
components of the strain tensor are zero. The component of
stress tensor uxx is equal in magnitude to the applied pressure
P and the diagonal components of strain tensor are described
by expressions [29]

εxx = S11uxx = S11P,

εyy = S12uxx = S12P, (13)

εzz = S12uxx = S12P,

where Sαβ are the components of the elastic compliance tensor.
Operators ϕx and ϕy are zero because they contain off-

diagonal components εxz and εyz [see Eq. (12)], which are
zero in the considered geometry. Therefore, only two terms,
C6Jzψz, and C8J

3
z ψz, should be finally taken into account. The

substitution of expressions (1) and (13) into Eq. (11) gives rise
to the following expression for the stress-induced terms in the
excitonic Hamiltonian:

Ĥ (Kε) = mh

M

(
C6Jz + C8J

3
z

)
(S11 − S12)PK̂z. (14)

This operator calculated using wave functions (8) is the 8 × 8
diagonal matrix. Its nonzero matrix elements have the form

H
(Kε)
j+s,j+s = AjK,

Aj ≡ mh

M
(jC6 + j 3C8)(S11 − S12)P, (15)

where j = ±3/2, ±1/2 and s = ±1/2. Note that the sign
of constant Aj is determined by the sign of the angular
momentum projection j for the hole so that Aj = −A−j .
Parameters C6 and C8 can be determined using expressions
given in Ref. [24]. Analysis shows that A±1/2 = 0 for the
light-hole exciton in all crystals with zinc-blende structure.
Quantity A±3/2 describing the effect of K-linear terms for the
heavy-hole exciton is completely determined by the applied
stress and by material parameters. Its value for the QW under
consideration is given in Sec. III.

Let us now consider in more detail the effects described by
the Bir-Pikus Hamiltonian (9). At the chosen direction [100]
of applied stress, this Hamiltonian reads

Ĥε = −aISp(ε) + b
∑

α

J 2
α

[
εαα − 1

3
Sp(ε)

]
, (16)

where εxx,εyy,εzz are described by expressions (13).
In addition to the shift of valence band, this Hamiltonian

describes the mixing of heavy and light holes, since matrices
J 2

x and J 2
y contain off-diagonal elements. This mixing is

significant because deformation potentials a and b are large.
In particular, they are in orders of magnitude larger than the
matrix elements of Hamiltonian (14) for the actual range of
wave vectors K(0 ÷ 5 × 106 cm−1).

Finally, the total excitonic Hamiltonian in the presence of
uniaxial stress consists of Hamiltonians (7), (14), and (16).
This Hamiltonian does not mix optically active states,
|j,s〉 = | ± 3/2, ∓ 1/2〉,| ± 1/2, ± 1/2〉, with optically in-
active states, |j,s〉 = | ± 3/2, ± 1/2〉,| ± 1/2, ∓ 1/2〉, as it
follows from the properties of matrices Jz,J

3
z ,J 2

x ,J 2
y ,J 2

z (see,
e.g., [25]). Therefore, we further restrict our analysis only by
the bright excitons. The matrix of the total exciton Hamiltonian
built on the wave functions of the bright exciton has the form

ĤX = Ĥ
(0)
X + Ĥ (Kε) + Ĥε =

⎛
⎜⎝

Hh+ 0 V 0
0 Hl+ 0 V

V 0 Hl− 0
0 V 0 Hh−

⎞
⎟⎠,

(17)

where

Hh± = H
(0)
Xh + Hεh ± A3/2K,

Hl± = H
(0)
Xl + Hεl,

V = 3

2
b(S11 − S12)P,

Hεh,l = −aSp(ε) ± b

2
(εxx + εyy − 2εzz).

In the last expression, the upper signs refer to the heavy-
hole excitons, while the lower ones refer to the light-hole
excitons.
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The exciton wave function for this problem is constructed
as a linear combination of the basic wave functions (8),

�(K) =
∑
j,s

Cj,s |j,s〉, (18)

where Cj,s are the expansion coefficients.

III. PERMITTIVITY TENSOR

For calculation of the reflection spectra in the presence of
the pressure-induced effects, we use the model of interference
of the bulk polariton waves described in Refs. [22,23]. We
consider the model of a heterostructure consisting of the QW
layer surrounded by semi-infinite barriers. We assume that the
incident light propagates perpendicularly to the QW and has a
circular polarization. The latter corresponds to the creation of
an exciton with a certain projection of the angular momentum
on the direction of propagation.

For further analysis, we consider the wave to be right-hand
polarized if the projection of the photon angular momen-
tum onto the chosen axis Z is +1 and to be left-hand
polarized if this projection is −1. With this definition, the
sign of the circular polarization is not changed when the
propagation of light is changed to the opposite direction.
Such a definition is convenient when writing the boundary
conditions for exciton polaritons; see next section. It should
be emphasized that this definition does not match with the
commonly used one for the polarization, which is determined
by the angular momentum projection of photons on the
direction of propagation and, therefore, is reversed under
reflection.

As the first step, we should calculate the permittivity tensor
of the medium, ε(ω,K), taking into account the exciton-photon
interaction. Tensor ε(ω,K) is the 3 × 3 matrix describing
two transverse and one longitudinal modes. However, under
normal incidence of light, only transverse modes are excited in
the crystal, and the 2 × 2 permittivity tensor is relevant to this
case.

The exciton-photon interaction is described by the pertur-
bation operator ([30,31]),

(d (±)
h + d

(±)
l )E(±), (19)

where E(±) is the electric-field amplitude of the light wave
and superscript “±” corresponds to two circular polarizations
of light. The matrix element of the dipole moment operator,
d̂± = e(x ± y), has the form ([30,31])

d
(±)
h = 〈0|d̂ (±)| ± 3/2, ∓ 1/2〉,

d
(±)
l = 〈0|d̂ (±)| ± 1/2, ± 1/2〉.

Wave function |0〉 describes the vacuum state of a crystal
that is the state with no exciton. For both circular polariza-
tions, |d (+)

h,l | = |d (−)
h,l | = dh,l , where d2

h = 3d2
l = 3

4 �ωLT ε0 is
the squared matrix element of the dipole moment normalized
to unit volume. Quantity �ωLT is the energy of longitudinal-
transverse splitting describing the strength of the exciton-
photon interaction.

The exciton-photon interaction changes polarization of the
medium, which is described by the expression [30,31]

P (±) = dhC±3/2,∓1/2 + dlC±1/2,±1/2, (20)

where Cjs are the expansion coefficients in expression (18).
Polarization vectorP is associated with vector E(±) via electric
susceptibility tensor 4πχαβ :

P (±) = 4πχ±±E(±) + 4πχ±∓E(∓).

The dispersion relations, the wave functions, and the
permittivity tensor of the medium in the presence of the
exciton-photon interaction can be found using the method
proposed in Refs. [30,31]. To this end, one should first solve
a system of equations for the energies of the four states with
perturbation (19) (see, e.g., [31]),

(H − I�ω)C = 0, (21)

where �ω is the photon energy, and matrix (H − I�ω) and
vector C have the form

(H − I�ω) =

⎛
⎜⎝

Hh+ − �ω 0 V 0 dh 0
0 Hl+ − �ω 0 V dl 0
V 0 Hl− − �ω 0 0 dl

0 V 0 Hh− − �ω 0 dh

⎞
⎟⎠, C =

⎛
⎜⎜⎜⎜⎜⎝

C+3/2,−1/2

C+1/2,+1/2

C−1/2,−1/2

C−3/2,+1/2

−E(+)

−E(−)

⎞
⎟⎟⎟⎟⎟⎠. (22)

Coefficients Cjs can be found solving system (22):

C±3/2,∓1/2 = H̃l∓dhE
(±)

H̃h±H̃l∓ − V 2
− V dlE

(∓)

H̃l∓H̃h± − V 2
, (23)

C±1/2,±1/2 = H̃h∓dlE
(±)

H̃l±H̃h∓ − V 2
− V dhE

(∓)

H̃l±H̃h∓ − V 2
. (24)

Here, H̃α ≡ Hα − �ω + i�, where � is a phenomenological
parameter introduced to describe the processes of energy
dissipation. Substituting (23) and (24) into Eq. (20), we

obtain

H̃l∓d2
hE(±)

H̃h±H̃l∓ − V 2
+ H̃h∓d2

l E(±)

H̃l±H̃h∓ − V 2
− V dldhE

(∓)

H̃l∓H̃h± − V 2

− V dldhE
(∓)

H̃l±H̃h∓ − V 2
= 4πχ±±E(±) + 4πχ±∓E(∓). (25)

This relation allows one to finally obtain relations for compo-
nents χα,β :

4πχ±± = H̃l∓d2
h

H̃h±H̃l∓ − V 2
+ H̃h∓d2

l

H̃l±H̃h∓ − V 2
, (26)
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and

4πχ+− = 4πχ−+ = − V dldh

H̃l∓H̃h± − V 2
− V dhdl

H̃l±H̃h∓ − V 2
.

(27)

Beside the effects related to excitons, the uniaxial stress
leads to a piezo-optical effect, due to which the isotropic crystal
becomes uniaxial. In our case, the principal optical axis of the
crystal is perpendicular to the direction of light propagation.
In the basis of circularly polarized light waves, this effect can
be described by additional diagonal and off-diagonal terms in
the permittivity tensor, which have the form [32]

δε++ = δε−− = (π11 + π12)P/2,
(28)

δε+− = δε−+ = (π11 − π12)P/2.

Here π11,π12 are components of the background piezo-optic
tensor, whose values can be found in the literature (see,
e.g., [32]).

The total permittivity is expressed in terms of the electric
susceptibility (26) and (27) as follows:

ε±±(ω,K) = ε0 + δε++ + 4πχ±±, (29)

ε+−(ω,K) = ε−+(ω,K) = δε+− + 4πχ+−. (30)

The permittivity tensor in the basis of circular polarizations
has the form

ε(ω,K) =
(

ε++ ε+−
ε−+ ε−−

)
. (31)

It is easy to verify that for the diagonal matrix elements of the
tensor, the following relation is valid:

ε++(ω,K) = ε−−(ω, − K). (32)

This relation is equivalent to the a well-known relation [33]

εxy(ω,K) = εyx(ω, − K), (33)

where εxy,εyx are components of the permittivity tensor in
the basis of linearly polarized waves. They are related to

components (29) and (30) by well-known formulas (see,
e.g., [34]):

εxy(ω,K) = −εyx(ω,K) = i 1
2 [ε++(ω,K) − ε−−(ω,K)].

(34)

First, we use resulting expression (31) for calculation of the
dispersion relations for polariton eigenmodes. To this end, we
solve the dispersion equation [33]

ε(ω,K) = I
c2K2

ω2
, (35)

where c is the light velocity and ε(ω,K) is the permittivity
described by expressions (29)–(31).

Equation (35) has 12 independent solutions for dispersion
relations Ki(ω), half of which correspond to the propagation
of polariton waves in the forward direction and the other half
correspond to the backward one. The eigenmodes differ from
each other by the predominant contribution of the photonlike
(p-type) or excitonlike (l- and h-type) components; see Fig. 1.
Since permittivity tensor (31) has nonzero off-diagonal matrix
elements, all of the eigenmodes propagating in the strained
crystal, in general, are elliptically polarized. In particular, six
waves are predominantly left-hand polarized, while the other
six are right-hand polarized.

Figure 1 shows the dispersion curves for polariton eigen-
modes calculated for a GaAs crystal. The following material
parameters are used: �ωLT = 0.09 meV [35], ε0 = 12.56 [36],
me = 0.067m0 [37], mhh = 0.45m0, mlh = 0.082m0 [38]
(m0 is the free-electron mass), Eg = 1520 meV [39], R =
5 meV, S11 = 1.76 × 10−12 cm2/dyn and S12 = −0.37 ×
10−12 cm2/dyn [40], π11 = 0.2GPa−1,π12 = 0.05 GPa−1,
π11 − π12 ≈ 0.2GPa−1 [32], and a = −6.7 eV, b = −1.7
eV [28]. Constants C6 and C8 are calculated using formulas
and material constants given in Ref. [24]: C6 = −1meV/cm
and C8 = −4meV/cm. The value of the damping parameter
has been chosen to obtain the width of oscillations in the
calculated reflection spectra (see below) approximately equal
to that typically observed in the experiment: � = 0.05 meV.
The figure shows the dispersion curves for pressure P = 0
and P = 1 GPa. Since the GaAs crystal is destroyed at larger
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FIG. 1. (Color online) The change of the dispersion relations of (a) h-polariton and (b) l-polariton branches under pressure P = 1 GPa.
Black dashed lines are the initial dispersion curves at P = 0. Red and blue lines represent polariton modes with dominant right-hand and
left-hand circularly polarized components in the stressed crystal, respectively. Legends h, l, and p are explained in the text. The left and right
energy scales correspond to cases P = 0 and P = 1 GPa.
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uniaxial stress [41,42], the pressure effects at P > 1 GPa were
not considered.

As seen in Fig. 1, the strain results in two main effects. The
first one is the change of curvature of the excitonlike dispersion
branches. It is caused by mixing of the heavy-hole and light-
hole exciton states and is described by the off-diagonal matrix
element V in matrix (22). Dispersion curves for h-type waves,
which correspond to the heavy-hole excitons in the absence of
strain, become steeper with increasing pressure [see Fig. 1(a)]
and those for the l-type waves initially corresponding to light-
hole excitons become flatter [Fig. 1(b)]. This effect can be
treated as the convergence of the effective masses of excitons
of the h and l types.

The second effect is the antisymmetric in K splitting of
dispersion branches of h and l types, which is described by
term (15) in the exciton Hamiltonian. If K > 0, the dispersion
branch for the right-hand polarization is higher in energy than
the branch for the left-hand polarized component. If K < 0,
these branches are swapped [see Fig. 1(a)]. The relatively
weak, at first glance, splitting of the dispersion curves leads
to a qualitatively new effect in the reflection spectra of
the QW.

IV. BOUNDARY CONDITIONS

To formulate the boundary conditions, one should obtain a
relation between the electric fields E(+)

ρ and E(−)
ρ for polariton

eigenmodes. The relation follows from Eqs. (31) and?brk?>
(35):

I
c2K2

ρ

ω2
Eρ = ε(ω,Kρ)Eρ, (36)

where the vector

Eρ =
(

E(+)
ρ

E(−)
ρ

)

describes the elliptical polarization of the eigenmode ρ.
Subscript ρ includes three components,

ρ = {λ,d,e},
where λ = p,l,h indicates the type of the eigenmode, and
d =→ or ← shows the direction of wave propagation. Index
“e” specifies the ellipticity, in particular, e = right denotes
the wave with a prevailing right-hand circularly polarized
component, and e = lef t is the wave with a prevailing left-
hand polarized component (see Fig. 1).

Substitution of vector Eρ in expression (36) provides a
relation between the circularly polarized components,

c2K2
ρ

ω2
E(±) = ε±±E(±)

ρ + ε+−E(∓)
ρ , (37)

which can be written as

E(±)
ρ = ξ (∓)

ρ E(∓)
ρ , (38)

where

ξ (±)
ρ = ε+−(ω,Kρ)

ε±±(ω,Kρ) − n2
ρ(ω,Kρ)

.

The polariton eigenmodes propagating in the optically uni-
axial QW are shown in Fig. 2. The circularly polarized incident

Eh−>>−>−−> right

Ep <−−<−<<− right

El −>>−>−−> left

Ep <−−<−<<− left

E(-)
tE(-)

r

E(+)
t

E(+)
r

E(+)
i

El <−−<−<<− right
Eh <−−<−<<− right

Eh <−−<−<<− left

El <−−<−<<− left

Eh −>>−>−−> left

Ep −>>−>−−> left

El −>>−>−−> right

Ep−>>−>−−> right

FIG. 2. (Color online) Polaritonic eigenmodes in the QW layer.
Red dashed arrows indicate polariton waves with predominant σ+

polarization (subscript right). Blue dashed arrows show the polariton
waves with a predominant σ− polarization (subscript lef t). The solid
red and blue arrows indicate the light waves in copolarizations and
cross polarizations, respectively, passed through and reflected from
the QW.

light can excites all modes, but with different efficiency. The
reflected light, in general, is elliptically polarized, i.e., can
be decomposed into two circularly polarized components.
Therefore, two sets of boundary conditions should be con-
sidered for each heterointerface, with one set per each circular
polarization. In what follows, we assume that the incident light
has the right-hand helicity.

Boundary conditions include the Maxwell’s conditions,
which require continuity of the tangential components of
electric E(±) and magnetic B(±) fields of polaritonic waves
at the QW heterointerfaces. For plane waves, the magnetic
induction can be expressed in terms of the electric-field am-
plitude, B(±)

ρ = nρE
(±)
ρ , where refractive index nρ = cKρ/ω.

Thus, if there are incident, transmitted, and reflected waves
at the QW heterointerfaces, the boundary conditions for the
circularly polarized components can be written as

E
(+)
i eiqZ1,2 + E(+)

g e−iqZ1,2 =
∑

ρ

E(+)
ρ eiKρZ1,2 ,

(39)
n0E

(+)
i eiqZ1,2 − n0E

(+)
g e−iqZ1,2 =

∑
ρ

nρE
(+)
ρ eiKρZ1,2 ,

and

E(−)
g e−iqZ1,2 =

∑
ρ

E(−)
ρ eiKρZ1,2 ,

(40)
−n0E

(−)
g eiqZ1,2 =

∑
ρ

nρE
(−)
ρ eiKρZ1,2 ,

where E
(+)
i ,E(±)

r are the amplitudes of the circularly polarized
components of the incident, reflected (g = r), or transmitted
(g = t) light waves outside the QW. Quantities n0 and q are
the refractive index and the modulus of the wave vector of light
in barriers, respectively. Coordinates Z1 = 0 and Z2 = LQW

correspond to the boundaries of the QW.
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Besides the Maxwell’s boundary conditions, we use the
Pekar’s additional boundary conditions (ABC). According to
them, the polarization of the crystal caused by the heavy-
hole and light-hole excitons vanishes at the boundaries of the
QW (see Ref. [30]). Since their contribution is described by
expression (20), the ABC can be written as∑

ρ

dhC±3/2,∓1/2(Kρ)|L=0,LQW = 0,

(41)∑
ρ

dlC±1/2,±1/2(Kρ)|L=0,LQW = 0,

where ρ runs over all polaritonic modes. Using expres-
sions (23) and (24) for coefficients C±3/2,∓1/2 and C±1/2,±1/2,
we obtain four ABC at each boundary:

∑
ρ

d2
hH̃l∓(Kρ)E(±)

ρ eiKρZ1,2

H̃h±(Kρ)H̃l∓(Kρ) − V 2

−
∑

ρ

dldhV E(∓)
ρ eiKρZ1,2

H̃h±(Kρ)H̃l∓(Kρ) − V 2
= 0, (42)

∑
ρ

d2
l H̃h∓(Kρ)E(±)

ρ eiKρZ1,2

H̃l±(Kρ)H̃h∓(Kρ) − V 2

−
∑

ρ

dhdlV E(∓)
ρ eiKρZ1,2

H̃l±(Kρ)H̃h∓(Kρ) − V 2
= 0. (43)

It is easy to see that at zero pressure, when V = 0, these ABC
are transformed into the ordinary Pekar’s ABC.

V. REFLECTANCE SPECTRA

Boundary conditions (39)–(43) comprise a system of linear
equations for amplitudes of the electric field of light waves
and of polariton waves in the structure. Solution of this
system allows one to determine amplitudes of the incident
and reflected light waves in two polarizations and to calculate
reflection coefficients:

R(++)(ω) = |E(+)
i |2

|E(+)
r |2

,

R(−+)(ω) = |E(−)
i |2

|E(+)
r |2

,

where superscripts “++” and “−+” denote the reflection
coefficients in the copolarization and cross polarization. We
have carried out calculations of reflection spectra for the GaAs
QW with thickness LQW = 700 nm. Background permittivity
of the left and right semi-infinite space were chosen to be
εl = 1 and εr = 11, which correspond to the air permittivity
on the left side and to a typical semiconductor one on the right
side.

The copolarized reflectance spectra calculated in the
framework of the described model are shown in Figs. 3
and 4. Each spectrum contains intense peaks and quasiperiodic
oscillations. The peaks correspond to the anticrossing of the
photon and exciton dispersion branches, while the oscillations
are due to the interference of the excitonlike and photonlike
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FIG. 3. (Color online) Reflection spectra R(++)(ω) for the GaAs
QW with LQW = 700 nm in the spectral range of interference of the (a)
h-polariton and (b) l-polariton modes. The magnitude of the applied
pressure is given near respective curves. The spectra are shifted along
the energy axis to match their dominant features. The energy of
dominant features is taken to be zero. If P = 0, its value E ≈ 1515
meV. The dashed vertical lines allow one to demonstrate the relative
shift of the oscillations. The amplitude of spectral oscillation is
multiplied by 50.

modes The spectra of l-type polaritons are strongly shifted
to a higher energy range at pressure P > 0.1 GPa and are
not overlapped with those of h-type polaritons. Therefore,
they can be analyzed separately. As seen in Fig. 3(a), the
distance between the spectral oscillations for h polaritons
becomes larger with increasing pressure, which is a result of
the aforementioned decrease of the effective mass (see Fig. 1).
Correspondingly, the spectral oscillations for l polaritons
become denser [see Fig. 3(b)] due to the increasing mass of
the l-type excitons. The pressure dependences of masses for
h and l excitons obtained from analysis of the curvature of
dispersion branches are shown in Fig. 5.
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FIG. 4. (Color online) Reflection spectra R(++)(ω) at pressure
P > 0.3 GPa in the spectral range of the (a) h-polariton and (b)
l-polariton modes, respectively. Other notations are the same as in
Fig. 3.
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FIG. 5. Exciton masses in the GaAs crystal as functions of the
applied pressure.

At larger pressures, P � 0.3 GPa, the “stretching” or
“compressing” of the oscillations is no longer observed; see
Fig. 4.

To discuss this behavior of oscillations qualitatively, we ne-
glect the exciton-photon interaction and calculate the exciton
energy from the secular equation with the Hamiltonian (17),

det |ĤX − EI| = 0.

Let us denote � ≡ ( �
2

2Mh
− �

2

2Ml
) and � ≡ (Hεh − Hεl) =

b(εxx + εyy − 2εzz). Note that the K- linear terms of the
Hamiltonian are small in comparison with �K2,V ,�, so that
one may neglect term A3/2K in Hamiltonian (17). In this
approximation, the energy of the l and h excitons is

E± = 1
2 [(Hh± + Hl∓) ±

√
(Hh± − Hl∓)2 + 4V 2]

≈ 1
2 [(Hh± + Hl∓) ±

√
(�K2 + �)2 + 4V 2].

Note that quantities � and V linearly depend on the
pressure. At small pressure, when �K2 is of the same order as
� and V , the exciton energy essentially depends on the wave
vector, resulting in a relatively fast convergence of exciton
masses (see Fig. 5) and, correspondingly, in stretching and
compressing of the h and l oscillations, respectively. At high
pressure, � and V are large compared with �K2 and this term
can be neglected. Therefore, the convergence of the masses and
modification of the oscillations are blocked at high pressures,
as can be seen in Figs. 4 and 5.

At pressure P � 0.4 GPa, another effect appears, which is
caused by the K-linear splitting of dispersion branches already
demonstrated in Fig. 1. As seen in Fig. 4(a), the oscillations in
the h spectrum decrease in amplitude with increasing pressure.
However, at pressure above a certain critical value, Pcr, the
oscillations begin to recover, their phase being opposite to
that at low pressures. This phenomenon can be called an
“inversion” of the oscillation phase. It should be emphasized
that the amplitude of the dominant reflection peak is almost
independent of the pressure.

Analysis showed that Pcr is a function of the QW width,
LQW. It is approximately inversely proportional to LQW and,
for the GaAs QW, is fitted by dependence: Pcr = a + b/LQW

with a = −0.3 GPa, and b = 480 GPa/nm. Note that for
LQW < 400 nm, the critical pressure exceeds the ultimate
magnitude for the GaAs crystal [41,42]. Nevertheless, since the
spectral oscillations are observable in the high-quality GaAs
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FIG. 6. (Color online) Reflection spectra in cross polarization in
spectral range of interference of (a) h-polariton and (b) l-polariton
modes. Other notations are the same as in Fig. 3.

QWs with thickness up to 1 micron (see Ref. [23]), there is a
real possibility to see this effect experimentally.

The phase inversion in the l spectrum appears at higher
pressures [see Fig. 4(b)]. The reason for that is the absence of
K-linear splitting for the basic light-hole exciton states [see
Eq. (15)]. However, the admixture of the heavy-hole exciton
states at high pressures may result in the K-linear splitting and,
correspondingly, in the inversion of the oscillations phase. A
detailed discussion of the origin of phase inversion is presented
in the next section.

Let us consider the cross-polarized components of the h and
l spectra calculated for the same QW (Fig. 6). Their amplitudes
are determined by nondiagonal components of the permittivity
tensor [see Eqs. (27), (30), and (37)], which, in turn, is
determined by the perturbation V ; see Eq. (17). The amplitude
of spectral oscillations rapidly decreases with increasing
photon energy in a few meV. Note that in copolarization, the
oscillation amplitude does not decrease noticeably in the same
spectral range; see Fig. 3. This difference is due to a rapid
divergence of the h- and l-dispersion branches with the wave
vector increase and, correspondingly, to a rapid decrease of
mixing of the light-hole and heavy-hole excitons.

The inversion of the phase of the oscillations is not observed
in the cross-polarized h spectrum; see Fig. 6(a). The reason is
that these spectra are caused by the strain-induced admixture of
the light-hole excitons whose Hamiltonian does not contain K-
linear terms [see Eq. (17)]. On the contrary, the cross-polarized
l spectra do reveal the phase inversion effect [Fig. 6(b)] at
pressures even lower than that for the copolarized l spectra
[cf. with Fig. 4(b)]. This is due to the admixture of heavy-hole
excitons, which are K-linearly split.

To conclude this section, we should note that even at
the maximum possible pressure P = 1 GPa, the spectral
amplitude of copolarized and cross-polarized oscillations is
comparable in magnitude only in a small spectral range
of about 0.5 meV above the exciton transition. At higher
energies, the amplitudes of the cross-polarized oscillations
become negligibly small. Thus, the effect of the circular
polarizations’ conversion of incident light is negligible for
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the rest of the spectrum. Therefore, this conversion effect is no
longer considered in the next section.

VI. STRESS-INDUCED GYROTROPY

It follows from relation (32) that the uniaxial stress leads
not only to birefringence, but also to gyrotropy. The gyrotropy
is due to the K-linear splitting of the exciton states with
positive and negative projections of the angular momentum
on the Z axis (see, e.g., Refs. [10,12,13]). This splitting is
described by expression (15). It should be emphasized that the
necessary (though not sufficient) conditions for the appearance
of gyrotropy are the lack of inversion symmetry and the
presence of spatial dispersion of excitons [33].

The gyrotropy manifests itself in the appearance of elliptic-
ity of the reflected light at the linearly and circularly polarized
incident light. The ellipticity can be described by the ratio of
major and minor axes of the polarization ellipse (Eb and Es ,
respectively) and by the angle χ between the X axis and the
direction of the major ellipse axis (see, e.g., [34]). The angle
χ is determined by the expression

χ = arctan

[
−A + √

B2 − 4AC

2A

]
. (44)

Here, A = ImE2 · ReE1 − ReE2 · ImE1, B = (ReE2)2 −
(ImE1)2 + (ImE2)2 − (ReE1)2, C = ImE1 · ReE2 − ReE1 ·
ImE2, where E1 = E(+)

r + E(−)
r and E2 = E(+)

r − E(−)
r . The

ratio of major and minor axes is

e = ξ
|Ex cos(χ ) + i · Ey sin(χ )|

| − Ex sin(χ ) + i · Ey cos(χ )| , (45)

where ξ = 1 for |E(+)
r |/|E(−)

r | > 1 (right-hand elliptical polar-
ization) and ξ = −1 for |E(+)

r |/|E(−)
r | < 1 (left-hand elliptical

polarization).
We have calculated the spectra of e(ω) and χ (ω) for h

and l polaritons at pressure P = 0.8 GPa (Fig. 7). As seen, the
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FIG. 7. (Color online) The spectra of (a), (b) the ellipticity e(ω)
and (c), (d) angle χ (ω) of the reflected light. Calculations are done for
the GaAs QW with LQW = 700 nm at P = 0.8 GPa for the spectral
range of h- and l-polariton modes (red and blue curves, respectively).
The incident light has the right circular polarization.

spectrum of e(ω) consists of a set of oscillations superimposed
on the smoothly varying background. The magnitude of e(ω)
significantly differs from unity only in the range of the
anticrossing of exciton and photon dispersion curves. This is
caused by the strong mixing of the photonlike and excitonlike
modes in this range, which leads to a K-linear splitting of
the photonlike branch. The ellipticity above the anticrossing
is caused by the K-linear splitting only of the excitonlike
branches.

Quantity e(ω) weakly oscillates in this spectral range about
+1. The angle χ oscillates about zero for the h polariton and
about π/2 for the l polariton. This means that the major axes
of these excitons are perpendicular to each other. They swing
about the direction of applied pressure (for the h polariton) and
perpendicular to it (for the l polariton) as the light frequency
is varied. The period of these oscillations coincides with that
in the reflection spectra.

VII. DISCUSSION

In this section, we discuss in more detail specific mech-
anisms of the phase inversion of spectral oscillations. For
simplicity, we consider the light-hole exciton; we restrict
ourselves by the consideration of the heavy-hole exciton
only. In this case, the Maxwell’s boundary conditions and
the Pekar’s ABC are reduced to a simpler form described in
Ref. [30]. We illustrate the mechanism of the phase inversion
by calculations of the reflection spectra in framework of the
multipath interference model described, e.g., in Ref. [34].

Let a circularly polarized light wave Ei fall onto the left
boundary of a QW. This wave is partially reflected (wave
E(0)

r ) and partially penetrates into the QW. In the QW layer,
the excitonlike (Ex) and photonlike (Ep) polariton waves
propagate in the forward direction along the Z axis. Amplitudes
of waves E(0)

r , Ex , and Ep are determined from the boundary
conditions (B1). When the excitonlike wave Ex reaches the
right interface of QW, it partially penetrates to the right barrier
(wave Et

x) and partially is reflected. After this reflection,
two reflected waves, i.e., the excitonlike wave (Exx) and the
photonlike wave (Exp), already propagate in the backward
direction. Amplitudes of waves Et

x , Exx , and Exp are also
determined from the boundary conditions at the right interface.
Similar processes occur with the photonlike wave Ep at the
right boundary. Thus, four waves propagate from the right
interface of the QW in the negative direction: Exx , Exp, Epp,
and Epx . Similarly, the waves Exx , Exp, Epp, and Epx can
partially penetrate into the left barrier and partially be reflected
from the left barrier into the QW. After this reflection, eight
waves propagate in the QW layer in the forward direction.
These waves start a new cycle, as described above.

Thus, an infinite number of waves are generated in
the QW during the propagation of light. The electric-field
amplitudes of these waves can be expressed through Ei if
the amplitude coefficients of reflection and transmission are
known. However, it is technically difficult to sum all the
possible contributions to the reflection because of the large
number of waves created at each interface. However, our
calculations show that to obtain a satisfactory agreement with
the results obtained by the transfer-matrix method, it is enough
to summarize a few main contributions into the reflected
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FIG. 8. (Color online) Reflection spectra calculated at P = 0.
Solid curve is |Er0 + ErP + ErX|2, rare dotted curve is |Er0 + ErP +
ErX + Erxp + Erpx + ErxpP + ErxpX + ErpxP + ErpxX|2, dash-
dotted curve is |Er0 + ErX + ErP + Erxp + Erpx |2, and the quick
dotted line is the calculation method of transfer matrices. The
amplitude of incident wave |Ei | = 1.

wave. Waves with similar subscripts can be summarized as
an infinite geometric sequence. This allows one to find ErX,
ErxpX, ErxpP , ErpxX, and ErpxP , where capital subscripts

indicate summation of an infinite number of similar waves,
e.g., ErxpX = Erxpxx + Erxpxxxx + · · · .

Results of the calculation are shown in Fig. 8 for pressure
P = 0. If only photonic waves ErP and excitonic waves ErX

are taken into account, the calculated spectrum contains the
main peak and almost nonoscillating background (solid line
in the figure). Interference of waves Erxp and Erpx provides
polariton oscillations, which spectral positions coincide with
those calculated by the transfer-matrix method. Hence, the
spectral oscillations are the result of the interference of the
polaritonic waves, which propagate as photonlike waves in one
direction and as excitonlike waves in the opposite direction,
that is, Erxp or Erpx . That is the reason why the energy
distance between the oscillation peaks is approximately two
times larger then the distance between the neighboring energy
levels of the exciton size quantization [23]. Extending the
consideration to the waves ErxpP , ErxpX, ErpxP , and ErpxX

improves agreement with the exact calculation, but does not
provide any additional spectral features.

Upon application of pressure, the waves Erxp and Erpx

are no longer equivalent: their amplitudes remain roughly
the same, but the phases are different. Let us denote
�Kx = (Kx+ + Kx−)/2,Kx0 = (Kx+ − Kx−)/2, and Kp+ ≈
−Kp− ≈ Kp0, where Kx0 and Kp0 are the wave vectors at zero
pressure. Note that wave vectors Kx− and Kp− are negative.
The amplitude reflection coefficient, taking into account the
major contributions, is

r = Er0 + ErP + ErX + Erxp + Erpx

Ei

= r00 + t−p0r
+−
pp t+0pei(Kp−+Kp+)LQW

1 − r−+
pp r+−

pp ei(Kp−+Kp+)LQW

+ t−x0r
+−
xx t+0xe

i(Kx−+Kx+)LQW

1 − r−+
xx r+−

xx ei(Kx−+Kx+)LQW
+ t−p0r

+−
xp t+0xe

i(Kx++Kp−)LQW + t−x0r
+−
px t+0pei(Kx−+Kp+)LQW

≈ r00 + AP e2iKp0LQW

1 − BP e2iKp0LQW
+ Axe

2iKx0LQW

1 − BXe2iKx0LQW
+ 2Axpei(Kx0+Kp0)LQW cos

�KxLQW

2
, (46)

where conversion coefficients r00, t+0p, t+0x are given in Ap-
pendix X [see Eq. (B2)], and the other coefficients are
calculated in a similar way.

Equation (46) allows one to understand the effect of the
inversion of the oscillation phase. When the last term is
zero, i.e., cos(�KxLQW/2) = 0, the oscillations disappear. It
follows that the critical pressure is

Pcr = π�
2

2mh(|j |C6 + |j |3C8)(S11 − S12)LQW
,

where j = 3/2, and other notations are the same as in Eqs. (11)
and (13). Below this pressure, cos(�KxLQW/2) > 0, the last
term in Eq. (46) is positive and the oscillation phase has the
same sign. Above it, cos(�KxLQW/2) < 0, and the sign is
opposite.

The described effect of oscillation suppression at Pcr

resembles the effect of suppression of the backscattering of
carriers in two-dimensional (2D) topological insulators [15].
Indeed, the forward and backward propagation of carriers
in the insulators gives rise to the destructive interference

of their wave functions, which results in the suppression
of backscattering. Similarly, the destructive interference of
polaritonic waves in QWs almost totally suppresses the
excitonlike polariton contribution into the reflection spectrum
at Pcr.

VIII. CONCLUSION

We developed a theory of the interference of polariton
modes in a heterostructure with a wide quantum well, subject
to uniaxial stress perpendicular to the growth axis. The model
includes the photon-exciton interaction and the strain-induced
effects described by the Bir-Pikus Hamiltonian. In particular,
the K-linear terms appearing in the hole Hamiltonian due to
the strain are taken into account.

The first one is the convergence of masses of the heavy-hole
and light-hole excitons with increasing pressure. The analysis
shows that this effect is due to mixing of these excitons, which
is described by the Hamiltonian of Bir and Pikus.

Another effect of deformation is the suppression of oscil-
lations in the spectra of the circularly copolarized reflection
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at some critical pressure and their recovery when the pressure
increases further. This effect is accompanied by the inversion
of the oscillation phase. The phenomenon is a direct conse-
quence of a more general effect of the K-linear splitting of
the valence band �8 that is induced in crystals without the
inversion symmetry by a uniaxial stress.

The analysis shows that in spectra of the circularly cross-
polarized reflection, the spectral oscillations can also be
observed. The amplitude of these oscillations increases with
the increasing pressure. However, even at the highest possible
pressure, the amplitude of these oscillations is much smaller
than that of oscillations in the copolarized reflection. The effect
of phase inversion for light-hole excitons also can be observed
due to the mixing with the heavy-hole excitons, but it occurs
at higher pressures.

The estimates made in this paper show that the considered
effects can be experimentally observed in heterostructures
with relatively wide GaAs/AlGaAs quantum wells at sub-
critical pressures P < 1 GPa, at which the crystal is not yet
damaged.
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APPENDIX A

According to Eqs. (10) and (11), the uniaxial stress gives
rise to k-linear terms in the Hamiltonians of both electrons and
holes. As a consequence, the terms that are linearly dependent
on the wave vector K appear in the exciton Hamiltonian.
To find these terms, one should go from operators k̂α to the
operators K̂ and p̂α by means of substitution of expressions (1)
in Eqs. (10) and (11). This substitution gives rise to many terms
in the exciton Hamiltonian. We consider only the terms linearly
dependent on K̂z. Other terms contain operators p̂x,p̂y,p̂z,
which mix 1s- and np-excitonic states and lead to a shift of
the excitonic spectrum as a whole. Since this shift is much
less than the shift of the excitonic spectrum described by
the Bir-Pikus Hamiltonian (9), we ignore it in the further
analysis.

Among the terms linearly dependent on k̂z, the first and
the last terms in Eq. (11) can be excluded from consideration
because k̂z is present only in terms containing Jx , Jy , and

Vz. These terms describe the mixing of the light-hole and
heavy-hole excitons, whose strength is inversely proportional
to the splitting of these excitons described by Hε [see Eq. (9)].
For the characteristic magnitudes of the exciton wave vector
K considered in our work, Hε � H (εk)

v , therefore such mixing
has little effect on the energy of exciton, and we neglect it. We
also do not consider the operator described by Eq. (10), since
constants C3 and C ′

3 are much less than C6 and C8 entering
Eq. (11).

Besides the above terms, there are k-linear contributions
to the hole Hamiltonian which are independent of strain [24].
These terms mix states of the heavy and light holes, as well
as the ground and excited states of the exciton. Our analysis
shows that they do not result in k-linear splitting of 1s-exciton
states. Material constants determining the magnitude of the
mixing are small for most crystals, therefore these terms are
not considered in the present work.

APPENDIX B

The electric-field amplitudes, Ei , Eri , Ex , and Ep, are
related to each other by the Maxwell’s and Pekar’s boundary
conditions:

Ei + Eri = Ex + Ep,

n0Ei − n0Eri = nx+Ex + np+Ep,

χ (Kx+,ω)Ex + χ (Kp+,ω)Ep = 0, (B1)

where

χ (Kp,x+) = ε0�
2ωLT

HXh + Hεh + A3/2Kp,x±
.

From these conditions, we find the amplitude coefficients
for transmission and reflection:

r00 = Eri

Ei

= −np+ + α+
+nx+ + (1 − α+

+)n0

np+ − α+
+nx+ + (1 − α+

+)n0
,

t+0p = Ep

Ei

= 2n0

np+ − α+
+nx+ + (1 − α+

+)n0
,

t+0x = Ex

Ei

= −2α+
+n0

np+ − α+
+nx+ + (1 − α+

+)n0
, (B2)

where

α+
+ = χ (Kp+,ω)

χ (Kx+,ω)
.

Here, to simplify the notation of coefficients, the plus and
minus signs indicating the direction of the wave propagation
are transferred from the subscripts to the superscripts.
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