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Spin-flip Raman scattering of the �-X mixed exciton in indirect band gap
(In,Al)As/AlAs quantum dots
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The band structure of type-I (In,Al)As/AlAs quantum dots with band gap energy exceeding 1.63 eV is indirect
in momentum space, leading to long-lived exciton states with potential applications in quantum information.
Optical access to these excitons is provided by mixing of the �- and X-conduction-band valleys, for which their
spins may be oriented by resonant spin-flip Raman scattering. This access is used to study the exciton spin-level
structure by accurately measuring the anisotropic hole and isotropic electron g factors. The spin-flip mechanisms
for the indirect exciton and its constituents as well as the underlying optical selection rules are determined. The
spin-flip intensity is a reliable measure of the strength of �-X-valley mixing, as evidenced by both experiment
and theory.
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I. INTRODUCTION

While semiconductor quantum dots (QDs) have been
established as efficient light emitters and detectors in opto-
electronics [1], other applications are only prospective so far.
Particular examples are implementations in spin electronics
and quantum information technologies. For these purposes,
the QDs are typically loaded with resident carriers whose spins
are well protected from relaxation by the three-dimensional
confinement [2,3]. In this context, exciton complexes are
often used for spin manipulation [4,5], but are considered
less promising as information carriers. This reservation is
primarily related to the limited exciton lifetime of about
a nanosecond [6], which is too short to provide sufficient
coherent manipulation [7]. This situation may change if the
exciton lifetime could be extended significantly.

Interesting but technologically challenging in this respect
is the placement of QDs in photonic crystals, in which their
radiative decay could be suppressed [8,9]. As an alternative
to the bright excitons, dark excitons with lifetimes in the
μs range may be used as information carriers; this, however,
complicates the direct optical manipulation, but manipulation
through the biexciton state can be realized instead [10].
Another possibility is the realization of QDs with a band gap
that is indirect in real or momentum space. Here, we focus
on self-assembled (In,Al)As/AlAs QDs, in which a crossover
of the lowest conduction-band states between the � and X

valley occurs [11], depending on the dot size. This crossover
is reflected by the lifetime of the corresponding exciton, which
is formed by a �-valley heavy hole and a �- or an X-valley
electron. Both carriers are spatially located within the QD
(type-I band alignment). Due to the valley mixing in the
conduction band, the lifetime of that exciton can be as long as
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hundreds of μs [12], which may allow sufficient manipulation
within this time span.

The study and manipulation of an X-valley electron and,
in turn, an exciton that is indirect in momentum space by
optical techniques poses, in general, a significant problem: the
associated optical transitions are forbidden in bulk crystals
and are only weakly allowed in QDs due to breaking of the
translational symmetry. This limitation may be bypassed by
utilizing the state mixing of the direct and indirect conduction-
band minima in the (In,Al)As/AlAs QDs. One appealing
optical technique, i.e., resonant spin-flip Raman scattering
(SFRS), may then allow one to study the spin properties of
the indirect exciton. SFRS spectroscopy, however, is not only
a powerful tool to probe spins by measuring g factors, but
is also able to exploit spin interactions to orient spins. It
has been successfully applied to quantum wells [13,14] and
nanocrystals [15], and has been suggested for direct-gap QD
studies [16].

In this paper, we demonstrate that excitons that are indirect
in momentum space can be addressed optically by SFRS
in an ensemble of undoped (In,Al)As/AlAs QDs. We use
SFRS to characterize the �-X-valley electron state mixing.
It provides access to the fine structure of the indirect exciton
and allows us to measure the g-factor tensor components
of the indirect exciton and its constituents. The resonant
SFRS further enables the preparation of their spin states
as well as the determination of the spin-flip mechanisms
and optical selection rules. The electron spin-flip energy and
efficiency are theoretically modeled by considering an acoustic
phonon scattering process including the exciton lifetimes and
�-X-mixing parameters.

The studied structure contains 20 layers of undoped
(In,Al)As/AlAs QDs grown by molecular-beam epitaxy on a
(001)-oriented GaAs substrate. The density of the lens-shaped
QDs with an average diameter of 15 nm and height of 4 nm is
about 3 × 1010 cm−2 in each layer. The QD layers are separated
from each other by 20-nm-thick AlAs barriers, which prevent
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an electronic coupling between QDs in adjacent layers. For
the SFRS measurements, the sample is mounted strain free on
a rotatable stage. It is immersed in pumped liquid helium
at a temperature of T = 1.8 K and subjected to magnetic
fields up to B = 10 T. The scattered light is analyzed by
a 1-m focal-length double monochromator equipped with a
cooled GaAs photomultiplier providing a spectral resolution
of about 10 μeV. For excitation, a tunable continuous-wave
Ti:sapphire laser is used with a power density at the sample
of P � 15 W/cm2. The SFRS spectra are measured in the
backscattering geometry with circular or linear polarization
for the incident and scattered light [14]. The angle θ between
the magnetic field B and the QD growth axis z is varied between
0◦ (Faraday geometry) and 90◦ (Voigt geometry).

II. PHOTOLUMINESCENCE OF DIRECT AND INDIRECT
BAND GAP QUANTUM DOTS

Dispersion in dot size, shape, and composition within the
ensemble leads to formation of (In,Al)As/AlAs QDs with
different band alignments, as shown in Fig. 1(a). The electron
(e) ground state changes from the � to the X valley with
decreasing dot diameter, while the heavy-hole (hh) ground
state remains at the � point. This corresponds to a change
from a direct to an indirect band gap in momentum space
while type-I band alignment is preserved [11,17]: the lowest
electron level arises from the X valley in small-diameter QDs
with strong quantum confinement along the growth direction.
With increasing dot diameter, the �-valley level shifts to lower
energies more rapidly than the X level, due to the smaller
effective mass of �-valley electrons [18]. For a particular
dot diameter, the �- and X-electron levels intersect. The

FIG. 1. (Color online) (a) Band alignment in (In,Al)As/AlAs
QDs as a function of dot diameter for the valence (VB) and conduction
(CB) bands. The energy difference between �- and X-electron states
is denoted by �E�X . For a particular diameter, �-X crossover
occurs, corresponding to a gap energy E�X . (b) The PL spectrum
of an (In,Al)As/AlAs QD ensemble at T = 1.8 K; excitation photon
energy Eexc = 2.33 eV. The exciton recombination times τ across the
ensemble are shown by open diamonds (right scale). (c) Resonantly
excited PL of direct and indirect excitons around the �-X crossover.
The laser photon energies are marked by arrows. (d) Difference
between laser energy and the peak position of the direct (circles)
and indirect (triangles) exciton PL.

corresponding crossing energy is marked in Fig. 1(a) by
E�X. Note that the quantum confinement and strain split the
degenerate X-electron states into Xxy and Xz states with the
valley main axis being perpendicular and parallel to the z axis,
respectively. The Xxy state has lower energy [17], and we refer
to it as the X-valley electron state in the following.

The coexistence of QDs with mainly direct and indirect
band gaps within the ensemble is evidenced by the spectral
dependence of the radiative exciton recombination times τ . As
shown in Fig. 1(b), the indirect QDs are characterized by long
decay times in the μs range due to the small exciton oscillator
strength [12]. On the contrary, in the direct band gap dots, the
excitons recombine within a few nanoseconds. In the �-X-
crossover range, the X-valley conduction-band component in
the exciton wave function gradually increases, thus making the
exciton more indirect and extending its lifetime. The crossing
energy of the � and X levels is spread over the 1.6–1.7 eV
energy range due to QD parameter variations.

Further insight into the �-X crossing can be obtained from
photoluminescence (PL) under resonant excitation, which
selects only a fraction of dots in the ensemble, causing
line narrowing due to reduced inhomogeneous broadening.
One can see in Fig. 1(c) that for low-energy excitation with
Eexc < E�X, only the largest dots hosting direct excitons are
excited, thus resulting in a spectrally narrow PL line. For
excitation energies exceeding E�X, an additional broad PL
line appears, which originates from indirect exciton emission.
The separation �E of the emission line maximum from
the varying laser photon energy is plotted in Fig. 1(d). The
direct excitons (circles) closely follow Eexc with a small
shift �E = (2.2 ± 0.1) meV. This shift arises from excitation
through an acoustic phonon, which is most efficient for the
phonon wavelength matching the dot size. On the other hand,
the shift of the indirect exciton PL line (triangles) increases
markedly and linearly with Eexc, as the recombination energy
remains almost fixed. The meeting point of both shifts at
1.633 eV occurs at E�X, indicated by the dashed line.

III. SPIN-LEVEL STRUCTURE OF INDIRECT EXCITON

Now, let us determine the exciton spin-level structure by
SFRS. Raman spectra recorded at magnetic fields of 4 and
5 T in a tilted geometry (θ = 75◦), essential for the symmetry
breaking required for spin flips, are shown in Fig. 2(a) for
excitation at the �-X-crossover energy. Three SFRS lines
corresponding to the heavy hole, X-valley electron and indirect
exciton (Ex) are observed in the Stokes and anti-Stokes
regions. Their spin-flip Raman shifts �ESF correspond to
transitions between Zeeman sublevels split by |g|μBB with
the Bohr magneton μB. The magnetic field dependences of
the Raman shifts are depicted in Fig. 2(b). Lines represent
linear fits yielding g factors of |gθ

e | = 2.00 ± 0.01, |gθ
Ex| =

1.24 ± 0.02, and |gθ
hh| = 0.75 ± 0.01 for θ = 75◦. Note that

the full width at half maximum taken from the Gaussian fit of
the hh-SFRS line is about 20% larger than that for the electron,
which indicates a broader heavy-hole g-factor dispersion.

The angular dependence of the g factors at B = 5 T
is demonstrated in Fig. 3(a). The shift of the e-SFRS line
is isotropic, ge ≡ g

‖
e = g⊥

e , with ge = 2.00 ± 0.01. The g-
factor isotropy and magnitude are characteristic for X-valley
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FIG. 2. (Color online) (a) Stokes and anti-Stokes SFRS spectra
for magnetic fields of 4 and 5 T in tilted geometry with crossed
linear polarization. Resonant excitation close to the �-X crossing at
1.636 eV. (b) Dependences of Raman shifts on the magnetic field;
lines are linear fits.

electrons in indirect band gap structures [19,20]. Due to the
large band gap at the X point (≈4.8 eV between conduction
and valence band), the spin-orbit contribution to the electron
g factor is vanishingly small [21]. As a result, the measured
value coincides with the free-electron Landé factor.

The angular-dependent g factors in Fig. 3(a) are assigned
to the heavy hole and indirect exciton. The hh g factor
for a particular field direction is determined by its tensor
components along and normal to the growth direction through
ghh(θ ) = [(g‖

hh cos θ )2 + (g⊥
hh sin θ )2]1/2. As seen from the cor-

responding fit (dashed line), ghh(θ ) describes well the exper-
imental data with g

‖
hh = 2.42 ± 0.05 and g⊥

hh = 0.03 ± 0.05.
The small transverse hh g factor indicates a weak mixing of
the light hole (lh) and heavy hole at the � point compared to,
e.g., (In,Ga)As/GaAs QDs [22].

Bearing in mind the isotropy of ge and the positive sign
of g

‖
hh, we can evaluate the indirect exciton g factor from

gEx(θ ) = ghh(θ ) − ge. The calculated dependence for gEx(θ )
shown by the solid line in Fig. 3(a) is in good accord
with the data. The following exciton g-factor values are
obtained: g

‖
Ex = 0.43 ± 0.08 and g⊥

Ex = −1.95 ± 0.08. The
positive sign of g

‖
Ex is supported by the magnetic-field-induced

circular polarization of the QD photoluminescence measured
in Faraday geometry. The circular polarization degree defined
as ρc = (I+ − I−)/(I+ + I−) is evaluated from the intensities
I+ and I− of the σ+ and σ− polarized exciton emission,

FIG. 3. (Color online) (a) g-factor angle dependence for heavy
hole, X-valley electron and indirect exciton. Dashed line is the fit for
ghh(θ ), solid line is the calculation for gEx(θ ); see text. Note that the
points gEx(15◦) and gEx(45◦) are evaluated from the measured e and hh
g factors. (b) Magnetic-field-induced circular polarization degree of
the QD photoluminescence measured in Faraday geometry at different
magnetic fields and a laser power of 1 mW/cm2; Eexc = 2.33 eV,
T = 1.8 K. (c) Calculated energies of angle-dependent bright and
dark exciton states at the �-X-crossing point, B = 5 T. The center of
gravity is taken as zero.

respectively. A negative ρc, given for I− > I+, means that
the exciton state | − 1〉 is lower in energy than that of the
jz = +1 exciton and, in turn, the longitudinal exciton g factor
is positive.

The spectral dependence of ρc measured for the studied
(In,Al)As/AlAs QDs at three different magnetic fields is shown
in Fig. 3(b). One can see that the polarization degree is
vanishingly small at zero magnetic field and increases with
growing field strength. It changes its sign across the emission
band of the ensemble consisting of direct and indirect band gap
QDs. In the case of direct QDs at low energies (<1.62 eV),
ρc is negative, which evidences that the g factor of the direct
excitons is positive, g‖

Ex,�
> 0.

In the spectral range of indirect band gap QDs (>1.67 eV),
ρc becomes positive. Here, the longitudinal g factor of the
indirect exciton is negative, g‖

Ex,X
< 0. Due to the isotropic

X-valley electron g factor, g
‖
e = ge = 2.00, the relation

|g‖
hh| < |ge| is valid for E > 1.67 eV. Keeping in mind that

at 1.636 eV, |g‖
hh| = 2.42, we conjecture that the heavy-hole g

factor decreases with increasing band gap energy.
In the �-X-crossing region, marked by the dashed area in

Fig. 3(b), ρc is provided by the emission of the mixed excitons.
The polarization degree in this region changes with increasing
energy from the negative values, being characteristic for the
direct excitons, to the positive values of the indirect excitons.
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At the energy of 1.636 eV, ρc < 0, which corresponds to a
positive g factor and is in agreement with the SFRS results
measured in the �-X-mixing regime.

In the following, the exciton fine structure will be calculated
as a function of the tilt angle. Assuming a tilted geometry
with θ �= 0◦, the in-plane component Bx = B sin θ of the
magnetic field B = B(sin θ,0, cos θ ) induces a mixing of
the electron spin basis eigenstates. Since the light-hole and
heavy-hole states at the � point are not mixed and QD shape
anisotropies are negligible, the symmetry of the QDs is, to a
good approximation, D2d . The corresponding magnetic-field-
dependent Hamiltonian takes the form

ĤB = 1
2μB(g‖

e cos θ σzBz + g⊥
e sin θσxBx)

+ g0μB
(
κKLjz,hhBz + qKLj 3

z,hhBz

)
. (1)

Here, g0 is the free-electron g factor, σx,z are Pauli matrices,
and jz,hh is the z component of the hh angular momentum
operator. The non-Zeeman term of the heavy hole has the
symmetry of the Kohn-Luttinger Hamiltonian [23,24]. κKL

and qKL are the Kohn-Luttinger parameters. Only the second
electron Zeeman term introduces an off-diagonal coupling
between the electron spin basis eigenstates | + 1/2〉 = |↑〉
and | − 1/2〉 = |↓〉. The spin states are then superpositions
of the type |	±

e 〉 = α| ± 1/2〉 ± β| ∓ 1/2〉 with the mixing
coefficients α = cos(θ/2) and β = sin(θ/2). These spin states
are used to describe both the �- and X-valley electron. The
heavy-hole spin states are given by |	+

hh〉 = | + 3/2〉 = |⇑〉
and |	−

hh〉 = | − 3/2〉 = |⇓〉. The confined exciton states can
be factorized into the product of the heavy-hole and electron
ones: |	±,±

Ex 〉 = |	±
hh〉 · |	±

e 〉. As an example, the |	+,−
Ex 〉

exciton consists of a jz,hh = +3/2 heavy hole and an electron
in the state |	−

e 〉.
The energies of the indirect exciton, which are calculated

on the basis of Eq. (1), are plotted in Fig. 3(c). They are given
by

E
+,+
Ex = −E

−,−
Ex = 1

2μBB(ge + g∗
hh), (2)

E
+,−
Ex = −E

−,+
Ex = 1

2μBB(ge − g∗
hh), (3)

with g∗
hh = 3g0 cos θ (κKL + 9

4qKL). An isotropic electron g

factor of ge = 2 is used, and the Kohn-Luttinger parameters are
estimated [25] to κKL = 0.317 and qKL = 0.033. The angular
dependence demonstrates a crossing of the exciton states
|	+,−

Ex 〉 and |	−,+
Ex 〉 at an angle of about 30◦. Here, the exciton-

SFRS shift vanishes. Also, at this crossing angle, the exciton
g factor changes its sign. In the Voigt geometry, the dark and
bright exciton states are fully mixed. As evaluated from the
simulated dependence EEx(θ ), all three SFRS lines should be
observable at θ ≈ 75◦, which is confirmed experimentally by
the observation of the three SFRS processes; see Fig. 2(a).

IV. MECHANISMS AND EFFICIENCIES OF SPIN-FLIP
RAMAN SCATTERING PROCESSES

Now, we study the mechanisms and efficiencies of the
spin-flip processes induced by the resonant Raman scattering.
As depicted in Fig. 4 for a close-to-Faraday geometry with
θ = 15◦ [27], the hh-SFRS is observed for crossed circular

FIG. 4. (Color online) Cross-circularly and cocircularly polar-
ized SFRS spectra measured at B = 4 T and Eexc = 1.644 eV.

polarizations in Stokes and anti-Stokes regions, while the
e-SFRS line, having a smaller Raman shift, is present in
copolarized configurations. These polarization properties of
the SFRS lines define the optical selection rules. Considering
the low-energetic (Stokes) electron spin-flip exemplarily (see
Fig. 5), σ− polarized light prepares the exciton in the
state | ⇓〉(α | ↑〉 + β |↓〉) with α > β. An acoustic phonon
with energy �ωph = geμBB reverses the electron spin state;
hence, the intermediate scattering state is the indirect exciton
|⇓〉(α |↓〉 − β |↑〉). The �-X-valley mixing and particularly
the mixed electron spin state in the tilted geometry enable the
final exciton recombination yielding σ− polarized light. The
resonant SFRS is able to initialize spins, and by using incident
light with opposite circular polarization, we can controllably
switch from the electron to the hh spin-flip process, which
is also mediated by an acoustic phonon. The efficiency of the
SFRS-based manipulation of the electron and hole spins for the
excitation at the �-X-crossing point can be evaluated to about
20% from comparison with the quantum yield of the resonant

FIG. 5. (Color online) Schemes of the SFRS Stokes processes.
The curved lines represent the incident and outgoing light, the
tilted arrows indicate the mixed electron spin states, and the carriers
participating in the spin-flip processes are shown in blue. Acoustic
phonon energy �ω′

ph is equal to ghhμBB.
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FIG. 6. (Color online) The e- and hh-SFRS resonance profiles as
measure of the spin-flip scattering efficiencies; B = 5 T, T = 1.8 K,
θ = 75◦. The red curve represents the theoretically modeled e-SFRS
efficiency based on Eq. (9).

PL [28]. It strongly depends on QD ensemble parameters and
the degree of �-X mixing, as will be discussed below.

The exciton spin flip involves both bright exciton states
and requires simultaneous reversals of the electron and hole
spins, as demonstrated in Fig. 5, either due to one-phonon or
two-phonon processes [29,30]. In the one-phonon process, the
simultaneous flip would occur via the heavy- and light-hole-
exciton mixing owing to the interplay of exchange interactions
and lattice deformations. The two-phonon exciton spin flip
is a double-quantum transition with a virtual intermediate
state, which does not require exchange interaction. Hence,
the spin of the indirect exciton is very likely flipped by the
two-phonon process, while the one-phonon process is less
probable due to the weak hh-lh mixing. Note that in contrast
to direct-gap semiconductors where the exchange constants
are contributed by both short- and long-range exchange
interactions [31,32], for the long-lived indirect excitons only
the short-range exchange interaction is important. The one-
phonon process would then be mediated by the short-range
exchange interaction.

The intensities of the e- and hh-SFRS lines that characterize
the efficiencies of the Raman scattering processes are plotted
in Fig. 6 as the laser photon energy Eexc is tuned across the
QD ensemble. The spectral profile of the hh-SFRS intensity is
much broader than that for the electron, and has a maximum at
about 1.680 eV. However, its width is narrower than that of the
ensemble PL spectrum. The profile can be explained by Raman
scattering involving the direct exciton state. The spectral
density of QDs shapes the low-energy side of the profile.
The decrease at the high-energy side is due to shortening
of the direct exciton lifetime caused by electron scattering
from the � to the X valley. This process becomes efficient
when the energy of the � valley exceeds that of the X valley
by the longitudinal-optical phonon energy, which is 30 meV
for InAs and 49 meV for AlAs phonons [33].

The X-valley electron SFRS intensity, shown by the open
circles, has a sharp maximum at Emax = 1.633 eV, which is
the crossing energy E�X of the �- and X-electron valleys.
Qualitatively, this can be understood by taking into account
that one-photon excitation of a pure indirect exciton is

forbidden, but can be achieved by mixing the direct exciton
with the indirect one. This admixture is provided by mixing of
the � and X electrons. The X-valley electron SFRS intensity
is expected to be maximum when the � and X valleys are in
resonance.

For an in-depth understanding of the SFRS process involv-
ing the �-X mixed exciton states, we propose a model to
calculate the efficiency of the e-SFRS process and its Raman
spectrum. We consider the QDs as an ensemble of two-level
systems with wave function

	 = C�|�〉 + CX|X〉. (4)

Here, the coefficients carry information about the ensemble
(described later), and |q〉 (q = �,X) are two orthogonormal-
ized basis states in an individual two-level quantum system
characterized by the unperturbed eigenenergies Eq . In the
regime of �-X mixed states, we consider a low-lying level
with the energy

E− = E� + EX

2
− 1

2

√
(E� − EX)2 + 4V 2

�X,

where the coefficients C−
q are given by

|C−
� |2 = 1

2

(
1 − �√

�2 + δ2

)
,

|C−
X |2 = 1

2

(
1 + �√

�2 + δ2

)
.

Here, � ≡ �E�X = E� − EX, and δ = 2|V�X| is the modulus
of the matrix element of the coupling between the states |�〉
and |X〉 due to their mixing in an individual quantum system.
For the high-lying level with the energy

E+ = E� + EX

2
+ 1

2

√
(E� − EX)2 + 4V 2

�X,

the coefficients C+
q read

|C+
� |2 = 1

2

(
1 + �√

�2 + δ2

)
,

|C+
X |2 = 1

2

(
1 − �√

�2 + δ2

)
.

The g factor of this two-level quantum system is defined by

g± ≡ g(�) = g
�
|C±

� |2 + g
X
|C±

X |2, (5)

where g
�

and g
X

are the single-valley g factors. The absence
of a further e line in the SFRS spectrum of Fig. 2(a) suggests
that the value of g

�
in the studied dot structures is small and

hereafter we set it equal to zero for simplicity. One could
account in the theoretical model for a small but finite g

�

value. It would not significantly change the calculation results
presented here, however, the equations would become rather
bulky. In the following, among the two split states, we only
consider the one with |CX| > |C�| because the other state does
not contribute notably to the e-SFRS line in Figs. 2(a) and 4.

For a resonant three-step process, including (i) photon
absorption expressed by the incident photon energy �ωi =
Eexc, (ii) acoustic phonon-induced spin flip, and (iii) emission
of a secondary photon with energy �ωf , the scattering intensity
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takes the form

Isc ∝ Ii Wem τlj̄ Wsf τlj Wabs. (6)

Here, Ii is the intensity of the incident light, j is the exciton
spin with j̄ = −j , and τlj is the lifetime of the exciton in
the state |lj 〉 with l = ± as the index of the split levels. The
probability rates for the absorption, emission, and spin flip are
proportional to

Wabs ∝ |Mlj,0(ei)|2δ(Elj − �ωi),

Wem ∝ |M0,lj̄ (e∗
f )|2δ(Elj̄ − �ωf),

Wsf ∝
∑
kph

|Vlj̄ ,lj |2
(

Nph + 1 ∓ 1

2

)
δ(Elj̄ − Elj ± �vphkph ).

(7)

The matrix elements of the involved processes are described by
Vlj̄ ,lj , Mlj,0(ei), and M0,lj̄ (e∗

f ), where the last two include the
ground state |0〉 of the crystal. The polarization unit vectors
are designated by ei and ef . Nph is the phonon occupation
number, vph is the sound velocity, and kph is the wave number
of the acoustic phonon. The signs in Eq. (7) account for Stokes
(−) and anti-Stokes (+) processes. According to Ref. [34],
the probability rate of the acoustic-phonon-assisted electron
spin flip is proportional to (Elj̄ − Elj )N with N ≈ 3–5, so
that Wsf ∝ [|CX|2]N . The exciton lifetime τlj is contributed by
the nonradiative lifetime τnr and radiative lifetime τ

�
of the

�-valley exciton,

1

τlj

= |C�|2
τ

�

+ 1

τnr
⇔ τlj = τ

�

|C�|2 + τ
�

τnr

.

For resonant excitation, the exciton recombination via nonra-
diative channels is assumed to be slow: τnr � τ

�
.

Now, we express the ensemble character of the modeled
quantum system with its different dot sizes and shapes via
a dispersive �-X-level splitting D. This shall be given by the
sum of the average value �̄ (dependent on the excitation energy
Eexc or, respectively, incident frequency ωi) and the random
value �̃. The distribution of �̃ is assumed to be described by
a Gaussian function with width �0:

F (�̃) = 1√
π�0

exp

(
−�̃2

�2
0

)
. (8)

The dispersion of �̃ shall exceed δ and the Zeeman splitting
geμBB = Eq,1/2 − Eq,−1/2. Then one obtains for the spin-flip
Raman scattering intensity ISF(Eexc) := Isc(ωi),

ISF(Eexc) ∝
∫ ∞

−∞
d�̃F (�̃)

[ √
D2 + δ2 − D

(1 + 2α)
√

D2 + δ2 − D

]2

×
(

1 + D√
D2 + δ2

)N

, (9)

with D = |�̄(Eexc) + �̃| and α = τ
�
/τnr. For simplicity, it is

assumed that δ and �0 are independent of Eexc. For the average
splitting �̄, we postulate a linear dependence,

�̄(Eexc) = η(Eexc − Emax),

where Emax is the energy of the incident light at which the
photoexcited � and X levels merge on average. The parameter
η is estimated to 0.65 from the slope of the dependence given
by the triangles in Fig. 1(d). Note that for δ/�0,τ�

/τnr � 1,
the scattering intensity ISF is insensitive to the integer power
N in Eq. (9).

Equation (9) describes well the experimental e-SFRS
intensity data, as shown by the red curve for N = 5 in Fig. 6.
From the simulation, we obtain accurate values for the involved
parameters, in particular δ = 0.8 meV, and also �0 = 10 meV
as well as α � 10−2. The high-energy tail observed in the
resonance profile is caused by a more complex distribution of
QD sizes than the assumed Gaussian. Nevertheless, Eq. (9)
provides a reliable way to estimate the strength of the
�-X coupling by V�X = δ/2 = 0.4 meV for the studied QD
ensemble.

In order to calculate the SFRS spectrum, one should
perform the integration in Eq. (9) with the δ function of
the form δ(� − |CX(�̃)|2). The dimensionless frequency �

is given by �(ωi−ωf )
g

X
μBB

. Here, the difference between the incident
and final photon energies is normalized to the Zeeman splitting
of the pure X state. � can vary between zero for the pure �

state (by assuming g
�

= 0 for simplicity) and unity for the
pure X state; � = 1 corresponds to g

X
= 2. The expressions

for |CX|2 and |C�|2 are then replaced by the following ones:

|CX|2 = 1 + |�|√
�2 + δ2

= �,

|C�|2 = 1 − |CX|2 = 1 − �.

The integration of the δ function results in the following density
of states:

ρ(�) ∝ 1

[1 − (2� − 1)2]3/2
.

Finally, one obtains for the SFRS spectrum (N = 5),

ISF(�) ∝ e−�2
+/�2

0 + e−�2
−/�2

0√
π�0

(
� − 1

� − 1 + α

)2

× �5

[1 − (2� − 1)2]3/2

= e−�2
+/�2

0 + e−�2
−/�2

0

8
√

π�0

�7/2
√

1 − �

(1 + α − �)2 . (10)

Here, the energy splittings �± take the form

�± = −�̄(Eexc) ± δ|2� − 1|
2
√

�(1 − �)
. (11)

A simulated Raman spectrum for Eexc = 1.636 eV and
δ = 0.8 meV is presented in Fig. 7(a). Only the X valley
contributes to that Raman spectrum by a sharp line. The
model adequately describes the Raman shift of the e-SFRS
line. The analysis demonstrates that for α � 1, the effective
dispersion of the g factor, leading to the inhomogeneous
Raman linewidth, is much smaller than that of the experimental
line, which is mainly determined by the spectral width of
the monochromator slits. For very weakly coupled � and X

states with δ = 0.008 meV, one obtains two sharp Raman
peaks at g

�
≈ 0.2 (g

�
set to > 0) and g

X
= 2; see Fig. 7(b).
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FIG. 7. (Color online) (a) Simulated Raman spectrum for an X-
valley state, after Eq. (10), and scheme of the spectral bandpass of
the monochromator slits. Inset: The smooth tail of the X-valley line
for � < 1. (b) Simulated Raman spectrum for �- and X-valley states
in the case of very weak �-X coupling (δ = 0.008 meV).

The theoretical approach provides reliable numerical data for
simulating the Raman line of both the � as well as the X

level in the �-X-crossing region. The approximations for the
SFRS intensities ISF(Eexc) and ISF(�) and comparisons with
the exact solutions can be found in the Appendix.

In ideal bulk semiconductors, the electron states from the
� and X valleys do not mix with each other; however, �-X
mixing does take place in low-dimensional heterostructures
due to reflection of the electron from the interfaces. For (001)-
oriented GaAs/AlAs superlattices with type-II band alignment,
where strain and quantum confinement lift the level degeneracy
at the X valley of the AlAs layer [35,36], considerable �-Xz

mixing is provided by the uncertainty of the electron k vector,
kz, perpendicular to the interface [37]. The �-Xxy mixing can
be induced only by violation of the translational symmetry
in the xy plane, which is absent in superlattices with flat
interfaces. However, this violation is possible in QDs due
to their boundaries perpendicular to the (001) direction. For
the (In,Al)As/AlAs QDs, this mechanism is responsible for
the strong variation of the exciton recombination rate that is
affected by the annealing treatment during growth [12], which
in turn changes the �-Xxy mixing. SFRS is therefore able to
characterize the �-Xxy mixing quantitatively, opening up an
alternative way for systematic studies of intervalley coupling
and spin-flip scattering processes in semiconductors.

V. CONCLUSION

To conclude, we have shown that the spin-level structure
and spin-flip mechanism of the exciton that is indirect in
momentum space in type-I (In,Al)As/AlAs QDs can be
assessed by resonant spin-flip Raman scattering due to its
mixing with the optically allowed direct exciton. The SFRS
itself is a coherent manipulation, as it can be used to initialize
and orient the spins of the electron, the heavy hole, and,
in particular, the exciton. This tool can also be applied to
other indirect systems with, e.g., �-L-valley mixed excitons

or type-II band alignment. Moreover, our study implies that
it is worthwhile to further attempt tailoring of the band
structure of such mixed direct-indirect systems, as in that
way one can obtain long-lived excitons with appealing spin
properties that do not only have long relaxation times but
can also be manipulated by optical or electrical methods.
These QD structures are promising for quantum information
technologies.
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APPENDIX: TRANSFORMATIONS AND
APPROXIMATIONS OF EQUATIONS FOR SFRS

INTENSITIES

In the following, we derive approximations for the SFRS
intensities ISF(Eexc) and ISF(�), and compare them with the
exact solutions.

1. SFRS resonance profile, ISF(Eexc)

Let us pay attention to Eq. (9) assuming α to be very small.
We multiply this equation by

S =
√

D2 + δ2 + D

(1 + 2α)
√

D2 + δ2 + D
,

and divide by the same S. Then we can reduce the ratio,
√

D2 + δ2 − D

(1 + 2α)
√

D2 + δ2 − D
,

to

(
√

D2 + δ2 − D)(
√

D2 + δ2 + D)

[(1 + 2α)
√

D2 + δ2 − D][(1 + 2α)
√

D2 + δ2 + D]
× 1

S
.

For the first factor of the last expression, we can write the
following approximation:

(
√

D2 + δ2 − D)(
√

D2 + δ2 + D)

[(1 + 2α)
√

D2 + δ2 − D][(1 + 2α)
√

D2 + δ2 + D]

= δ2

[(1 + 2α)2 − 1]D2 + (1 + 2α)2δ2

≈ δ2

4αD2 + δ2
.

For small α, we can replace S by unity and obtain
√

D2 + δ2 − D

(1 + 2α)
√

D2 + δ2 − D
≈ δ2

4αD2 + δ2
.
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Accordingly, Eq. (9) can be written as

ISF(Eexc) ∝
∫ ∞

−∞
d�̃F (�̃)

(
δ2

4αD2 + δ2

)2

Z

= 1√
π

(
δ2

4α�2
0

)2 ∫ ∞

−∞
dt

e−t2
Z[

(t + u)2 + (
δ2/4α�2

0

)]2 ,

where u = �̄(Eexc)/�0 = η(Eexc − E�X)/�0 and

Z =
(

1 + D√
D2 + δ2

)N

=
[

1 + |t + u|√
(t + u)2 + (δ/�0)2

]N

.

We see that the function, which has to be analyzed, reads

f1(u) = 1√
π

∫ ∞

−∞
dt

e−t2
Z(t,u)

[(t + u)2 + p2]2
, (A1)

with

p2 = δ2

4α�2
0

= 1

4

τnr

τ
�

δ2

�2
0

.

One can expect that Z is close to unity for �0 � δ, hence the
function f1 reduces to

f2(u) = 1√
π

∫ ∞

−∞
dt

e−t2

[(t + u)2 + p2]2
. (A2)

Now, we derive a further approximation related to the
integral of the previous equation. In what follows, we first
consider f2(u) at u = 0 and extend it to an arbitrary u.

In order to calculate the value of

f2(0) ≡ I2(p) = 1√
π

∫ ∞

−∞
dt

e−t2

(t2 + p2)2
,

we introduce the integral

In(p) = 1√
π

∫ ∞

−∞
dt

e−t2

(t2 + p2)n
,

and remind the reader of the table integral (integral 3.466 in
Ref. [38]),

1√
π

∫ ∞

0
dx

e−x2

x2 + β2
=

√
π

2β
eβ2

[1 − �(β)],

where

�(β) = 2√
π

∫ β

0
e−t2

dt.

Thus, one obtains

f2(0) = − 1

2p

dI1(p)

dp
= − 1

2p

d

dp

{√
π

p
ep2

[1 − �(p)]

}

=
√

π

2p

{(
1

p2
− 2

)
ep2

[1 − �(p)] + 2√
πp

}
.

In order to calculate f2 for an arbitrary u, we use the integral

1√
π

∫ ∞

−∞
dt

e−t2

(t + u)2 + p2
=

√
π

p
Re[e(p+iu)2

erfc(p + iu)],

FIG. 8. (Color online) Simulated SFRS resonance profiles based
on Eqs. (A1) and (A2) for different p values.

with erfc(x) = 1 − �(x). Then, it follows that

f2(u) =
√

π

2p
Re

[ (
1 − 2ipu

p2
− 2

)
e(p+iu)2

×erfc(p + iu) + 2√
πp

]
. (A3)

In Fig. 8, the numerical results of Eqs. (A1) and (A2),
normalized to their values at u = 0 corresponding to the
�-X-crossing point, are shown by the dashed and solid
lines, respectively, for different values of the parameter p.
Both functions provide similar data for p < 2, while for
larger p values, f1 shows two peaks being symmetrically
positioned around u = 0. If we consider the parameters δ =
0.8 meV, �0 = 10 meV, and α = 0.004 determined as the ones
describing the experimental results, then we obtain p = 0.632.
In that case, both f1 as well as f2, which is the approximation
for �0 � δ, are very similar, as depicted by the red lines.
Note that the numerical data evaluated from Eq. (A3) fully
coincide with that of Eq. (A2). We can conclude that the
transformations and approximations derived from Eq. (9) are
stable against changes in the parameters δ, �0, as well as α,
and demonstrate reliable results in a broad energy range around
the �-X-crossing point.

2. Raman spectrum, ISF(�)

We now analyze Eq. (10). By introducing the variable ζ =
1 − �, we have

ISF(ζ ) ∝ e−(�+/�0)2 + e−(�−/�0)2

8
√

π�0

(1 − ζ )7/2√ζ

(ζ + α)2
, (A4)

with the quantities

�±
�0

= −u ± v|1 − 2ζ |
2
√

ζ (1 − ζ )
, u = �̄(Eexc)

�0
, v = δ

�0
.

Assuming ζ � 1, we can simplify this equation to

ISF(ζ ) ∝ e−u2
e−v2/(4ζ )cosh

(
uv√

ζ

) √
ζ

(ζ + α)2
. (A5)

Here, the factor of proportionality is changed in comparison
to Eq. (A4). For α � 1, one can expect that the exact
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FIG. 9. (Color online) (a) Simulated SFRS spectra around ζ = 0
for different u, after Eq. (A4). Inset: The simulations of Eq. (A4)
(solid line) and Eq. (A5) (dashed line) for u = 0. (b) Raman line
including spectral width of monochromator slits; Eq. (A4) convoluted
with Gaussian function.

function (A4) and the approximation (A5) show a sharp peak
at ζ close to 0 (or � close to 1).

In order to obtain a normalization for comparing different
numerical results of ISF(ζ ), we derive in the following the
maximum value ISF,max. At u = 0, the Raman spectrum
intensity (A5) reads

ISF(ζ ; u = 0) ∝ e−v2/(4ζ )

√
ζ

(ζ + α)2
.

The function
√

ζ/(ζ + α)2 reaches a maximum at ζm = α/3.
The first derivative of ISF(ζ ; u = 0) is given by

e−v2/(4ζ )

2
√

ζ

[
α − 3ζ

(ζ + α)3
+ v2

2ζ 3/2

]
.

The position of maximum is found by setting the derivative to
zero, which leads to the equation

α − 3ζ + v2

2ζ 3/2
(ζ + α)3 = 0,

or

ζ = α

3
+ v2

6ζ 3/2
(ζ + α)3.

By replacing ζ in the second term with the first-order approx-
imation ζ (1)

m = α/3, we find in the next-order approximation,

ζm = α

3
+ v2

6
[
ζ

(1)
m

]3/2

[
ζ (1)

m + α
]3 = α

3

(
1 + 32

3
√

3
v2α1/2

)
.

We see that the correction is small when v2α1/2 � 1, which
is the case in our model. Starting from ζ = 0, the function
ISF(ζ ; u = 0) reaches the maximum at very small ζ = ζm and
then decreases with further increase in ζ .

Three curves ISF(ζ )/ISF,max for different u, evaluated from
Eq. (A4), are shown in Fig. 9(a). The maximum of the
Raman line shifts to ζ = 0 with increasing u value, which
corresponds to a decrease in �0. In comparison to the exact
solution (A4), the approximation (A5) yields very similar
results, as indicated exemplarily for u = 0 in the inset of
Fig. 9(a). The steepness of the right flank of the Raman lines
for small u corresponds well to that of the experimentally
observed Raman lines; cf. Fig. 2(a). Moreover, in order to
include the spectral width of the monochromator slits in the
numerical considerations, we perform a convolution of the
calculated spectrum with a Gaussian distribution G(ζ − ζ ′),
leading to

∫
dζ ′ISF(ζ ′)G(ζ − ζ ′). By use of the width 0.05 for

the Gaussian function, we obtain for u = 0 the Raman line
demonstrated in Fig. 9(b). Due to the implementation of the
slit width, the intensity is larger than zero for ζ < 0, and the
shape is only slightly asymmetric: the simulation accords with
the experiment.

To conclude, the transformed and approximated equa-
tions for both the SFRS resonance profile and the Ra-
man spectrum in the �-X-mixing regime yield numerical
results that are in good agreement with the experimental
observations.
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