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Second-order correlations in an exciton-polariton Rabi oscillator
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We develop the theoretical formalism to calculate second-order correlations in dissipative exciton-polariton
system and we propose intensity-intensity correlation experiments to reveal the physics of exciton-light coupling
in semiconductor microcavities in the Rabi oscillation regime. We predict a counterintuitive behavior of the
correlator between upper and lower polariton branches: Due to the decoherence caused by stochastic exciton-
photon conversions this correlator is expected to decrease below 1, while the individual second-order coherence
of upper and lower polaritons exhibits nonmonotonous bunching.
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I. INTRODUCTION

Recent decades have seen tremendous progress in the
physics of strongly coupled light-matter systems. In particular,
semiconductor microcavity structures [1] have demonstrated
a number of fascinating coherent many-body effects, e.g.,
polariton lasing [2] and formation of Bose-Einstein conden-
sates of exciton-polaritons [3]. Exciton-polaritons may be
viewed as quantum superposition states of light and matter [4].
Their dual nature is visualised in polariton Rabi oscillations:
beats between exciton and photon states in semiconductor
microcavities in the strong coupling regime [5]. Usually, the
Rabi oscillations are excited by a short laser pulse which
simultaneously and equally populates the upper polariton
(UP) and the lower polariton (LP) branches. Initially, the
system is in a purely photonic state. Then, due to the splitting
between UP and LP branches, it starts developing the excitonic
component, becomes purely excitonic after several fractions
of a picosecond, then returns to the photonic state, and so on.
Polariton Rabi oscillations have been experimentally observed
by many groups [6—8]. Usually, only several periods of
oscillations could be resolved in these studies. The magnitude
of oscillations was found to decrease with time and eventually
vanish due to some decoherence processes. The nature of
these processes still needs to be revealed. One process is
the phonon-assisted scattering between UP and LP branches
that leads to depopulation of the upper branch and breaks
coherence between two branches [9]. In a recent work [10] we
have addressed a process of stochastic exciton-photon conver-
sion, which is crucial in the weak exciton-photon coupling
regime and possibly plays an important role in the strong
coupling regime too. The question of existence of stochastic
processes even in the strong coupling regime is important for
understanding the quantum properties of exciton-polaritons.
To what extent polaritons can be considered as coherent
superpositions of photons and excitons? How accurate would
be the description of a polariton gas in terms of an exciton-
photon mixture? The dynamics of exciton-photon correlators
in the polariton lasing regime calculated in our previous paper
[10] would help answer these questions. Unfortunately, direct
experimental measurements of exciton-photon correlations

2469-9950/2016/93(11)/115315(5)

115315-1

seem quite tricky. Here we show that instead of counting
individual excitons and photons one can access the stochastic
exciton-photon transformation kinetics by doing a purely
optical and much simpler experiment. Namely, one can study
two-color intensity-intensity correlations of light emitted from
UP and LP branches in the strong coupling regime. The scheme
of the proposed optical experiment is shown in Fig. 1.

The finite lifetime of excitons and photons does not destroy
the coherence of Rabi oscillations; only the amplitude of
the signal decays in time after pulsed excitation of the
system. The stochastic conversion of particles, however, has
a profound destructive effect on the Rabi process. The result
is qualitatively similar to the suppression of tunneling for a
particle in a double-well potential in the presence of dissipation
[11]. The system we study below also has some similarity
to the phonon-polaron problem [12—-14]. We note, however,
that the stochastic processes that are the focus of our present
study have not been analyzed in the context of the electron
two-level systems and other works on polaron-transformed
master equations known to us. We note also that the bosonic
two-level systems provide benefits related to the possibility
of weak measurement of the system state. In our case it is
achieved by study of correlations of photons emitted from
the microcavity. In this paper, we present the exact theory of
second-order correlations on exciton-polariton system in the
presence of dissipation due to exciton-photon conversion. We
predict a counterintuitive variation of the intensity-intensity
correlator between UP and LP branches (two-color correlation
experiment) and show that this variation may be considered
as a signature of stochastic conversions in the strong coupling
regime. The microscopic origin of exciton-photon conversion
processes is not specified here.

We would like to point out at this point that we account for
only two exciton-polariton states in the model: one belonging
to the upper polariton branch and one belonging to the
lower polariton branch. There is no exciton reservoir in the
model, as in Rabi-oscillation experiments with resonant optical
excitation the reservoir remains empty. The expected role of
incoherent exciton reservoir is twofold. On the one hand,
the continuous feed of the Rabi oscillator from the reservoir
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FIG. 1. The scheme of the two-color intensity-intensity correla-
tion measurement between upper and lower polariton branches. A
short pulse of light excites the system and induces polariton Rabi
oscillations. Correlations of the intensities of secondary emission
harmonics corresponding to upper and lower polariton branches are
studied.

increases the duration of Rabi oscillation [15] and therefore
facilitates the observation of even rare events of exciton-photon
conversion. On the other hand, the fluctuations produced by
the exciton reservoir on the Rabi oscillator are not completely
described by our model [formulated in Eq. (1) below] and they
will be a subject of subsequent research.

From the point of view of quantum statistics, the loss of
coherence in a light source is manifested by the variation of
the intensity-intensity correlator g that ranges between 1
(purely coherent light) and 2 (thermal distribution of photons)
for classical sources [16]. In the regime of polariton Rabi
oscillations, the quantum coherence between two branches
can be characterized by a similar quantity g,; defining the
correlator of intensities of light emitted from the UP and LP
branches. A coherent optical excitation sets g,; = 1 initially
and simple depopulation of the branches does not affect this
value. However, as we show below, the stochastic exciton-
photon conversion processes manifest themselves in deviation
of the UP-LP intensity correlator from unity, so that it becomes
lower than 1 at large times.

II. THEORETICAL MODEL

The dissipative exciton-polariton system can be described
by Lindblad form of the Liouville equation for the full density
matrix [10]

dpt) i A Si At & oAt oa
—_ = - Hyl — —([A',A; A AG)). 1
o =710 fo] %jﬁ[,,m+w A, ()
Here the Hamiltonian is
. I ~r A CA
Hw=?Aww—ﬁm+wab+Hmh )

where @ and b are the exciton and photon annihilation
operators, respectively, A is the exciton-photon detuning, and
wg is the exciton-photon coupling frequency. In Eq. (1) we in-
troduced three (j = x,c,u) single-particle Lindblad terms with
A, =a, A. = b, and A, = (4 + b). The first two terms de-
scribe the direct depopulation of the exciton and photon states.
The third term with coefficient g, = ¢’ simply renormalizes
the exciton and the cavity photon lifetimes, 7, = (g, + /)~
and 7. = (g, + ¥")~', on the one hand. On the other hand, it
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models the cross relaxation and allows phenomenologically for
an additional decay from the upper polariton state that is crucial
for description of realistic microcavities. Finally, there are two
(j = xc,cx) terms describing the conversion processes, with
Toe = Tox = gxcl being the exciton-photon conversion time and
operators A,. = b'a and A, = a'b.

In what follows we shall consider different first- and
second-order correlations. For the density matrix satisfying
(1) it is possible to find the closed systems of equations for
the correlators of any order. To proceed, it is convenient to
introduce the spin operators §,, with u = 0,1,2,3:

§o = 3@%a +b'b), (3a)
§1 = ala - b'b), (3b)
5 = 1@'b - bla, (3¢)
§3 = 2@'b +bla). (3d)

The intensities of light emitted from UP and LP branches
can be found from averages S, () = (§,,), which satisfy

So=—-TSo+yS —y'Ss, (4a)
Si=—(T +2t.')Si + ¥ S — wrSs, (4b)
So=—(T + 1) + AS; + wrSy, (40)
S3=—(T+1.)8$5— 'Sy — AS. (4d)

Here I' = (gx + g +2y")/2 and y = (gc — 8x)/2.

To compute the second-order coherence it is convenient
to operate with the averages of the normal ordered products
Suv(t) = (:5,8,:) with w,v = 0,1,2,3. The components of the
symmetric tensor S, (t) obey the equations
Si=-2IS;; — 2t '(2S11 — S22 — S33)

+2ySo1 — 2wgS12, (52)
Spp=—2I'Sy — 27! (Sx» — S11) + 2AS5; + 20xS12. (5b)
S33=—2IS33 — 27..'(S33 — S11) — 2¥'Se3 — 2AS23,  (5¢)

So1 =—2So1 — 27..'So1 + ¥(Soo + S11) — ¥'S13 — wgSoas

(5d)
Soa=—2TSe2 — 7' So2 + ¥S12 — ¥'Sas + ASe3 + @rSor,
(5e)
So3 =—2TSe3 — 7' So3 + ¥S13 — ¥'(So0 + S33) — ASo2,
(50
Sia=—2S12 — 57.'S12 + ¥So2 + AS13 + @r(S11 — Sn),
(52)
S13=—2TS13 — 57..'S13 + ¥Sos — ¥'So1 — AS12 — wgSas,
(5h)
Sa3=—20Sa; — 27..'S»3 — ¥'Sez + A(S33 — S») + wgSi3.
(51)

Here we omitted the equation for Sgy, which follows
from the identity Sgg = Si; + Sz + S33, namely, Sgg =
—2I'Soo + 2y So1 — 2y'Ses. It should be noted that the
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FIG. 2. Showing the time dependencies of normalized nonzero
components of the tensor S,, after excitation of a photon state at
t = 0. The curves are labeled by indices (nv). The parameters are
T /Tee = 0.4, T, /Toe = 1.6, T, = 10, and A =y’ = 0.

Egs. (4a)—(4d) and (5a)—(51) are exact consequences of the
quantum Liouville equation for the density matrix (1). No
quasiclassical assumptions have been made, and one can use
these equations for the analysis of evolution of the quantum
states of the Rabi oscillator.

In what follows, we consider the pulsed excitation of a
photonic state assuming that an ultrashort pulse of light arrives
at t+ = 0. For the case of initial coherent photonic state with
N photons in average, the initial condition to Eqs. (4a)—
(4d) are Sp(0) = —S1(0) = N/2 and S,(0) = S$53(0) = 0. For
Egs. (5a)—(5i) we have Sgo = Si1 = —So1 = N?/4, and the
other components of the tensor are zero. We use the above
initial conditions in what follows. We note that in the case
of Fock initial state for photonic component, the conditions
for the nonzero tensor components should be changed to
Soo = S11 = =So1 = N(N — 1)/4.

In the most experimentally relevant case of photonic exci-
tation the components Sy | »(¢) exhibit decaying Rabi oscilla-
tions, and in the absence of stochastic processes (rx‘cl = 0)one
has Sg = Sl2 + S% + S32. This equality is violated in the case of
afinite stochastic conversion time 7., since the exciton-photon
conversion results in decoherence. The evolution of tensor S,
is more complex and it is characterized by appearance of finite
off-diagonal correlations at long times. Even in the simplest
case of ¥’ = 0 and zero detuning, which is shown in Fig. 2,
there are six nonzero components. If exciton and photon decay
rates are slow compared to the decoherence rate (7,7, > Ty.),
the diagonal S, Sy», and S33 components tend to Sgp/3 at
long times, indicating the equidistribution of populations of
excitons and photons. This tendency is only approximately
observed if decay and decoherence rates are of the same order.
For the parameters in Fig. 2, we have at long times S;; —
0.331Sg0, S22 — 0.342S¢9, and S33 — 0.327Sg. Also, at
long times, there appear finite off-diagonal correlations,
Sm g 0.0124S00, Soz — 0.1228()0, and S[z — 0.00147S00.

III. INTENSITY-INTENSITY CORRELATIONS

The Hamiltonian (2) is diagonalized in the basis of LP
and UP states with the annihilation operators ¢; = d cos ¢ —

PHYSICAL REVIEW B 93, 115315 (2016)

bsing and &, = asin¢ + b cos ¢, where the auxiliary angle
¢ is defined by tan(2¢) = wg/A. The polariton occupation
numbers are

ni = (e]¢;) = So F 81 cos(2¢) £ S3sin(29),  (6)

where the upper and the lower signs correspond to the UP
(i = u) and the LP (i = /) branches, respectively.

There are several second-order correlators that can be ex-

perimentally accessed for an exciton-polariton Rabi oscillator.

Those of major interest are the UP-LP intensities correlator
g.(t), which can be determined as

(@héle,ér)
(@he e
_ Siisin*(2¢) + Sp + S33 cos’(2) + Sy3 sin(4¢)
N 52 — [S) cos(2¢)) — S; sin(2¢)]?

8ul =

)

@)
the second-order coherence for UP and LP,

2 2 At ata A
gi( ) — n; (cjcjcic,-)

= n;*[Soo + S11 cos’(2¢) + S33 sin*(2¢)
F 2S01 cos(2¢) £ 2Sp3 sin(2¢) — Sy3 sin(4g)], (8)

with the same convention about the signs as in Eq. (6), and the
generalized UP-LP correlator expressed through the previous
three correlators,
g2 (@helenn)?
Gu =3 &= Taar A aas ©)
8u 8 <Cucucucu><cl ¢ ¢iér)

The above correlators equate to unity for coherent Rabi
oscillations, and their deviation from 1 is a smoking gun of the
stochastic exciton-photon conversion processes. Moreover, the
effect of decoherence is well pronounced even for rather long
conversion times 7., as seen in Figs. 3(a)-3(c). The UP-LP
correlator (7) shown in Fig. 3(a) decreases below 1, and for
short enough .. can become close to 2/3. This happens be-
cause the exciton-photon conversion process tend to form the
equidistribution of particles, and the perfect equidistribution
gives g,; = 2/3 [10]. However, the equidistribution does not
hold with time, because the excitons and photons are removed
from the cavity with different rates 7' # 7'. As a result,
the time dependence of g,; is nonmonotonous and there is a
slow growth of this correlator at long times. The evolution
of the polariton second-order coherence (8) is also in general

nonmonotonous and exhibits bunching, g,(f; > 1; see Fig. 3(b).

Since both g,; and g,(;; increase at long times, it is convenient
to consider the combined correlator G,; (9), which tends to a
constant value att — oo. This saturation value is 1/4 for short
Ty [10]. All correlators shown in Figs. 3(a)-3(c) reflect the
presence of Rabi oscillations in the system, as seen from weak
high-frequency modulation of all curves. Since the typical
cavity lifetimes are about 10 ps, one can see from Fig. 3 that the
color two-photon correlation experiments can reliably detect
the stochastic exciton-photon processes with the conversion
times as long as nanoseconds.

When t,. is comparable or larger than 7. the saturation
value of correlator G; is bigger than 1/4 and it changes with A

115315-3



YURI G. RUBO, ALEXANDRA SHEREMET, AND ALEXEY KAVOKIN

1.0 T T T T
/3

(a)

Gul

7]
3\
| | " (©
/3 ]
éll : : 10
t/ e

FIG. 3. The time evolution of the correlators (a) g.;, (b) g'? (solid
lines) and g,@) (dashed lines), and (c) G, for different exciton-photon
conversion times, (1) 7./t = 0.5,(2) 7. /Txc = 0.1,and 3) 7./ T,c =
0.02. We note that in the absence of stochastic processes (t,! = 0)
all correlators shown in this figure become time independent and stay
equal to 1. The other parameters are 7, = 47, wgt. = 20, At, = =5,

and y' = 0.

and y’. The dependencies of the asymptotic value G5 on these
parameters are shown in Fig. 4 and they can be used to adjust
the experimental conditions for better observation of the effect.
Since the parameter y’ governs the difference of dissipation
rates of upper and lower polaritons, one can see from Fig. 4 that
in the experimentally relevant case of the short upper-polariton
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FIG. 4. The asymptotic (long time) value of the correlator G,
as a function of detuning for y’'/wg = 0 (curve 1), y'/wr = 0.01
(curve 2), and y’/wg = 0.02 (curve 3). The other parameters are
y/wr = 0.02 and wgT,. = 200.

lifetime it is convenient to use negative detuning between the
bare exciton and photon modes, achieving more pronounced
decrease of G ;.

IV. CONCLUSION

Two-color intensity-intensity correlation measurements be-
tween UP and LP branches in the regime of Rabi oscillations
are expected to shed light onto decoherence caused by stochas-
tic exciton-photon conversion processes in the system. The
two-color correlator is predicted to go below 1 if the stochastic
processes are important. This prediction allows for a relatively
simple experimental test of the decoherence of polariton Rabi
oscillator and verification of the quantum superposition nature
of an exciton-polariton state in the strong coupling regime. We
underline that the theory developed here is linear in the pump
intensity. The role of exciton-photon correlations in nonlinear
optical response of microcavities would constitute a subject
of further studies. Finally, we note that a straightforward
extension of our formalism permits evaluation of the noise
spectra of UP and LP emission intensities. These spectra are
also expected to be sensitive to the stochastic exciton-photon
conversion.
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