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Inversion of Zeeman splitting of exciton states in InGaAs quantum wells
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Zeeman splitting of quantum-confined states of excitons in InGaAs quantum wells (QWs) is experimentally
found to depend strongly on quantization energy. Moreover, it changes sign when the quantization energy
increases with a decrease in the QW width. In the 87-nm QW, the sign change is observed for the excited
quantum-confined states, which are above the ground state only by a few meV. A two-step approach for the
numerical solution of the two-particle Schrödinger equation, taking into account the Coulomb interaction and
valence-band coupling, is used for a theoretical justification of the observed phenomenon. The calculated variation
of the g-factor convincingly follows the dependencies obtained in the experiments.
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I. INTRODUCTION

Magnetic properties of Wannier-Mott excitons have been
studied extensively since they were first observed at the
adsorption edge of Cu2O crystal [1,2]. Recent enhanced exper-
iments and a theoretical analysis have discovered a rich energy
structure of excitons in this crystal [3–5]. Fine exciton structure
is determined mainly by the spin properties of carriers forming
exciton states. During the past two decades, the spin properties
of exciton complexes have attracted considerable attention
due to the overall interest in spin physics and their possible
applications in the field of spintronics [6–8]. A major focus of
the experimental studies has been III-V heterostructures grown
by molecular beam epitaxy. In particular, InGaAs/GaAs and
GaAs/AlGaAs quantum wells (QWs) were studied due to their
high quality, which enabled experimental observation of the
fine energy structure of excitons [9–19] (earlier works are
reviewed in Ref. [20]). In these works, the magnetic field is
applied along the growth axis, and Zeeman splitting of one or
several of the lowest states of excitons is studied using various
experimental methods. The splitting, �E, is discussed in terms
of the exciton g-factor, gex, defined by relation �E = gexμBB,
where μB is the Bohr magneton, B is the magnetic field, and
�E is the distance between exciton states active in σ+ and σ−
circular polarizations.

It has been found that the exciton g-factor depends strongly
on the QW width [11–15,18,19] and on the magnitude of the
magnetic field when it exceeds several Teslas [10,16,19,21,22].
In particular, the inversion of the exciton g-factor measured in
small magnetic fields has been reported in Refs. [11,14,15,18]
when the QW width varied from a few nm to a few tens of nm.
In Ref. [15], the g-factors in a 20-nm Al0.02Ga0.98As/AlAs
multiple-QW structure are reported to vary in the range from
gex = 0.5 to −11 for different excited exciton states. This
variation is nonmonotonic in energy of the quantum-confined
exciton states. The exciton g-factor variations have been
attributed to the variation of the hole g-factor because the
electron g-factor depends weakly on the QW width [23].

The physical origin of the hole g-factor variation is
supposed to be the coupling of the heavy-hole and light-hole
states [9,11,15,16,20,24–26]. An admixture of the light-hole
exciton states obeying a huge g-factor [24] may change the
heavy-hole exciton g-factor considerably.

Large variation of the exciton g-factor for different
quantum-confined exciton states has been observed exper-
imentally in several heterostructures with wide QWs [27–
30]. The effect of the quantum confinement of excitons
in QWs gives rise to quasiperiodic peculiarities in optical
spectra corresponding to the quantization of the center-of-mass
exciton motion [31,32]. For such QWs, interfaces do not have a
significant effect on the magnetic properties of excitons, which
remain similar to those for bulk crystal. This fact strongly
simplifies theoretical analysis. The g-factor modification has
been treated as the mixing of the relative motion of an electron
and a hole in the exciton and the motion of the exciton as a
whole [28,29].

Quantum confinement has a stronger effect on the exciton
states when the QW becomes narrower. Theoretical analysis
of excitons in such QWs should consider an interplay of
the square QW potential and the Coulomb potential. Such
a consideration is rather simple for the case of a relatively
thin QW, the width of which does not exceed the exciton
Bohr radius (L < 15 nm for GaAs-based heterostructures).
For these QWs, the Coulomb potential can be treated as
a perturbation, compared to the quantum confinement ef-
fect [11,15,20,22,24,33,34]. The problem of exciton magnetic
properties in QWs of intermediate width (15 < L < 150 nm
for the GaAs), which are suitable for many applications, is
more complicated. There is no analytical solution for such
QWs [35].

In this paper, we study experimentally Zeeman splittings of
several quantum-confined exciton states in intermediate-width
InGaAs QWs. We also provide a theory describing the Zeeman
splitting of the ground and excited exciton states in the
QWs. The theory is based on the numerical solution of the
Schrödinger equation for an exciton. The numerical approach
is performed in two steps. First, we obtain a separate system
of wave functions for heavy-hole and light-hole exciton states,
and then we take into account the hh-lh coupling. The coupling
of the unperturbed states is accounted for according to the
Luttinger Hamiltonian for the degenerate valence band of
the GaAs crystal. The results obtained from a comparison
of the calculated Zeeman splittings with those found from the
experimental study of exciton excited states show convincing
agreement. In this way, we verify that a large change of the
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exciton g-factor with the number of the exciton quantization
level in intermediate QWs is really caused by the coupling
of the heavy-hole and the light-hole exciton states. The
good agreement with the experiment allows us to understand
which interactions are mainly contributing to the g-factor
modifications.

The rest of the paper is organized as follows. In Sec. II, we
present the results of an experimental study of exciton photo-
luminescence (PL) in a magnetic field. These experiments are
then discussed in terms of a theoretical approach described in
Sec. III. In Sec. IV, important details of the numerical solution
of the Schrödinger equation are given. Then we discuss the
universal character of the g-factor renormalization effect for
QWs with different thicknesses. The Conclusion sums up the
main results of our study.

II. EXPERIMENT

A. Photoluminescence at zero magnetic field

We studied GaAs/InGaAs nanostructures grown by the
molecular beam epitaxy (MBE) technique. Three samples
containing InGaAs layers surrounded by GaAs barriers have
been grown. The first sample, P554, contains the QW with
nominal width 95 nm and an indium concentration of about
2%. The second sample, P592, contains three spatially sepa-
rated QWs with nominal widths 30, 36, and 41 nm and indium
concentrations 4%, 5%, and 7%, respectively. Finally, the third
sample, P531, contains four separated QWs (4, 7, 10, and 12
nm with 5% of In). The layer thickness in all the samples has
a gradient, therefore the actual width of the wide QWs (wider
than 30 nm) was determined from the microscopic modeling of
the exciton spectra (see details in Ref. [36]). For the points on
the samples where the magnetic measurements were made, the
fitted values of width are 87, 33, 40, and 45 nm for the 95-, 30-,
36-, and 41-nm QWs, respectively. The samples were cooled
down to the liquid-helium temperature.

To obtain the exciton energy positions, we have measured
the PL spectra of the sample rather than the reflectance spectra
because of the simplicity of the experimental technique and
the analysis of the spectra. A similar technique has been used
in several publications; see, e.g., Refs. [28,29,31,37–39]. The
PL was excited nonresonantly using a Ti-sapphire or a He-Ne
laser. The spectral resolution of the setup was sufficiently better
than the typical width of features in the PL spectra. We discuss
the data for the first sample only in this section since the results
are similar for all studied samples.

The PL spectra were fitted with a series of Lorentzian
contours, as shown in Fig. 1. The small width of the peaks
demonstrates the high quality of the sample and leaves no
doubt about the spectrum interpretation. The physical origin of
the peaks is the PL of the quantum-confined exciton states [39].
Due to the high radiative rate and small energy distance
between the states, the exciton thermalization is suppressed
and the hot PL is observed. The feature marked by Ex2s+ is
supposed to be the PL of the excited s-like exciton states.

B. Photoluminescence in a magnetic field

Magnetic field effects were studied in a Faraday configu-
ration, i.e., the magnetic field was parallel to the excitation
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FIG. 1. Typical PL spectrum of the 87-nm QW in sample P554
(open circles). Data fits are shown by the thin black Lorentzian
contours. Exciton states are numbered; Ex2s+ is the PL originated
from the 2s and higher hydrogenlike exciton states.

axis and perpendicular to the QW plane. The measurements
were done with a separate detection of PL in the σ+ and σ−
polarizations.

The evolution of the circularly polarized PL spectra in the
magnetic field up to 3 T is shown in Fig. 2. The left and
right parts of the plot represent the σ+ and σ− polarizations,
respectively. Lines formed by the PL peaks are curved upward
due to a diamagnetic shift. A difference in the line shifts for σ+
and σ− polarizations is the clear indication of the line splitting
discussed below.

In addition to the exciton lines, several weaker spectral
lines are observed, which start from energy E ≈ 1.489 eV

FIG. 2. PL spectra of sample P554 as a function of magnetic field
for the left-handed (σ−) and right-handed (σ+) circular polarizations
at T = 5 K. The positive magnetic field values are plotted to the
right and to the left from the zero mark. The PL intensity is indicated
by changes in color. The arrows with numbers match the PL lines
marked in Fig. 1.
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FIG. 3. Position of spectral peaks vs magnetic field obtained from
the data shown in Fig. 2. The filled and empty circles are the different
circular polarizations.

and demonstrate almost linear behavior. These are the states
originating from the excited states of the exciton. Similar to
the 2s, 3s, etc. hydrogen states, they have a greater mean
electron-hole distance as compared to the ground state. Hence
they readily reach the so-called diamagnetic exciton limit (the
Loudon criterion [40]) at a relatively low magnetic field. In
the diamagnetic exciton, the electron and the hole are mainly
confined by the magnetic field, and only a weak confinement

along the magnetic field is caused by the Coulomb attraction.
In the limit of a high magnetic field, the carriers occupy Landau
levels, and the transition energy exhibits linear dependence on
the magnetic field. The energy interval between the ground
exciton state and the point at 0 T where Landau levels meet
is the experimentally observed 1s-2s distance. Accurate data
processing gives a value of 3.2 ± 0.2 meV. This value is in
good agreement with the previous experimental observations
and theoretical studies for bulk GaAs [41,42].

The spectral positions of the quantum-confined exciton
states in magnetic field obtained by the Lorentzian fits of the
PL spectra (see the example in Fig. 1) are plotted in Fig. 3. The
PL in opposite circular polarizations exhibits clear splitting,
which decreases with an increase in the exciton-state number
and even becomes inverse for the sixth state. The fifth state
here is of particular interest as its total magnetic momentum
appears to be zero, as experiment shows. In the next sections,
we focus on the splitting behavior and develop a theory to
explain this phenomenon.

III. THEORY

We consider an exciton as a Coulomb-interacting electron-
hole pair. The conduction band is twofold-degenerate due to
the 1/2 electron spin. The valence band in a semiconductor
of GaAs-type has a fourfold-degenerate structure, which is
described by the Luttinger Hamiltonian [43]. The exciton
Hamiltonian can be written in the basis of eigenstates of the
z-projection of the hole angular momentum operator, Ĵz:

Ĥ = k̂e
2

2me

I + k̂h
2
γ1

2m0
I +

(
k̂2
x + k̂2

y − 2k̂2
z

)
γ2

2m0

⎛
⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎞
⎟⎠ − e2

εr
I + V (ze,zh)I

+μBghBĴz + μBgeBszI +
√

3
(
k̂2
y − k̂2

x

)
γ2

2m0

⎛
⎜⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎠

−
√

3γ3

m0

⎛
⎜⎜⎜⎝

0 i{k̂x,k̂z} + {k̂y,k̂z} i{k̂x,k̂y} 0

−i{k̂x,k̂z} + {k̂y,k̂z} 0 0 i{k̂x,k̂y}
−i{k̂x,k̂y} 0 0 −i{k̂x,k̂z} − {k̂y,k̂z}

0 −i{k̂x,k̂y} i{k̂x,k̂z} − {k̂y,k̂z} 0

⎞
⎟⎟⎟⎠. (1)

In this expression, me is the electron effective mass, m0 is the
free-electron mass, k̂e (k̂h) is the momentum operator of an
electron (hole), and I is the unity 4 × 4 matrix. Operators k̂x ,
k̂y , and k̂z are the components of the hole momentum operator;
quantities γ1, γ2, and γ3 are the Luttinger parameters; ε is
the dielectric constant of a semiconductor; r is the relative
electron-hole distance; and e is the electron charge. Function
V (ze,zh) stands for the square QW potential. The first two
terms in the second line describe the ordinary Zeeman effect for
a hole and for an electron. Quantities gh and ge are the bare hole
and electron g-factors, respectively. The diagonal matrix Ĵz =
(+3/2, + 1/2, − 1/2, − 3/2) describes the z-projection of the
hole angular momentum. The z-projection of electron spin is
described by the value sz. The Zeeman terms are written for

magnetic field B applied along the z direction. Curly brackets,
{k̂α,k̂β}, denote the anticommutator of operators:

{k̂α,k̂β} = k̂αk̂β + k̂β k̂α

2
. (2)

In the presence of magnetic field B, operators k̂e,h should be
generalized using the symmetric gauge:

k̂e,h = −i�∇e,h ± e

2c
[B × re,h], (3)

where re (rh) is the electron (hole) radius vector.
Expression (1) is the Hamiltonian for an exciton in a QW

heterostructure consisting of semiconductor layers of cubic
symmetry. The Schrödinger equation with Hamiltonian (1)
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cannot be solved analytically in the general case. In the case of
a bulk semiconductor, the terms describing the valence band
can be rearranged in two matrices: the diagonal one and a small
addition with both diagonal and nondiagonal elements, which
can be treated as perturbation [41]. The unperturbed Hamil-
tonian is decomposed into four independent Hamiltonians.
The Schrödinger equation with these Hamiltonians describes
separately the internal electron-hole motion and the center-of-
mass (CM) motion of the hh and lh excitons. The resulting
eigenfunctions are the plane waves for the CM motion and the
hydrogenlike functions for the relative electron-hole motion.

For an exciton in a QW, a similar separation of variables is
impossible even ignoring the hh-lh coupling. In particular, the
introduction of CM coordinates does not separate variables
along the z axis. For a QW of an intermediate width,
the consideration of a QW potential as a perturbation to
the Coulomb potential leads to unacceptable controversies.
Therefore, we have to use a numerical procedure to solve the
six-dimensional problem for an electron and a hole interacting
by the Coulomb potential and confined in a finite-depth QW
of an intermediate width.

The peculiarities of the studied heterostructures further
complicates the problem. First, the lattice constants of InAs
and GaAs differ, therefore the InGaAs/GaAs QW is strained.
The strain induces a hh-lh splitting that results in a decrease
of the hh-lh coupling compared to the unstrained material.
Second, a segregation of indium atoms during the growth
process changes the average width of the QW and breaks
the presumed rectangular profile of the QW potential [36,44].
We account for this effect choosing an appropriate QW width
to obtain good agreement of the calculated exciton energy
spectrum with that obtained experimentally.

We propose the numerical solution of the problem in two
steps. First, we solve the Schrödinger equation with the basic
Hamiltonian, which is the first line of Hamiltonian (1). Then
we use the obtained wave functions as a constrained basis to
compose a Hamiltonian matrix and diagonalize it.

At the first step, we make use of the cylindrical symmetry
of the problem with the basic Hamiltonian and divide it
into problems of smaller dimensionality. In particular, the
Schrödinger equations for excitons with heavy and light holes
can be solved separately. The movement of excitons as a whole
along the QW layer (the xy plane) can be separated from the
relative electron-hole motion in this plane. The corresponding
Schrödinger equation is readily solved with plane waves as
wave functions describing the exciton CM motion in the xy

plane. Introducing the cylindrical coordinates ρ and ϕ for the
xy-plane relative motion, we obtain the analytical dependence
of the exciton wave function on ϕ as e−ikϕϕ . Here kϕ is
the z-projection of the exciton orbital momentum, which is
conserved due to the basic Hamiltonian symmetry.

At this point, we have obtained the analytical solution for
the exciton CM motion in the xy plane and for the orbital
electron-hole motion in this plane. The rest of the wave
function depending on ρ, ze, and zh coordinates should be
obtained numerically solving the three-dimensional eigen-
value problem. When a magnetic field is applied along the
z axis, the conserved cylindrical symmetry allows one similar
wave-function factorization [45], which we discuss in the next
section.

At the second step, we form a matrix of the total Hamil-
tonian (1) using the obtained wave functions of the basic
Hamiltonian, ψn, as a basis. Elements of the Hamiltonian
matrix, 〈ψn|Ĥ |ψm〉, are calculated numerically and analyti-
cally when possible. Diagonalization of the matrix of the total
Hamiltonian (1) with generalized operators (3) allows one to
obtain the Zeeman splittings for a given value of the magnetic
field. For each value of the magnetic field, the basis and all the
matrix elements have to be recalculated as the magnetic field
affects the wave functions in the basis. On the other hand, the
magnetic field makes the spectrum sparse and thus decreases
the density of states in the range of interest. This simplifies
sufficiently the numerical calculations.

IV. MODELING

A. Step 1: Obtaining a finite basis

In this subsection, we discuss the numerical computation of
wave functions of a basic Hamiltonian [the first line in Eq. (1)].
The basic Hamiltonian reads

Ĥb = k̂2
e

2me

+
(
k̂2
hx + k̂2

hy

)
(γ1 ± γ2)

2m0

+ k̂2
hz(γ1 ∓ 2γ2)

2m0
+ V (ze,zh) − e2

εr
, (4)

where the upper (lower) sign here corresponds to the hh (lh)
exciton. The QW potential is

V (ze,zh) = [h(a − ze) + h(ze − b)]Ve

+ [h(a − zh) + h(zh − b)]Vh, (5)

where h(x) is the Heaviside function, and ze,h and Ve,h are the
z coordinates and the QW depths for the electron and the hole,
respectively. In the calculations described below, we assume
that Ve = 2Vh, which is a typical ratio for GaAs/InGaAs/GaAs
QWs with small In content. Heterostructures InGaAs/GaAs
are strained due to the lattice constants mismatch. The strain
results in hh-lh splitting, which decreases the depth of the
potential well for the light hole. We take into account this
splitting as it is described in Sec. IV C.

The Schrödinger equation with Hamiltonian (4) can be
solved independently for the hh and lh excitons. To simplify
Eq. (4), we introduce effective masses for the heavy and light
holes:

mhxy = m0

γ1 ± γ2
, mhz = m0

γ1 ∓ 2γ2
. (6)

The upper (lower) signs are again used for heavy (light) holes.
To separate the relative motion of an electron and a hole

in the exciton from the motion of the exciton as a whole, a
conventional definition of the CM and relative coordinates in
the xy plane is used:

X = mexe + mhxyxh

me + mhxy

, Y = meye + mhxyyh

me + mhxy

,

(7)
x = xe − xh = ρ cos ϕ, y = ye − yh = ρ sin ϕ.

205425-4



INVERSION OF ZEEMAN SPLITTING OF EXCITON . . . PHYSICAL REVIEW B 93, 205425 (2016)

With introduced polar coordinates for the xy-plane relative
motion, the basic Hamiltonian has the form

Ĥb = �
2
(
K2

X + K2
Y

)
2(me + mhxy)

− �
2

2μxy

[
1

ρ

∂

∂ρ

(
ρ

∂

∂ρ

)
− k2

ϕ

ρ2

]

− �
2

2me

∂2

∂z2
e

− �
2

2mhz

∂2

∂z2
h

− e2

ε
√

(ze − zh)2 + ρ2
+ V (ze,zh). (8)

Here μxy = (m−1
e + m−1

hxy)−1 is the reduced exciton mass in
the xy plane. The corresponding wave function has a partially
analytical form:

ψ(X,Y,ze,zh,ρ,ϕ) = eiKXXeiKY Y eikϕϕ ψ(ze,zh,ρ)

ρ
. (9)

Here we introduce the denominator ρ for convenience of the
numerical solution. With a wave function in form of (9),
we arrive at the following three-dimensional problem, which
requires numerical calculations:[

− �
2

2me

∂2

∂z2
e

− �
2

2mhz

∂2

∂z2
h

− �
2

2μxy

(
∂2

∂ρ2
− 1

ρ

∂

∂ρ
+ 1 − k2

ϕ

ρ2

)

− e2

ε
√

(ze − zh)2 + ρ2
+ V

]
ψ(ze,zh,ρ) = Eψ(ze,zh,ρ).

(10)

The coordinate separation described above is not exact
in the presence of a magnetic field. To take into account
the magnetic field, one should use a generalized momentum
operator. We restrict our treatment to the Faraday geometry
case. In that extent, the momentum operator is generalized
according to expression (3),

k̂x = −i�
∂

∂x
∓ e

2c
By,

k̂y = −i�
∂

∂y
± e

2c
Bx, (11)

k̂z = −i�
∂

∂z
.

The upper (lower) sign here corresponds to the electron (hole).
Gorjkov and Dzjaloshinskiy [45] have showed that, in the
exciton Hamiltonian with momentum operators in the form
of (11), one can separate the CM coordinates with the wave
function in the form of the ansatz

ψ = exp

[
i
eB

2c�
(xY − yX)

]
ψ(ze,zh,ρ,ϕ). (12)

At this point, we assume that the CM kinetic energy in the xy

plane is zero (KX = KY = 0). The basic Hamiltonian (8) with
the suggested ansatz acquires the following form:

Ĥb(B) = Ĥb + ρ2

2μxy

(
eB

2c

)2

− i
e�B

2c

(
mh − me

Mμxy

)
∂

∂ϕ

+ geμBσzB + ghμBJzB. (13)

The angular dependency of the wave function is still valid for
the Hamiltonian (13). The net exciton wave function in the

presence of a magnetic field yields

ψB(X,Y,ρ,ϕ,ze,zh)ljkϕ

= exp

[
i
eBρ

2c�
(Y cos ϕ − X sin ϕ)

]
eikϕϕψB(ze,zh,ρ)lkϕj .

(14)

Here j (j = ±1/2 and ±3/2) indicates a certain z-projection
of the hole angular momentum, and kϕ = 0, ± 1, ± 2, . . . in-
dicates a certain z-projection of the exciton orbital momentum.
We use index l = 0,1,2, . . . to numerate different exciton states
for given value of j and kϕ . For each value of j and kϕ ,
we obtain a Hamiltonian for the three-dimensional problem,
similar to problem (10), which takes the form

Ĥb(B)3D = − �
2

2me

∂2

∂z2
e

− �
2

2mhz

∂2

∂z2
h

− �
2

2μxy

(
∂2

∂ρ2
− 1

ρ

∂

∂ρ
+ 1 − k2

ϕ

ρ2

)

− e2

ε
√

(ze − zh)2 + ρ2
+ V + ρ2

2μxy

(
eB

2c

)2

. (15)

The eigenproblem with this operator is solved numerically,
separately for the heavy-hole and light-hole excitons (j =
±3/2 and ±1/2, respectively). The value of the magnetic field
is set before the numerical procedure is performed.

The wave-function set (14) forms a complete orthonormal
system of functions with a magnetic field as an extra parameter.
Strictly speaking, this set is the infinite system of exciton
wave functions in a QW. However, we are interested in the
several lowest exciton states, which are observed in the PL
experiments (see Fig. 1). Therefore, we restrict the basis to
the observed s-like states with kϕ = 0 and to p-like and d-like
states, which are significantly coupled with the s-like states
(see the next subsection).

We use the obtained basis to build a matrix of the total
Hamiltonian (1). The diagonal matrix elements follow directly
from Hamiltonian (13):

H hh
nmlkϕ

= Ehh
lkϕ

+ e�B

2c

(
mh − me

Mμxy

)
kϕ

± 3

2
ghμBB ∓ 1

2
geμBB,

H lh
nmlkϕ

= Elh
lkϕ

+ e�B

2c

(
mh − me

Mμxy

)
kϕ

± 1

2
ghμBB ∓ 1

2
geμBB. (16)

Here E
hh,lh
lkϕ

are the eigenvalues of operator (15). The second
terms in these expressions describe the interaction of excitonic
orbital momentum with the magnetic field. The last two terms
describe the exciton Zeeman splitting related to the electron
and hole magnetic momenta.

The electron Zeeman term in Eq. (16) has an opposite
sign compared to that for the hole term, because the angular
momentum of the optically active (bright) hh exciton is the
difference of the electron spin and the hole angular momentum.
The electron and hole g-factors, ge and gh, are changed
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due to the interband mixing. The electron g-factor in III-V
semiconductors can be obtained as [46]

ge = 2 − 2Ep�so

3Eg(Eg + �so)
. (17)

Here Ep is the optical matrix element, �so is the spin-orbit
band offset, and Eg is the band gap. For the GaAs, the electron
g-factor ge = −0.44 [23]. The hole g-factors, which we use
for the calculations, are connected to the Luttinger parameter
κ as [43]

κ = −ghh

6
= −glh

2
, (18)

where ghh,lh are the hole g-factors (κ = 1.2 for GaAs).

B. Step 2: The total Hamiltonian diagonalization in a finite basis

The first step provides eigenfunctions for the basic Hamil-
tonian. In the InGaAs/GaAs QWs (in which we are inter-
ested here), the strain-induced valence-band splitting partially
suppresses the hh-lh coupling. Therefore, the eigenfunctions
of the basic Hamiltonian are a good approximation to the
eigenfunctions of the system without the magnetic field.

The second step accounts for the hh-lh coupling induced by
the magnetic field. We compose a suitable basis to describe the
bright hh-exciton states, which we observe in the experiment.
In this basis, we build a matrix of the total Hamiltonian (1).
The matrix consists of matrix elements {Hη′η} defined
as

Hη′η = 〈ψBη′ |Ĥ |ψBη〉. (19)

Here η and η′ stand for ljkϕ and l′j ′k′
ϕ , respectively, and {ψBη}

is the restricted basis formed from set (14).

The restricted basis should include the optically active states
and all the eigenfunctions ψB admixed by the nondiagonal
terms in Hamiltonian Ĥ . The nondiagonal terms couple the
hh-exciton states to the lh-exciton ones only. The exciton
wave functions in the form of (14) have different X and Y

coordinates for hh- and lh-exciton states. The used ansatz,
however, allows one to ignore this fact in the calculation of
the matrix element, as discussed in the Appendix. The ansatz
provides simplification of coupling operators as well. The
simplified operators have the following structure:

k̂2
y − k̂2

x = 2 sin 2ϕ L∂ρ,∂ϕ,ρ + cos 2ϕ L′
∂ρ ,∂ϕ,ρ, (20)

{k̂x,k̂z} = − sin ϕ L∂ϕ,ρ∂z + cos ϕ ∂ρ∂z, (21)

{k̂y,k̂z} = sin ϕ ∂ρ∂z + cos ϕ L∂ϕ,ρ∂z, (22)

{k̂x,k̂y} = − 1
2 sin 2ϕ L′

∂ρ ,∂ϕ,ρ + cos 2ϕ L∂ρ,∂ϕ,ρ . (23)

In these expressions, ∂α is the partial derivative with respect
to the α variable. Quantities Lα,β stand for a combination
of α and β operators explained in the Appendix. Matrix
elements of coupling operators are nonzero if kϕ of two states
differ by 1 for Eqs. (21) and (22), and by 2 for Eqs. (20)
and (23). Therefore, we consider five orbital momentum
projections (kϕ = 0,±1,±2) to describe the magnetic-field-
induced admixture of the light-hole exciton states to the
observed heavy-hole exciton states with k′

ϕ = 0.
These simple selection rules can be refined. The nondiago-

nal matrix elements of H are the linear combinations of matrix
elements of coupling operators (20)–(23). In the notations
presented above, the coupling matrix elements are proportional
to

Hl′ 3
2 k′

ϕ l 1
2 kϕ

∝ (
e−iϕ

[
i∂ρ∂z + L∂ϕ,ρ∂z

])
l′ 3

2 k′
ϕ l 1

2 kϕ
, (24)

Hl′− 3
2 k′

ϕ l− 1
2 kϕ

∝ (
eiϕ

[
i∂ρ∂z − L∂ϕ,ρ∂z

])
l′− 3

2 k′
ϕ l− 1

2 kϕ
, (25)

Hl′ 3
2 k′

ϕ l− 1
2 kϕ

∝ (
γ2e

2iϕ
[
L′

∂ρ ,∂ϕ,ρ − 2iL∂ρ,∂ϕ,ρ

] + i(γ3 − γ2)
[

sin 2ϕ L′
∂ρ ,∂ϕ,ρ − 2 cos 2ϕ L∂ρ,∂ϕ,ρ

])
l′ 3

2 k′
ϕ l− 1

2 kϕ
, (26)

Hl′− 3
2 k′

ϕ l 1
2 kϕ

∝ (
γ2e

−2iϕ
[
L′

∂ρ ,∂ϕ,ρ + 2iL∂ρ,∂ϕ,ρ

] − i(γ3 − γ2)
[

sin 2ϕ L′
∂ρ ,∂ϕ,ρ − 2 cos 2ϕ L∂ρ,∂ϕ,ρ

])
l′− 3

2 k′
ϕ l 1

2 kϕ
. (27)

Expression (24) is nonzero for (kϕ,k′
ϕ) = (1,0), while ex-

pression (25) is nonzero for (kϕ,k′
ϕ) = (−1,0). Matrix ele-

ments (26) and (27) are nonzero for (kϕ,k′
ϕ) = (±2,0). We

found, however, that the second term in these expressions gives
rise to a considerably smaller contribution than the first term.
This means that the major effect of coupling with d-like states
comes from the first terms. It is nonzero for (kϕ,k′

ϕ) = (−2,0)
for matrix element (26) and (kϕk′

ϕ) = (2,0) for (27).

C. Numerical results for sample P554

The exciton states are characterized with projections of
three angular momenta (in the magnetic field direction):
electron spin, hole spin, and exciton orbital momentum. Table I
represents the basis used to build the Hamiltonian matrix H

for calculations of g-factors for exciton states in the 87-nm

QW in sample P554. The number of states in each group
was determined studying the saturation of the effect of this
group on the observed states (see Fig. 7 in the Appendix).
The electron spin projection for the s-like states is taken so
that the states would be bright. For other states, the electron
spin coincides with the spin projection of the s-like state with
which it couples. The coupling selection rules are denoted in
the table by the brackets on the right side.

With this basis, we calculate elements of matrix H for
a given magnetic field value. We then obtain eigenvalues
of the matrix and extract the Zeeman splittings of the
observed states. The experimentally observed Zeeman split-
tings are nonlinear in the magnetic field, as is shown in
Fig. 4. Our modeling procedure might describe the observed
nonlinearities. However, because of the high complexity of
the numerical procedure, we perform the computation and
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TABLE I. Number of states in the restricted basis, N , used in
the second step of calculations. The states are grouped by angular
momenta projections. Symbols 
 and � in each column indicate the
coupling states.

|s,j,kϕ〉 N∣∣− 1
2 , 3

2 ,0
〉

5 
 
 
∣∣ 1
2 ,− 3

2 ,0
〉

5 
 
 
∣∣− 1
2 , 1

2 ,1
〉

400 �∣∣ 1
2 ,− 1

2 ,−1
〉

400 �∣∣− 1
2 ,− 1

2 ,2
〉

200 �∣∣ 1
2 , 1

2 ,2
〉

200 �∣∣− 1
2 ,− 1

2 ,−2
〉

200 �∣∣ 1
2 , 1

2 ,−2
〉

200 �

determine the Zeeman splitting only at the fixed magnetic field
B = 1 T.

Figure 5 shows the results of the calculations. In this figure,
the numerically obtained values of the exciton g-factor for
different quantum-confined states are compared with those
extracted from the experimental data shown in Fig. 3 at
magnetic field B = 1 T. As is seen, the numerical simulation
well reproduces the main experimental result. In the figure,
we denote hh-lh coupling between the hh-exciton states with
kϕ = 0 (s-like states) and the lh-exciton states with kϕ = ±1
(p-like states) as the s-p coupling. The coupling with the
kϕ = ±2 (d-like) states is denoted as s-d coupling.

We found that the s-p coupling is the main origin of the
g-factor variation. We also found that the contribution of p-like
states with positive momenta projections onto the magnetic
field prevails over the contribution of states with opposite
projections. This leads to the increase of the exciton g-factor,
as shown in Fig. 5.

0 0.5 1 1.5 2 2.5

−0.25

0

0.25

0.5

0.75

Magnetic field (T)

E 
(m

eV
)

1

4

5

6

2

3

FIG. 4. Splittings of the observed exciton states in a magnetic
field for the 87-nm QW in sample P554 (black points with error bars).
Numbers correspond to the exciton-state numbers. The solid lines are
the parabolic approximations of the splittings. For the splitting of
exciton level no. 6, there are no reliable data for the magnetic field
range B = 0.8–1.5 T because of crossing of the level with the Landau
levels; see Fig. 2.
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FIG. 5. Experimentally obtained g-factors of excitons at B = 1 T
vs level number for the 87-nm QW in sample P554 (blue points
with error bars). The gray and pale blue circles are the calculation
results with no coupling and with hh-lh coupling, respectively. The
contribution of s-p coupling only is shown by the blank squares.

The s-d coupling, in turn, can be expressed by two terms
[see Eqs. (26) and (27)]. The first term is greater than the
second one and undergoes a selection rule. It couples the
s-like states with the positive hole spin projection to states
with negative projections of both the hole spin and the orbital
momentum (and vice versa). The coupling with the positive
hole spin projection is weaker. As a result, the s-d coupling
leads to the opposite effect on the g-factor as compared to the
s-p-coupling, as is seen in Fig. 5. There is some deviation
of the calculated g-factors from the measured ones. This can
be attributed to uncertainties of parameters γ3 and κ used
in the calculations. We used the values of these parameters
corresponding to the bulk GaAs. We intentionally avoided any
variation of these parameters as their values are not reliably
known, neither for pure InAs nor for the InGaAs ternary
alloy.

The sign of the exciton g-factor requires a separate
discussion. We set it negative for the lowest quantum-confined
exciton states in the QW under study. However, our results
do not allow us to uniquely determine the sign. The sign
of the hole g-factor and, correspondingly, of the exciton
g-factor is extensively discussed in the literature; see, e.g.,
Refs. [11,13–16,18,19,26,47–50]. However, there is no certain
conclusion about the sign so far.

The results of computation shown in Fig. 5 are obtained
with no fitting parameters. The parameters needed for the
computation are the QW width, the magnitude of the strain-
induced hh-lh splitting, S, and the material parameters defining
the valence-band structure and the hole g-factor. All the
material parameters for GaAs are taken from Ref. [51]. The
hh-lh splitting energy S is taken from the PL excitation spectra
(not shown here). Our model accounts for this splitting by
reducing the depth of the QW for the light hole, Vlh, in
expression (5) down to Vlh = (Vhh − S) with S = 7.5 meV
for the 87-nm QW in sample P554. These values are in
good agreement with the strain splitting dependence on the
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In concentration described in the paper by Van de Walle [52].
The nominal QW width predefined in the MBE growth process
was 95 nm in this sample. The actual (effective) QW width
in the sample under study is reduced down to 87 nm due
to a gradient of the heterostructure layer thicknesses. The
actual width and the segregation length (λD = 3.75 nm) have
been obtained by modeling the exciton energy spectrum. In
the modeling, the segregation was accounted for using the
diffusion model proposed in Ref. [44]. Details of the exciton
spectrum modeling are described in Ref. [36].

In our computations, we used a grid of 50 × 50 × 400
points along the ze, zh, and ρ directions, respectively, in area
120 nm × 120 nm × 800 nm. The boundary conditions suggest
eigenfunctions are zero on the area boundaries. The computa-
tion was processed by the Arnoldi algorithm using a personal
computer. Additional details of the computations can be found
in Ref. [35]. Result of the computations include two sets of
eigenfunctions and eigenvalues for the hh and lh excitons.

V. NARROW QUANTUM WELLS

The observed phenomenon of the large difference of
Zeeman splittings of different exciton states is not a unique
property of the 87-nm QW discussed above. In this section,
we demonstrate a generality of this effect via the experi-
mental study of a number of heterostructures with QWs of
different widths. We have studied a set of three high-quality
InGaAs/GaAs QWs of 30, 36, and 41 nm width. The actual
width determined by the modeling of the exciton spectra is
found to be 10% greater. The indium diffusion length λD = 2
nm in this structure. In addition, four narrow QWs of 12,
10, 7, and 4 nm width were studied. In the QWs whose
width is about that of the exciton-Bohr diameter (33 nm),
three quantum-confined states are observed, while for the
12-nm-wide and narrower QWs, only the ground state is
observed. Studying polarized photoluminescence from these
samples, we obtained various g-factor values in the −4–4
range, as is shown in Fig. 6.

For the 33-nm QW, we performed a similar theoretical
analysis of the g-factor behavior for the quantum-confined
exciton states. Results of the analysis are shown in Fig. 6 by the
red open triangles. As seen, the theoretically obtained g-factors
correspond to the experimentally found ones shown by the
red triangles. Some deviation between theory and experiment
may be related to the different values of γ3 and κ in the
In0.05Ga0.95As QW compared with those of GaAs used in the
modeling.

An analysis shows that there is no regular dependence of
g-factors on the exciton transition energy for different QWs
(not shown here). This is in drastic contrast to the behavior of
the electron g-factor, which is monotonically changed with the
transition energy [23]. At the same time, the g-factors obtained
for different exciton transitions in one QW monotonically rise
with the exciton-state number (see Fig. 5). This is an indication
that some regular dependence of g-factors on an effective wave
vector may take place.

As we already discussed above, the g-factor variation is
described by the {±ik̂x ± k̂y,k̂z} operators coupling the hh and
lh excitons. Therefore, it is reasonable to consider the g-factor
versus some effective wave vector of the heavy hole. A proper
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fa
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33 nm
40 nm
45 nm
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87 nm

12 nm
10 nm 7 nm

4 nm

FIG. 6. g-factors of excitons vs effective hole wave vector k∗
z .

For QWs of 87-, 45-, 40-, and 33-nm width, the g-factors of the
ground and excited states are shown. Red open triangles and pale blue
circles show the results of numerical modeling of exciton g-factors
for the 33- and 87-nm QWs, respectively. The dashed line is the fit
by linear dependence, gex = �k∗

z + g0, with parameters � = (3.5 ±
0.1) × 10−6 cm, g0 = −6.6 ± 0.2.

definition of the wave vector is problematic due to the Coulomb
electron-hole interaction in the exciton. Therefore, we suggest
some “naive” estimate of the wave vector. In particular,
we consider the hole wave function to be approximated by
functions cos(k∗

z z) and sin(k∗
z z) for the quantum-confined

states n = 1,3, . . . and n = 2,4, . . ., respectively. Here k∗
z =

nπ/L is the z-projection of the effective hole wave vector. We
use this definition for the QW width down to 30 nm.

Figure 6 shows the dependence of the exciton g-factor
obtained experimentally and calculated theoretically on the
k∗
z for QWs with LQW � 30 nm. As is seen, a universal

dependence of the g-factor on k∗
z is observed, which can be

well approximated by a linear function within the spread of
the g-factors. For the QWs of width LQW � 30 nm, the above
definition of k∗

z is not valid anymore. The reason is that the hole
wave function penetrates the barrier layers, and the effective
wave vector is not determined by the real QW width. We can
roughly estimate k∗

z considering only the central part of the
wave function within the QWs. Respective k∗

z are given in
Fig. 6 for the narrow QWs. As is seen, some deviation from
the linear dependence with the decrease of the QW width is
observed. We assume that the main reason for this effect is the
penetration of the hole wave function into the barriers.

The universal character of g-factor renormalization shown
in Fig. 6 is observed not only for QWs of varying widths but
also for the excited exciton states in the QWs. We should note
that a monotonic dependence of the exciton g-factor on the
effective wave vector has been observed previously only for
wide QWs [28–30].

VI. CONCLUSION

Our study shows that direct calculation of Zeeman splittings
of the quantum-confined exciton states is an effective method
to describe the evolution of exciton systems in a longitudinal
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magnetic field. The theoretical analysis has shown that the
experimentally observed large change of exciton g-factor with
the number of quantization level in the intermediate-width and
narrow QWs is caused by the mixing of the heavy-hole and the
light-hole exciton states. We developed a model that takes into
account all the valuable interactions in the system. Numerical
simulations with no fitting parameters quantitatively reproduce
the experimentally observed behavior of g-factors for the 87-
nm- and 33-nm-thick QWs. It is important that our model
can be used to obtain g-factors of excitons in the QWs of
arbitrarily small thickness as long as the envelope-function
approximation is applicable. The developed approach allows
one to numerically obtain the exciton wave function in a QW
whose width is comparable to the exciton Bohr radius.
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APPENDIX: NONDIAGONAL OPERATORS OF THE
LUTTINGER HAMILTONIAN IN CYLINDRICAL

COORDINATES

The nondiagonal operators of the Luttinger Hamiltonian are
used in our consideration of cylindrical coordinates introduced
by Eqs. (7). In the magnetic field perpendicular to the QW
plane, this operators can be expressed in the form

k̂2
y − k̂2

x = sin 2ϕ �
2

(
2

ρ2
∂ϕ − 2

ρ
∂ρ∂ϕ + 2i

eB

2c�
ρ∂ρ

)
+ cos 2ϕ �

2

[
∂2
ρ − 1

ρ2
∂2
ϕ − 1

ρ
∂ρ + 2i

eB

2c�
∂ϕ +

(
eB

2c�

)2

ρ2

]
,

{k̂x,k̂z} = cos ϕ �
2∂ρ∂zh

− sin ϕ �
2

(
i
eB

2c�
ρ + 1

ρ
∂ϕ

)
∂zh

,

{k̂y,k̂z} = sin ϕ �
2∂ρ∂zh

+ cos ϕ �
2

(
i
eB

2c�
ρ + 1

ρ
∂ϕ

)
∂zh

,

{k̂x,k̂y} = sin 2ϕ
1

2
�

2

[
−∂2

ρ + 1

ρ
∂ρ + 1

ρ2
∂2
ϕ − 2i

eB

2c�
∂ϕ −

(
eB

2c�

)2

ρ2

]
+ cos 2ϕ �

2

(
1

ρ2
∂ϕ − 1

ρ
∂ϕ∂ρ + i

eB

2c�
ρ∂ρ

)
.

(A1)

Such a form duplicates the structure of expres-
sions (20), (21), (22), and (23), therefore it is easy to match
linear operators here with those introduced above.

In Sec. IV, we noted that the CM X and Y coordinates for
the heavy-hole and light-hole excitons are different according
to the definition. This difference implies that a matrix element
on a given operator Â mixing the heavy-hole states with the
light-hole states should be written in terms of Xhh,lh and Yhh,lh

coordinates:

〈ψ(Xlh,Ylh,ze,zh,ρ,ϕ)|Â|ψ(Xhh,Yhh,ze,zh,ρ,ϕ)〉. (A2)

The integration has to be done in one of the coordinate systems
involved: the heavy-hole exciton system or the light-hole one.
However, one can show using ansatz (12) that these coordinate
systems are equivalent for our wave functions. Indeed, the
exponent in (12), which only contains X and Y coordinates,
yields

(Ylh cos ϕ − Xlh sin ϕ) = (Yhh cos ϕ − Xhh sin ϕ). (A3)

This equivalence reveals an important property of the ansatz
used: it has exactly the same form in both the heavy-hole and
light-hole exciton coordinates.

In Sec. IV, we also noted that the constrained basis has
a sufficient number of lh-exciton states. Figure 7 shows that
the calculated g-factor values of the five observed hh-exciton
states saturate as the number of p-like lh-exciton states

increases. For the ground state, about 100 states are sufficient
to saturate, while for the fifth state more than 300 states are
needed. According to these saturation data, we have used 400
p-like states in the constrained basis.
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FIG. 7. The theoretically obtained g-factor values vs the number
of p-like lh-exciton states included in the constrained basis. The
number near each curve corresponds to the exciton-state number in
the 87-nm QW.
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