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Nuclear spin relaxation in n-GaAs: From insulating to metallic regime
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Nuclear spin relaxation is studied in n-GaAs thick layers and microcavity samples with different electron
densities. We reveal that both in metallic samples where electrons are free and mobile, and in insulating samples
where electrons are localized, nuclear spin relaxation is strongly enhanced at low magnetic fields. The origin of
this effect could reside in the quadrupole interaction between nuclei and fluctuating electron charges, that has been
proposed to govern nuclear spin dynamics at low magnetic fields in the insulating samples. The characteristic
values of these magnetic fields are given by dipole-dipole interaction between nuclei in bulk samples, and
are greatly enhanced in microcavities, presumably due to additional strain, inherent to microstructures and
nanostructures.
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I. INTRODUCTION

Magnetic field and density dependence of the electron spin
relaxation in n-doped semiconductors has been extensively
studied during past decades [1]. It is well established that,
at low temperatures, spin relaxation of electrons in lightly
doped bulk semiconductors, such as GaAs, and nanostructures
(quantum wells and quantum dots) is determined by the
contact hyperfine interaction with lattice nuclei [2,3]. The
electron spin, hopping over shallow donors, feels a fluctuating
nuclear magnetic field, which makes its spin flipping. In GaAs,
at impurity concentrations n ≈ 1014–1015 cm−3 the nuclear
field is dynamically averaged because the typical hopping
time (1–0.01 ns) is much shorter than the average period of
electron spin precession in the random nuclear field [4]. With
doping, the hopping rate 1/τc increases exponentially [5].
As a result of more effective averaging of random nuclear
fields, the nuclear-mediated electron spin relaxation time Ts

becomes longer, so that another relaxation mechanism, based
on spin-orbit interaction, takes over [5–7].

When the concentration of donors is further increased
above the metal-to-insulator transition (MIT), which occurs
in GaAs at nD = 2 × 1016 cm−3, the electron spin relaxation
time starts to decrease because, in the metallic phase, the
Dyakonov-Perel (DP) mechanism dominates spin relaxation
of the Fermi-edge electrons [4]. Thus, the density dependence
of the electron spin relaxation time in n-doped semiconductors
is strongly nonmonotonous [5,8]. Much less is known about
nuclear spin-lattice relaxation times T1. Most of the studies
were carried out in the presence of the external magnetic field
stronger than local field BL, that characterizes dipole-dipole
interactions between nuclei (B � BL ∼ 2 G in GaAs) [1,9–
11]. Moreover, in most of the existing optical detection
protocols, it is necessary to inject out-of-equilibrium carriers,
in order to probe any changes in the electron spin polarization
or splitting, induced by nuclear spins [12,13]. Because injected
electron spins are not in thermal equilibrium, they strongly
affect nuclear spin dynamics. This leads to various nonlin-

earities [4,13] and makes it difficult to address nuclear spin
relaxation.

Let us summarize what is known about nuclear spin-lattice
relaxation times in n-GaAs. At low temperatures, nuclear
spin relaxation in n-doped semiconductors is mediated by
electrons [14]. The relaxation of the nuclear spins residing
under the donor orbits is rather fast (fractions of second), while
the relaxation of the remote nuclei can be much slower because
it is limited by the spin diffusion towards the donors [12,15].
The characteristic time for this diffusion-limited relaxation can
be estimated as [16]

T −1
D ≈ 4πDndaB, (1)

where D ≈ 10−13 cm2/s is the nuclear spin-diffusion coeffi-
cient [12], aB = 10 nm is the localization radius of the electron
on the center, and nd is the donor density. TD can reach minutes
and even hours in very dilute samples, but shortens close to
MIT.

With increasing the donor density above MIT, nuclear
relaxation is expected to slow down because electrons are
no more localized on the donor sites. It is no more limited by
diffusion, but rather by the spin fluctuations of free Fermi-edge
electrons (Korringa mechanism) [10,17,18]. However, in the
intermediate regime, close to MIT, pairs of closely spaced
donors still act as localizing centers for electrons. They were
shown to contribute to the nuclear spin relaxation. As a result,
it is still limited by spin diffusion, rather than by the Korringa
mechanism [15].

This qualitative picture based on these three relaxation
mechanisms (hyperfine interaction, nuclear spin diffusion,
and Korringa mechanism) describes reasonably the existing
experimental data at low temperatures and strong fields. But,
it does not predict any substantial modification in the low-field
regime B < BL, a peculiar regime where one must distinguish
the longitudinal nuclear spin relaxation time from the time
characterizing the warm up of the nuclear spin system, which
is determined by energy transfer between the nuclear spin
and the crystal lattice [4,14]. Indeed, these relaxation times
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coincide only at magnetic fields much larger than the local
field, while at low magnetic field the relaxation time of the
nonequilibrium nuclear spin becomes much shorter due to
dipole-dipole nuclear interactions. The characteristic time of
the dipole-dipole relaxation, also referred to as the transverse
spin relaxation time, is as short as T2 ∼ 100 μs [4]. Therefore,
any low-field nuclear spin polarization, showing relaxation
times longer than T2, is in fact a quasiequilibrium polarization.
Its value is uniquely defined by the applied magnetic field and
the nuclear spin temperature �N . The concept of the spin
temperature is therefore essential for the description of the
low-field nuclear spin dynamics [19]. The relaxation time of
the nuclear polarization in this regime is given by the relaxation
of the nuclear spin temperature to the lattice temperature. This
process is often referred to as a warm up of the nuclear spin
system [4]. We note that the low-field regime is particularly
important when deep cooling of the nuclear spin system is
intended because the demagnetization to low field is required
in this protocol [20].

We have recently reported a strong enhancement of the
nuclear spin warm up rate in a n-GaAs bulk sample in
the insulating regime [21]. This surprising effect could be
understood by taking into account an additional relaxation
mechanism: the interaction of nuclear quadrupole moments
with electric field gradients induced by slow spatiotemporal
fluctuations of localized electron charges.

In this paper, we scrutinize nuclear spin dynamics in six
n-GaAs samples with the concentration varying across MIT
from 2 × 1015 cm−3 to 9 × 1016 cm−3. Our goal is to provide
a comprehensive picture of (i) the spin relaxation efficiency of
the bulk nuclei, situated outside of the donor-bound electron
Bohr radius, and (ii) magnetic field dependence of nuclear spin
relaxation in samples with different donor densities.

The experiments reported in this paper involve three dif-
ferent experimental techniques, all using different multistage
strategies, in order to separate preparation of nuclear spin
under optical pumping from measurements of the spin relax-
ation: photoluminescence (PL) with dark intervals [18,20,21],
Faraday rotation (FR) [15], and spin noise (SN) spec-
troscopy [22,23]. This choice of the methods allows for the
comparison between bulk GaAs layers and microstructures
(thin layers embedded in planar microcavities), that were
used to amplify SN and FR signal induced by nuclear spin
polarization [24–26].

The main results of our analysis can be summarized in three
points. (i) At strong magnetic fields the spin relaxation rate fits
reasonably the picture described in the Introduction, based on
the hyperfine interaction, nuclear spin diffusion, and Korringa
mechanism. In this study, strong magnetic fields designate
fields much larger than the local field but not exceeding 1000 G.
(ii) At low magnetic fields, quadrupole-induced enhancement
of the warm up rate appears to be ubiquitous, it shows up in
all the samples. (iii) The characteristic field B1/2 that controls
the onset of the nuclear spin warm up enhancement is of order
of the local field BL in bulk samples, but is up to six times
higher in all microstructures, either sandwiched between the
Bragg mirrors, or between two GaAlAs barriers. We attribute
this difference to the small, but not negligible strain present
in all microstructures, and the resulting quadrupole splittings
between nuclear spin states.

The paper is organized as follows. In Sec. II, we describe
the samples studied in this work. In Sec. III, we present three
different types of experiments used for studies of nuclear spin
relaxation, and the procedure applied to extract bulk nuclear
spin relaxation times. In Sec. IV, we present the results of
the measurements, and draw up the picture of nuclear spin
relaxation in n-GaAs: magnetic field, temperature, and donor
density dependence, as well as the effect of microstructures
on the nuclear spin relaxation. The experimental results
are compared with the existing models for nuclear spin
relaxation, that allow us to partly understand the data. Possible
explanations for the enhancement of the nuclear spin relaxation
rate at low magnetic field and the role of the microstructures
in this phenomenon are also discussed. The results of the work
are summarized in Sec. V.

II. SAMPLES

We use in this work six different Si-doped GaAs samples
(see Table I). Two GaAs layers with Si donor concentration
of nd = 4 × 1015 cm−3 (Sample D) and nd = 6 × 1015 cm−3

(Sample C) were grown on 500-μm-thick GaAs substrates
by liquid (Sample D) or gas (Sample C) phase epitaxy. The
thicknesses of these layers are 20 μm (Sample D) and 200 μm
(Sample C). These epitaxial layers are so thick that we will
refer to Samples D and C as bulk samples.

Three microcavity samples were grown by molecular beam
epitaxy. In these structures, a Si-doped 3λ/2 GaAs cavity
layer is sandwiched between two Bragg mirrors, in order to
enhance the sensitivity of Faraday rotation and spin noise
experiments. The front (back) mirrors are distributed Bragg
reflectors composed of 25 (30) pairs of AlAs/Al0.1Ga0.9As
layers, grown on a 400-μm-thick GaAs substrate. Due to
multiple reflections from the mirrors, the FR(SN) is amplified
by a factor N ∼ 1000 with respect to the bare cavity layer,
corresponding to the interaction length L = 0.7 mm. The
cavity was wedge shaped in order to have the possibility to
tune the cavity mode energy by varying the spot position on
the sample. The detuning between the energy gap of undoped
GaAs, chosen as a reference, and the cavity mode could be
slightly varied. Here, we worked typically around 20–30 meV,
depending on the sample.

Note that because of this large detuning of the cavity
mode with respect to the GaAs energy gap, the interband
emission is strongly suppressed. Therefore, studies of nuclear
spin dynamics via the degree of circular polarization of

TABLE I. Sample parameters: electron density, electron spin
relaxation time, layer thickness. The presence of the cavity, and the
type of experiments that were realized are indicated.

Sample A B C D E F

nd (1015 cm−3) 40 20 6 4 2 90
Ts (ns) 30 250 120 180 80 20
Layer thickness (μm) 0.37 0.37 200 20 0.37 1
Cavity (yes/no) yes yes no no yes no
Measurements SN FR PL SN, PL FR, SN PL
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photoluminescence were not possible in the microcavity
samples.

The concentrations of Si donors were nd = 4 × 1016 cm−3

(metallic, Sample A), nd = 2 × 1016 cm−3 (close to metal-
insulator transition, Sample B), and nd = 2 × 1015 cm−3

(insulating, Sample C). Sample F was also grown by molecular
beam epitaxy on GaAs substrate. It is a 1-μm-thick layer
of GaAs with donor concentration nd = 9 × 1016 cm−3,
sandwiched between AlGaAs barriers. Because of the small
thickness of the layer, similar to that of the microcavity
samples, we will refer to this sample as a microstructure, rather
than a bulk layer, in contrast with Samples C and D.

Thus, we have three metallic (A, B, F) and three insulating
(C, D, E) samples, among which two are bulk thick layers (C,
D), and four others are various microstructures. All the samples
have been studied in our previous works [5,15,21,22,27].

III. EXPERIMENTAL PROTOCOLS

All the experiments are realized at cryogenic temperatures,
with the possibility to apply magnetic field in an arbitrary
configuration. The geomagnetic field is compensated with the
precision of at least ≈0.1 G. The three types of experiments
exploited in this work aim at measuring nuclear spin relaxation
dynamics as a function of the external magnetic field but in
the absence of the optically created charge carriers. Thus,
the experimental protocols that we use for these studies have
an important common point. Namely, nuclear spin cooling
is separated in time from the measurement stage. Cooling is
always achieved via optical pumping of the resident electrons,
which, in the presence of the magnetic field component
parallel to the light, is accompanied by dynamic polarization
of nuclei [4]. Then, nuclear spin relaxation in the absence
of optical pumping is studied under arbitrary magnetic field.
The details of the experimental protocols that we adopt are
presented below, illustrated by typical measurements of PL,
FR, and SN in our samples. Although we have already
presented each of this techniques separately in our previous
publications, we give an overview of all of them, for the sake
of completeness.

A. Photoluminescence measurements

The experimental setup used for PL experiments is shown
in Fig. 1(a). The excitation beam is provided by a Ti:sapphire
laser at E = 1.55 eV, circularly polarized and focused on
50-μm-diameter spot on the sample surface. The PL is
collected in the reflection geometry, passes through a circular
polarization analyzer [consisting of a photoelastic modulator
(PEM) and a linear polarizer], and spectrally dispersed with
a double-grating spectrometer. The signal is detected by an
avalanche photodiode, connected to a two-channel photon
counter synchronized with the PEM. External magnetic field
B is applied in the oblique but nearly Voigt geometry (<10◦),
in order to allow for both dynamic nuclear polarization (here
the longitudinal component Bz of the applied magnetic field
is important) and detection of the nuclear polarization via the
Hanle effect (here the in-plane component Bx of the applied
magnetic field is required). A typical PL measurement in the
bulk GaAs sample (Sample D) is presented in Fig. 2(a).

During the pumping stage, the magnetic field Bpump =
3.5 G and the pumping beam are switched on. The magnitude
of the magnetic field is chosen to ensure the best sensitivity of
the PL polarization to the nuclear field [close to the half-width
at half-maximum (HWHM) of the Hanle curve]. The nuclear
spin polarization builds up on the scale of several minutes. The
duration of this stage is fixed to Tpump = 5 min. After that, the
pump beam is switched off, and the magnetic field is set to the
value Bdark at which we want to study the relaxation of nuclear
spin polarization. The second stage of PL experiment will be
referred to as the dark stage, its duration Tdark is varied, in
order to access nuclear relaxation dynamics. Immediately (on
the scale of electron spin relaxation time Ts) after switching off
the pump, electron spin polarization returns to its equilibrium
value (close to zero in our experimental conditions).

Nuclear spin relaxation time T1 is much longer than
that of electrons. During Tdark the nuclear polarization (or,
equivalently, inverse spin temperature) decreases by the factor
of exp(−Tdark/T1). Because the PL signal is strictly zero during
this stage, it is impossible to monitor in real time the evolution
of the nuclear spin polarization. The value of the Overhauser
field BN achieved after Tdark is measured during the third
stage of the PL measurement protocol. To do so, the light
is switched back on, measuring field Bpump is restored and the
degree of circular polarization of PL is detected. Measuring
the PL polarization degree in the beginning of the third stage
ρdark, as a function of Tdark, provides the information on the
relaxation of nuclear field for a given value of the magnetic
field applied during the second (dark) stage. To increase
the precision of ρdark measurements, we monitored the PL
polarization exponentially approaching its equilibrium value
during 150 s. The Overhauser field achieved after the dark
stage BN (Tdark) is related to PL polarization ρdark. It is given
by the Hanle formula

BN (Tdark) = B1/2

√
ρ0 − ρdark

ρdark
− Bpump, (2)

where ρ0 is the PL polarization in the absence of the
external field, and B1/2 is the half-width of the Hanle curve,
measured independently [18] under conditions where nuclear
spin polarization is absent (pump polarization modulated with
PEM at 50 kHz). For the shortest Tdark we have checked that
the Overhauser field BN (Tdark) restores to its value measured
at the end of the pumping stage. Thus, measuring BN (Tdark)
as a function of Tdark and fitting the resulting exponential
decay with the function BN (Tdark) = exp (−Tdark/T1), we can
access the nuclear spin relaxation time T1 for a given external
magnetic field applied during the dark stage. Note that a similar
protocol has been first proposed and realized by Kalevich
et al. [20], and then further developed in Refs. [18,21].

B. Faraday rotation measurements

The experimental protocol that we use in this work was
proposed theoretically in Ref. [28], and then successfully
implemented in Ref. [15]. The FR setup is shown in Fig. 1(b).
For the microcavity samples, it is not possible to work under
resonant pumping conditions because the band edge is situated
in the middle of the Bragg stop band [27]. Therefore, we use
a continuous wave laser diode emitting at 1.59 eV, well above
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FIG. 1. Sketch of experimental setup used for PL (a), FR (b), and SN (c) measurements.

the Bragg stop band, for both FR and SN (see Sec. III C)
measurements. We work in the transmission geometry, and
purely longitudinal magnetic field Bz is applied (parallel to
the growth axis). In contrast with PL, here we realize a
two-beam experiment. While the pump beam is focused into
a 0.5-mm-diameter spot on the sample surface, the linearly
polarized probe beam is focused on a 50-μm spot, to probe
selectively the area homogeneously excited by the pump beam.
A linearly polarized probe beam is provided by a mode-locked
Ti:sapphire laser, to ensure better stability of the transmission
through the cavity mode. It is spectrally filtered with the 4f

zero-dispersion line, down to the spectral width of 5 meV. Its

energy is fixed at the cavity mode, which filters the incident
pulse at the cavity mode energy, corresponding to the detuning
of ≈20–30 meV, with respect to the GaAs band gap. Typical
pump and probe powers are 10 and 2 mW, respectively.
The rotation of probe polarization after transmission from
the sample is analyzed by a PEM operating at 100 kHz,
followed by a linear polarizer, the resulting signal is sent into an
avalanche photodiode and demodulated at the PEM frequency.
Both metallic (Sample B) and insulating (sample E) samples
were studied by the FR technique.

A typical FR measurement for Sample E is presented in
Fig. 2(b). A nonzero FR is always measured in presence of
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FIG. 2. Typical examples of raw measurements using three
different experimental techniques: PL (a), FR (b), and SN (c). Red
lines indicate the pumping slots, blue arrows indicate when magnetic
field is changed, black lines are the data.

the external magnetic field. This static field-induced FR is not
related to the photoinduced polarization of electrons and nuclei
and is systematically subtracted from all the measurements.
The pumping stage of the experiments starts when both the
pump beam and the pumping magnetic field Bpump = 180 G are
switched on. During pumping, FR is continuously monitored.
One can see that the signal increases with roughly two
characteristic times. We systematically observe a fast increase
on the scale of several seconds, followed by a slower growth
on minutes scale. Full saturation is eventually achieved after
≈1 h for Sample E, corresponding to the maximum Overhauser
field achievable under given pumping conditions. To explain
this dynamics, we argue that FR signal under optical pumping
consists of two contributions. The strongest signal comes
from spin-polarized electrons, which are bound to donors
in the insulating Sample E, and experience the effect of
the increasing Overhauser field. This component grows with
two characteristic times. Fast increase is determined by the
polarization of nuclei close to donors within the bound electron
Bohr radius. Obviously, in metallic samples fast component
is absent because nuclei are rather homogeneously polarized
by Fermi-edge electrons [15]. The second contribution comes
from the conduction band spin splitting induced by the
Overhauser field averaged over the measured sample volume.
Its amplitude is small with respect to the first component,

and the dynamics develops on the nuclear spin-diffusion time
scale. Although the observed dynamics is quite interesting by
itself, this work is focused on the nuclear spin dynamics in
the absence of optical pumping, and we will not consider the
dynamics during pumping further. Thus, we concentrate on the
second stage of the FR experiments. After the time Tpump = 3
min that we keep fixed in these experiments, the pump beam
is switched off, and the magnetic field is set to Bdark, for which
we want to study the relaxation of nuclear spin polarization.
All photoinduced electron spin polarization relaxes on the
scale of Ts , which is not resolved in these experiments, and
the remaining FR signal is small [Fig. 2(b)]. It is almost
exclusively determined by electron spin band splitting induced
by Overhauser field. This is the dominant mechanism of FR
in the absence of optical pumping.1 Because FR is directly
proportional to the average Overhauser field in the probed
volume, �F = VNBNLeff , where Leff is the effective length of
the cavity.

The effective length of the cavity is the double thickness of
the cavity 2L times the number of round trips Leff = 2L ×
N = Qλres/(2π ), where Q = 19 280 ± 480 is the quality
factor measured by interferometric technique, λres is the
wavelength of the cavity resonance [15]. Therefore, for our
3λres/2 cavity we get Leff ∼ 0.7 mm. Because Leff � 2L,
Faraday rotation is strongly enhanced with respect to a bare
layer with thickness L [24–26]. The proportionality coefficient
VN is called nuclear Verdet constant, in analogy with tradi-
tional Verdet constant which characterizes the efficiency of
traditional Faraday rotation. The determination of VN for each
sample requires careful measurements of BN from independent
experiments [27].

Nevertheless, by fitting the observed exponential decay of
FR during the dark stage, we recover T1, the relaxation time
for nuclear spins in the absence of optical pumping and under
arbitrary magnetic field Bdark. In Sample B, where the decay
of the nuclear polarization is additionally contributed by the
initial fast decay due to electron localization on the donor
pairs [15], we only keep the slow component of the decay,
associated with the bulk nuclei.

C. Spin noise measurements

The SN setup is shown in Fig. 1(c). As for the FR, we use
two laser beams, one for the dynamic nuclear polarization,
the other for detection of the resulting nuclear spin dynamics.
Optical pumping at 1.59 eV with circularly polarized beam is
achieved using the same laser diode. In the same manner as
in the PL experiments, the magnetic field is applied in oblique
but nearly Voigt geometry (at 15◦), in order to allow for both
optical pumping of the nuclear spin and for the detection of
the resulting nuclear field via the peak frequency shift in the
spin noise spectrum. A linearly polarized probe beam resonant
with the cavity mode is provided either by a continuous
wave Ti:sapphire laser or by a tunable external-cavity diode
laser, with typical power Ppr = 0.25 mW, and focused on

1For Sample B, with electron density close to MIT, the contribution
due to spin polarization of electrons bound to donors can also be
detected [15].
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30 μm. The electron spin fluctuations induce fluctuations of
the Faraday rotation angle of the probe beam reflected from
the sample, which are detected by means of a polarization
sensitive optical setup, with a detector bandwidth up to 1 GHz.
The SN spectra are then obtained by feeding the signal into a
Fourier-transformation-based spectrum analyzer. The position
of the SN peak in the spectrum is determined by the magnitude
of the total magnetic field, acting upon the electron spins. It is
given by the sum of the external field B and the Overhauser
field BN . The conduction band electron gyromagnetic ratio
for GaAs γe = 0.64 MHz/G is well known. This allows us
to directly relate the frequency of the peak ν measured in SN
spectrum to BN , for a given arbitrary value of the applied
field:

BN = (ν − γeB)/γe. (3)

The accumulation time of a SN spectrum could be reduced
down to 1.5 s without affecting measurement accuracy.
This defines temporal resolution of the experiments. Thus,
measuring time evolution of the SN peak frequency allows
for determination of the nuclear spin relaxation times under
arbitrary magnetic field.

To access nuclear spin relaxation by SN measurements, we
adapted the procedure similar to Ref. [22]. It is illustrated for
Sample E in Fig. 2(c), where the position of the SN spectral
peak is shown as a function of time. Before the beginning of
the experiment, nuclear spin polarization is zero. The position
of the peak in the SN spectrum is given by γeB, where we
choose B = Bdark, the magnetic field at which we want to
study nuclear spin relaxation. At t = 0, the pump beam is
switched on, and the magnetic field Bpump = 180 G is set. One
can see that the frequency of the SN peak starts to increase.
Because the position of the spectral peak in SN follows the
evolution of BN , we can follow the build up of the nuclear
spin polarization. As in the case of the FR, the biexponential
evolution of the peak frequency can be clearly observed in
the insulating Sample E, while in the metallic Sample A
the evolution is monoexponential (not shown). Nuclear spin
dynamics under optical pumping as a function of magnetic
field was previously considered in many works [4,29]. Here,
we concentrate on the nuclear spin properties “in the dark.”

To study nuclear spin relaxation in the dark, we switch
off the pump beam after the pumping time Tpump, and set
the magnetic field to Bdark, for which we want to study
relaxation of the nuclear spin polarization. The SN peak starts
to move towards ν = γeBdark, reflecting nuclear depolarization
dynamics. Depending on the electron concentration (metallic
or insulating sample) this dynamics is quite different [22].
In the insulating Sample E, shown in Fig. 2(c), the decay
is biexponential, while in the metallic sample, a monoexpo-
nential behavior is observed (see Ref. [22]). As has already
been noted, this difference can be explained assuming that
nuclear spin-lattice relaxation in the metallic semiconductor is
mediated by itinerant Fermi-edge electrons via the Korringa
mechanism, while in the dielectric phase it is mediated by
the donor-bound electrons. In the former case, the nuclear
spin polarization decays with equal speed at any spatial
point. In the latter case, the polarization of nuclei under the
orbits of donor-bound electrons decays much more rapidly
than in the space between donors, where relaxation goes via

nuclear spin diffusion towards donors, which play the role of
killing centers [12,15]. Such relaxation scenario results in two
drastically different decay times for nuclear spin polarization.

In this paper, we focus on studies of spin relaxation of bulk
nuclei, not directly affected by contact hyperfine interaction.
Our goal is to compare the corresponding relaxation times
in the samples with different donor densities. Thus, from the
biexponential decay observed in insulating samples we extract
the longest decay time, related to the spin relaxation of the
bulk nuclei.

D. Comparison between SN, PL, and FR techniques

To check consistency of the results obtained by different
techniques, we performed the measurements using both SN
and PL techniques in Sample D, and using both FR and SN
techniques in Sample E. The nuclear spin relaxation times
obtained by the different methods on the same sample are
identical, within the experimental accuracy. This is important
because depending on the samples, the measurements were
realized by different techniques, as summarized in Table I.
Indeed, the PL experiments could not realized in microcavity
samples, while SN and FR are greatly facilitated by the
presence of the cavity.

There is an important difference between FR and SN
experiments. While the Overhauser-field-induced FR does not
require the presence of electrons to detect nuclear magne-
tization, the SN signal comes only from the regions where
resident electrons are present. Nevertheless, the SN signal does
provide the information on the spin of the bulk nuclei, due to
nuclear spin diffusion from the bulk towards the donor sites.
This is clearly manifested by the presence of the additional
fast component in the decay of the spin polarization in the
insulating sample observed by the SN spectroscopy, while
this decay is monoexponential, when either FR or PL is
measured. Thus, these methods are complementary and the
comparison between them makes it possible to separate the
contributions of nuclei with stronger (close to donor sites) or
weaker (bulk nuclei) coupling to localized electrons in n-type
structures.

However, in this work, we study specifically only the
slow component of the SN signal originating from the nuclei
situated in the periphery of the electron wave function. In
the insulating Sample E, the spin relaxation time T1 and its
field dependence measured by SN and FR are very similar,
which means that the relaxation times of the nuclei situated
in the periphery of the electron wave function are very close
to those of the bulk nuclei. The PL experiments are much
more time consuming than SN and FR because a separate
measurement should be realized for each duration of the dark
interval. Another drawback is that it requires the injection of
the photocarriers for the measurement.

On the other hand, the advantages of the PL include the
true “dark” relaxation. Indeed, there is no probe beam that
could have, even being 20 meV below the band gap, any
influence on the nuclear spin dynamics in the FR and SN
experiments [10,23]. To avoid these effects, we keep the probe
power low enough, making sure that further lowering of the
power does not affect the T1 values, extracted from the SN
and FR measurements. Comparison of the relaxation times
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FIG. 3. Spin relaxation rate measured as a function of applied
magnetic field for different samples at T ∼ 4–5 K. Symbols are the
relaxation rates extracted from the data, solid lines are Lorentzian
functions corresponding to the best fit to the data. Bulk samples (a)
and microstructures (b) are shown separately. Inset shows the details
of the low-field behavior. (c) Half-width at half-maximum of the
Lorentzians for all samples.

obtained from the PL and SN further confirms that we work in
the regime where the probe beam does not affect the nuclear
spin relaxation. In addition, the PL technique can be easily
applied to thin layers, while the detection of the SN and FR
without the cavity enhancing the signal is more demanding.

Overall, the possibility to compare the data via cross-
checking procedure involving different methods provides an
additional degree of confidence in the obtained results.

IV. RESULTS AND DISCUSSION

The summary of the nuclear spin relaxation rate measure-
ments at lowest temperatures as a function of magnetic field
is given in Fig. 3. Figure 3(a) shows the two bulk samples,
and Fig. 3(b) the four microstructures. The salient feature of
these data is that the relaxation rate increases dramatically
when magnetic field decreases down to zero. Qualitatively, the
behavior is similar in all samples. This is the main experimental
finding of this work. Fitting the data to the Lorentzian
function, we extract the relaxation rates in the strong-field
limit [Fig. 4(c)] and the half-width at half-maximum B1/2 of
the Lorentzian [Fig. 3(c)]. One can see that the characteristic
field B1/2, below which the relaxation rate increases, is smaller
in bulk samples than in the microstructures. On the other hand,
the value of B1/2 is not a monotonous function of the donor
concentration. Indeed, the largest values of B1/2 ∼ 15 G are
observed in the samples with the lowest and the highest donor

FIG. 4. Temperature dependence. (a) Nuclear spin relaxation rate
in the strong-field limit, the data (symbols) are obtained from the
Lorentzian fits of the measured field dependence at each temperature.
Solid lines (same color code as for the data) are temperature
dependencies expected in metallic [Eq. (8)] and insulating samples
[Eq. (9)]. (b) Half-width at half-maximum of the nuclear relaxation
rate field dependence, extracted from the Lorentzian fits as those
shown in in Fig. 3. Broadening (narrowing) of the field dependence in
different samples. (c) Nuclear spin relaxation times in the strong-field
limit at T ∼ 5 K (symbols) for different samples, compared to the
theoretical estimations within the diffusion-limited relaxation on
isolated donors in insulating samples [Eq. (1), magenta line] and
on donor pairs in metallic samples [Eq. (5), green line]. Calculation
using Korringa formula [Eq. (7)] at T = 5 K is shown by the blue
line.

densities (Samples E and F). The behavior of the relaxation
times in the strong-field limit is not less surprising. In the range
of the studied donor densities, no significant variation of the
nuclear spin relaxation is observed [Fig. 4(c)].

To complete the analysis, we explore the temperature
dependence of the nuclear spin relaxation. The strong-field
limit of the nuclear spin relaxation is shown in Fig. 4(a). It was
measured under magnetic field ranging from 150 to 1000 G,
where no field dependence is observed. In the insulating
samples (C, D, and E) we do not observe any pronounced
effect of the temperature (at least up to 20 K), while in metallic
samples (A and F) nuclear spin relaxation rate increases with
temperature.

The values of B1/2 obtained from the fits to the Lorentzian
shape of the relaxation rate as a function of the magnetic field
are shown in Fig. 4(b). One can see that there is no systematic
behavior, so that we cannot associate it either with the donor
density or with the presence of the microstructure.

In the following, we discuss possible mechanisms of
nuclear spin relaxation that would allow for self-consistent
description of these data. An analysis of the strong-field
relaxation is followed by a discussion of the magnetic field
dependence.
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A. Strong-field nuclear spin relaxation

In order to understand these experimental results, we start
from the strong-field and low-temperature regime. Under
these conditions, nuclear spin relaxation rate is only weakly
affected by the density of donors. In Fig. 4(c), we compare the
experimental data with the theoretical estimations. At lowest
donor densities, nuclear spin dynamics is controlled by the fast
spin relaxation due to hyperfine coupling in the vicinity of the
donor sites and by the diffusion of the nuclear spin toward the
donor sites. In this case, the relaxation rate is given by Eq. (1).
Calculation using this formula without any fitting parameters
describes quite well the data at lowest density (Samples D and
E). Note that, in principle, the nuclear spin-diffusion constant
D, entering Eq. (1), is isotope specific at B � BL. However,
since we study the total nuclear spin polarization, we use the
average value estimated by Paget for a similar regime [12].

We have shown in our previous work [15] that close to the
MIT, despite the presence of the delocalized electrons on the
Fermi level, the nuclear spin relaxation is still dominated by
the nuclear spin diffusion towards the “killing centers,” where
efficient relaxation via hyperfine interaction with electrons
takes place. The role of the “killing centers” is played in this
case by donor pairs, that can still localize an electron despite
the presence of the electron gas. The spatial distribution of the
donors in the sample can be supposed to obey the Poisson
distribution. Under this assumption, for the density of the
donor pairs separated by less than the screening length of
the Coulomb potential in the electron gas, one can obtain the
following expression [30]:

np = pn
3/2
d exp

(−pn
1/2
d

)
, (4)

where p = π
6 (π

3 )1/2a
3/2
B . Then, the diffusion-limited relaxation

rate is given by Eq. (1), with the donor density replaced by the
density of donor pairs, and the donor localization radius a by
the localization radius of the donor pair ap:

T −1
p ≈ 4πDnpap. (5)

Assuming random distribution of the donor positions, it is
reasonable to estimate the localization radius of the donor pair
as the size of largest pair that can localize an electron. It is
given by the screening length of the electron Fermi gas:

ap = 1

2

(π

3

)1/6( aB

n1/3

)1/2
. (6)

Here, n is the electron gas density, which we assume equal
to nd . The numerical application of this formula is shown
in Fig. 4(c) by the green line. One can see that it provides
a satisfactory description of the nuclear relaxation time for
Samples A and B, characterized by the density of donors on
the metallic side of the MIT.

Sample C falls in the intermediate regime, where the donor
density nd � 0.5nc, nc being the critical density for the MIT.
Neither isolated donor (which underestimates), nor donor pair
model (which overestimates) can give the correct value of
the nuclear spin relaxation time. In the sample with a similar
donor density nd = 5.9 × 1015 cm−3, Lu et al. [10] obtained
T1 = 1250 s at 1.55 T for 71Ga. This value is three times higher
than our result, and it does not fit the diffusion model either.
Lu et al. explained this long relaxation time (compared with

diffusion-limited model prediction) by the diffusion barrier,
which builds up around the donors, due to inhomogeneous
Knight field [12]. This model does not seem applicable to
our experimental conditions because in our case the applied
field is 100 times smaller, and so is the resulting electron spin
polarization and the Knight field. More detailed comparison
with Ref. [10] requires application of the strong magnetic
fields, which was not possible in this work.

In the most heavily doped Sample F, the relaxation time
substantially exceeds the prediction of the diffusion-limited
relaxation model (diffusion towards donor pairs in this case).
This can be explained by the reduced number of the donor pairs
that can localize an electron, due to the efficient screening
of the attractive potential of donor pairs by free electrons.
However, the relaxation time measured in Sample F at low
temperature (T = 5 K) is still shorter than the time predicted
by the Korringa formula [17]

T −1
K = π

h̄
A2ν2

0ρ2(EF )kBT . (7)

Here, A = 8π
3 γeγNh̄2, γN is nuclear gyromagnetic ratio. We

use the average value A = 44 μeV between AAs = 46 μeV and
AGa = 42 μeV. ν0 = 0.044 nm3 is the primitive cell volume,
and ρ(EF ) is the density of states at the Fermi level EF . The
result of this calculation is shown in Fig. 4(c) for T = 5 K
(blue line).

To get deeper insight in the role of the Korringa mechanism
in the nuclear spin relaxation, we compare the measured
temperature dependence of the nuclear spin relaxation rate
in the strong-field limit (B > 100 G) to the linear dependence
expected from Eq. (7). For Sample A we do observe linear
increase of the relaxation rate with temperature from 5 to 30 K
[magenta diamonds in Fig. 4(a)].

However, to fit the experimental data, a linear dependence
with the slope given by Eq. (7) must be shifted by a constant
value, corresponding to the relaxation rate measured at 5 K, and
interpreted as the relaxation limited by the diffusion towards
the donor pairs T −1

K (blue line). This suggests that Korringa
mechanism dominates nuclear spin relaxation at T > 5 K, and
the total spin relaxation rate is given by

T −1
1 = T −1

K + T −1
p . (8)

The picture is slightly different for Sample F [pink stars
in Fig. 4(a)]. The linear growth of the nuclear spin relaxation
rate with temperature is only observed above 10 K. The slope
fits perfectly the result of Eq. (7). In contrast with Sample A,
no offset related to the spin diffusion needs to be assumed.
This could mean that the number of donor clusters localizing
an electron is strongly temperature dependent in this heavily
doped sample. At low temperatures, there exist a certain
number of localized electrons that contribute to the diffusion-
limited hyperfine relaxation of the nuclear spin, while at
higher temperatures the electrons get delocalized, resulting
in a purely Korringa-type relaxation. Note that this argument
agrees perfectly with the previous results, demonstrating that
nuclear spin relaxation times at temperatures from 10 to 30 K
and under magnetic fields up to 1200 G are described by the
Korringa formula (7) without any fitting parameters [18].

For the insulating samples, the temperature dependence is
expected to be weak, and we do not observe any noticeable
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temperature dependence [Fig. 4(a)]. Indeed, neither nuclear
spin diffusion nor hyperfine relaxation are temperature de-
pendent. The only contribution comes from the relaxation
by the spin fluctuations of the free electrons. The relaxation
rate of the nuclei due to interaction with nondegenerate
gas of free electrons is given by the Bloembergen-Abragam
formula [4,14,31]

T −1
BA ∼ 2

(2π )3/2
A2ν2

0m3/2
e h̄−4(kBT )1/2. (9)

This formula dramatically underestimates the observed relax-
ation rate at all the temperatures that could be accessed in this
work, so that the total relaxation rate

T −1
1 = T −1

AB + T −1
D (10)

is largely dominated by diffusion towards donor sites localiz-
ing an electron.

Thus, we obtain the following picture for the strong-
field relaxation in n-GaAs: At low donor density nD <

5 × 1015 cm−3 the relaxation of bulk nuclei is limited by the
diffusion towards donors, where fast relaxation by hyperfine
interaction takes place. The relaxation rate increases with
increasing donor density. At higher densities, but still below
MIT 5 × 1015 cm−3 < nD < 2 × 1016 cm−3, the bulk nuclei
start to be situated on the outer shell of the localized electrons.
In this case, the diffusion-limited mechanism does not describe
the relaxation correctly nor does it the direct hyperfine
coupling. Above MIT, localization potential of the single donor
is screened, but the pairs of closely lying donors can still
localize an electron, at least at low temperatures. Therefore, at
1 × 1016 cm−3 < nD < 5 × 1016 cm−3 the spin relaxation is
limited by diffusion towards the donor pairs, while at higher
temperatures (T > 5 K) the relaxation due to the electron spin
fluctuations at the Fermi level becomes dominant (Korringa
relaxation). At even higher densities nD > 5 × 1016 cm−3,
electron gas starts to screen the attractive potential of the
donor pairs, so that they can only localize electrons at low
temperatures. Above 10 K, the Korringa relaxation remains
the only nuclear spin relaxation mechanism.

B. Magnetic field dependence of nuclear spin relaxation

The magnetic field dependence of the nuclear spin relax-
ation rate shown in Fig. 3 is another important result of this
work. Let us recall that at low magnetic fields, comparable
to local field BL (given by dipole-dipole interactions within
the nuclear spin system) the nonequilibrium nuclear angular
momentum decays within the spin-spin relaxation time T2

of order of 100 μs. Because the characteristic time of the
energy transfer between the nuclear spin system and the crystal
lattice is many orders of magnitude longer than T2, a partial
equilibrium establishes in the nuclear spin system within T2.
It is characterized by the nuclear spin temperature �N . Thus,
in the presence of the external magnetic field, the polarization
of the nuclear spin system is induced via its paramagnetic
susceptibility, which is inversely proportional to �N . The latter
relaxes towards the lattice temperature T with the spin-lattice
relaxation time T1 � T2. For this reason, the nuclear spin
relaxation at low field is rather the warm up of the nuclear spin

system, which is determined by the energy transfer between
the nuclei and the crystal lattice.

None of the nuclear spin relaxation mechanisms discussed
above (hyperfine interaction, spin diffusion, coupling to free
electrons) can account for the enhancement of the nuclear spin
warm up at low field. The spin-diffusion barrier that appears
in the presence of strong spin polarization of the donor-bound
electron (typically under optical pumping in a strong magnetic
field) due to sharp gradient of the Knight field has been also
suggested to affect nuclear spin warm up [10]. However, in our
experimental conditions, electron spin polarization is close to
zero, so that diffusion barrier is not expected to form.

We have recently suggested that in insulating samples this
effect can result from the interaction of nuclear quadrupole mo-
ments with electric field gradients induced by slow spatiotem-
poral fluctuations of localized electron charges, provided that
the corresponding correlation time τ c

c � T2 [21]. This theory
shows that the energy flux between nuclear spin and electron
charge via slowly varying quadrupole interaction FQ does
not depend on the magnetic field, while the heat capacity of
the nuclear spin system CN is strongly field dependent. The
corresponding field-dependent relaxation time

T −1
Q = �NFQC−1

N (11)

provides an additional contribution to the total relaxation rate
in the insulating samples:

T −1
1 = T −1

D + T −1
AB + T −1

Q . (12)

The quadrupole relaxation rate T −1
Q vanishes at B � BL, but

can be important at low magnetic field [21]:

T −1
Q = 4πL(eQβQEa)2

5(h̄γN )2
(
B2 + B2

L

)
τ c
c

4I (I + 1) − 3

[8I (2I − 1)]2
. (13)

Here, I is the nuclear spin, L is the dimensionless coefficient
that accounts for the averaging of the electric fields from the
electrons, βQ is the experimentally determined and isotope-
dependent constant, eQ is the nuclear quadrupole moment,
also isotope dependent, e is the electron charge, Ea is the
electric field at Bohr radius distance from the charged donor
positon [32].

In Ref. [21], we have successfully applied the above ideas
to interpret the data obtained in Sample D by PL experiments.
Here, we first of all confirm the experimental results of
Ref. [21] by an alternative experimental technique of SN.
Such comparison confirms an estimation for the precision of
the B1/2 measurements for this sample δB1/2 ∼ 2 G that was
given in Ref. [21]. Note that B1/2 should be interpreted in this
model as the local field BL, characterizing various interactions
within nuclear spin system, while the height of the Lorentzian
is 1/T

(B=0)
1 − 1/T

(B=∞)
1 .

The application of the quadrupole relaxation theory to
other insulating samples could be straightforward. However,
the value of the B1/2 ∼ 15 G in Sample E is much higher
than values that could a priori be expected for the local
field. Indeed the most well-known contribution results from
spin-spin interactions BSS = 1.5 G [33]. The missing part
of the local field could be attributed to the quadrupole
interactions or to some spin-spin interactions not accounted for
in Ref. [33], such as Dzyaloshinskii- Moriya indirect exchange
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TABLE II. Summary of the bulk nuclei spin relaxation mechanisms in n-GaAs at different impurity concentrations at strong magnetic
fields (B > 100 G) and at low fields, where strong enhancement of the nuclear spin relaxation rate is observed.

Insulator MIT Metal

B > 100 G, T < 10 K Diffusion towards donors Diffusion towards donor pairs and clusters
B > 100 G, T > 10 K Diffusion towards donors Diffusion towards donor pairs and Korringa Korringa

Experiment: T1 decreases at low fields, B1/2 = 2–30 G

Field dependence
Theory: Quadrupole interaction Theory: Unknown slowly fluctuating fields

B1/2 is given by the spin-spin (in bulk samples) or the quadrupole (in microstructures) splittings

interaction. But, the most plausible explanation is that the
large values of the local field result from the strain-induced
quadrupole splitting in the microstructure samples. Indeed,
the difference in B1/2 between bulk samples and various
microstructures is so important that they are presented in
the two different panels in Fig. 3. Similar effects of the
strain are well known in semiconductor quantum dots, where
strain-induced quadrupole splittings are so large, that even
the concept of the spin temperature can not be applied any
more [34]. The observed temperature dependence of the B1/2

in the insulating samples is consistent with this interpretation
[Fig. 4(b)]. In the bulk Sample D, B1/2 is not substantially
affected by temperature, while in the microcavity Sample E it
decreases with temperature, because of the strain relief. Thus,
in the insulating samples we attribute the enhancement of the
nuclear warm up rate at low field to the quadrupole-induced
mechanism of spin relaxation. The characteristic field for this
enhancement is strongly strain dependent, and is strongly
increased in microstructures with respect to bulk samples.

In metallic samples, the enhancement of the nuclear warm
up rate at low field by a factor of ∼3 can, in principle, be
expected within Korringa relaxation mechanism. Indeed, since
the Fermi length of the electron gas is much larger than the
lattice constant, the fluctuating hyperfine fields created by the
electrons and acting on the nuclei are strongly correlated. This
fact was taken into account in the calculations by Abragam,
predicting the enhancement factor ξ = 3 at B � BL [see
Eq. (IX.2) in Ref. [14]]. However, this calculation is only
valid when the local field is governed by the dipole-dipole
interactions BL = BSS ∼ 2 G, and thus can not be directly
applied to our results. Generalization of this approach to
the quadrupole interaction yields ξ ∼ 1 [35], which means
no enhancement of the spin relaxation at B � BL. Thus, to
understand the low-field enhancement of the nuclear spin
relaxation in metallic samples, one needs to search for a
suitable source of the slowly changing fluctuations. Indeed,
long-range electric fields are efficiently screened by the free
electron gas. Moreover, the model developed for the insulating
samples requires τ c

c � T2 = 100 μs, which is not so obvious
for the metallic samples. In addition, in Sample F at T > 10
K, the value of B1/2 increases dramatically. The underling
mechanism is yet to be identified.

V. CONCLUSIONS

We have studied nuclear spin relaxation in the set of n-GaAs
samples with donor concentrations varying across MIT from
insulating (nd = 2 × 1015 cm−3) to metallic regime (nd =

9 × 1016 cm−3). Three different experimental techniques
were applied that provided consistent results: PL with dark
intervals, spin noise spectroscopy, and Faraday rotation. All
these methods allow to study nuclear spin relaxation in the
absence of the photocreated carriers. The obtained results are
summarized in Table II and below.

Under magnetic field B � 100 G, we identified different
regimes of spin relaxation. At low donor density nD < 5 ×
1015 cm−3, the relaxation of bulk nuclei is limited by the
diffusion towards donors, where fast relaxation by hyperfine
interaction takes place. At higher densities, but still below
MIT 5 × 1015 cm−3 < nD < 1 × 1016 cm−3 the nuclear spin
lifetimes are longer than predicted by the diffusion-limited
hyperfine relaxation model. This result is consistent with
previous findings but has no plausible theoretical explanation
so far. Around MIT, the localization potential of the single
donor is screened, but the pairs of the closely lying donors
can still localize an electron, at least at low temperatures.
Therefore, at 1 × 1016 cm−3 < nD < 5 × 1016 cm−3, the spin
relaxation is limited by diffusion towards the donor pairs.
At higher temperatures (T > 5 K), the relaxation due to the
electron spin fluctuations at the Fermi level becomes dominant
(Korringa relaxation).

At low magnetic field, we found that nuclear spin relaxation
rate increases for all the samples. Such behavior suggests that
the relaxation is caused by slowly fluctuating fields (either
electric or magnetic), characterized by the correlation times
τc > T2. On the insulating side of the MIT, this effect can
be understood as a result of the interaction of the quadrupole
moment of the nuclei with slowly fluctuating electric fields,
due to hopping of the electron charge, either into conduction
band or across the impurity band. On the metallic side of the
MIT, the possible origin of the slowly fluctuating fields should
yet be identified.
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