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Inverse-phase Rabi oscillations in semiconductor microcavities
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We study experimentally the oscillations of a nonstationary transient signal of a semiconductor microcavity
with embedded InGaAs quantum wells. The oscillations occur as a result of quantum beats between the upper
and lower polariton modes due to strong exciton-photon coupling in the microcavity sample (Rabi oscillations).
The detection of a spectrally resolved signal has allowed for a separate observation of oscillations at the
eigenfrequencies of two polariton modes. Surprisingly, the observed oscillations measured at the lower and upper
polariton modes have opposite phases. We demonstrate theoretically that opposite-phase oscillations are caused
by a pump-induced modification of polariton Hopfield coefficients, which govern the ratio of exciton and photon
components in each of the polariton modes. Such behavior is a fundamental feature of the quantum beats of
coupled light-matter states. In contrast, the reference pump-probe experiment performed for pure excitonic states
in a quantum well heterostructure with no microcavity revealed in-phase oscillations of the pump-probe signals
measured at different excitonic levels.
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I. INTRODUCTION

Microcavity embedded semiconductor nanostructures have
been the subject of intense studies during recent years. Due to
the high density of the photon field inside a microcavity, these
structures feature exceptionally strong light-matter coupling
[1]. The effects of strong coupling might be applied for
a realization of low-threshold lasers [2,3], logic elements
for optical computers [4], memory elements for quantum
computations [5,6], sources of terahertz emission [7], etc.
Light-matter coupling is most efficient at the resonance
between the cavity mode and the exciton transitions inside
the cavity. This resonance results in the formation of coupled
photon-exciton excitations—exciton-polaritons.

The polariton effect might be observed in various excitonic
systems [8], however, it is most pronounced in microcavity
structures. In high-finesse microcavities the energy of the
exciton-photon interaction is enhanced by about three orders of
magnitude as compared to bulk semiconductor materials and
thin films. Exciton-photon coupling in microcavities leads to
the formation of lower (LP) and upper (UP) polariton modes,
which are split by ∼10 meV in typical GaAs-based samples.
The excitation of both polariton modes with a short optical
pulse leads to the oscillations of exciton polarization and
electric field amplitudes at a frequency defined by the value of
the splitting between polariton modes (the so-called vacuum
Rabi oscillations) [9–17].

The study of Rabi oscillations allows for a detailed under-
standing of the polariton dynamics in microcavity structures
[16–20]. Since the typical values of the Rabi oscillation period
lie in a picosecond or subpicosecond range, the most effective
way to study Rabi oscillations is to apply the methods of
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coherent spectroscopy with femtosecond laser pulses. These
methods, generally called pump-probe techniques, are based
on probing with a probe pulse the changes in the medium
properties induced by a pump pulse, and have been used for
a long time to study the exciton dynamics in semiconductor
nanostructures [21].

The experimental data obtained with the pump-probe
technique are usually successfully described by means of
optical Bloch equations, where the coupling between the pump
and probe pulses is accounted for in the dielectric susceptibility
of the structure by the nonlinearity in light amplitude terms
[21]. The physical processes responsible for the nonlinearity in
semiconductor nanostructures are depletion of the ground state
due to a Pauli blockade and the Coulomb screening of excitons,
which reduce the oscillator strength of the exciton transition.
The depletion of the ground state by a pump field is a common
effect for two-level quantum systems, whereas exciton-exciton
interactions are typical for semiconductors only.

The dynamics of polaritons in microcavities has much
in common with the dynamics of other excitonic systems,
however, due to the coupled light-matter nature of the polariton
states, there are substantial differences in their behavior.
In particular, the introduction of a microcavity results in a
significant increase of the photon lifetime inside the sample.
As a result, additional effects, such as the blueshift of polariton
energy levels under intense optical excitation, appear. As we
will show in this paper, it is mainly the blueshift effect that
is responsible for the formation of Rabi oscillations in a
pump-probe signal.

We have investigated the transient optical response of
a semiconductor microcavity with InGaAs quantum wells
(QWs) using a spectrally resolved pump-probe technique. We
have revealed distinct Rabi oscillations of the optical signals at
each of the polariton modes. For all of the excitation conditions
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we tried, the observed oscillations corresponding to the lower
and upper polariton modes are found to have opposite phases.
In order to identify the nonlinear effects that contribute to
the formation of the measured signal, we have developed a
theoretical model.

II. EXPERIMENT

The experimentally studied sample is a relatively low-
finesse microcavity (Q ≈ 2000), which consists of 17 and
21 pairs of AlAs/GaAs layers. The four groups of pairs of
InxGa1−xAs quantum wells with different concentrations of In
(x = 0.08 and x = 0.12) are embedded inside the microcavity.
The cavity length is variable across the sample plane, which
allows one to change the detuning between the exciton and
photon modes. The photon mode is tuned to the resonance
with a deeper well with x = 0.12. The distance between the
neighboring QWs is sufficiently large, so that one can neglect
the effects of interwell carrier tunneling and coupling. The
substrate is transparent in the spectral range of QW excitonic
resonance, which allows one to study the sample in the
transmission geometry.

The sample was cooled down to a temperature of 5 K in
a closed-cycle helium cryostat. In the experimental setup (see
Fig. 1), the emission of a femtosecond Ti:sapphire laser with
a duration of 100 fs and a repetition frequency of 80 MHz was
split into two beams. The first (pump) beam was directed along
the sample normal and focused with a lens with a focal length
of 150 mm into a spot of 70 μm diameter. The second (probe)
beam was incident at a 5◦ angle with respect to the sample
normal, passing through the delay line and focused into a spot
of 30 μm diameter.

The probe emission passing through the sample was
focused into the spectrometer and detected by a nitrogen-
cooled CCD camera. The CCD-camera scan was synchronized
with a motion of the delay line that allowed us to observe the
transmission spectrum as a function of the delay time between
the probe and pump pulses.

In the transmission spectrum of the sample [see Fig. 2(a)],
two narrow peaks are observed in the range of anticrossing
of a polariton dispersion. These two peaks correspond to the
upper and lower polariton modes, which are formed in the
sample. The investigations were carried out at a sample point
with a negative detuning, � = −3 meV, between the cavity
and exciton modes. The short-period oscillations observed at
the spectral contours are related to the light interference in the

FIG. 1. Schematic sketch of the experimental setup that com-
prises the lenses (1), the sample (2), and the spectrometer with a
CCD camera (3). The probe beam is incident at a 5◦ angle with
respect to the sample normal. The probe pulses are delayed by time
τ with respect to the pump pulse.

FIG. 2. (a) Transmission spectrum of the studied sample. (b)
Intensities of the spectral peaks in the probe transmission spectrum
as a function of the delay time between the pump and probe pulses.
The black and red dots show the data for the UP and LP frequencies,
respectively, and the solid lines are fits (see the text for details).
Data for the UP mode are multiplied by a factor of 10. The data
are measured at minimal intensities of the pump and probe beams
used in the experiment (Ppu = 0.35 mW and Ppr = 0.1 mW), which
correspond to the polariton density �109 cm−2.

sample substrate. With an increase of the excitation power, the
LP peak shifts to higher energies, indicating the effects of a
polariton-polariton interaction.

The dots in Fig. 2(b) show the dependence of the signal
intensity, detected at the UP (black dots) and LP (red dots)
modes, as a function of the delay time τ between the pump
and probe pulses. At positive delay time, τ > 0, the pump
pulse arrives before the probe one, while τ < 0 corresponds to
the first arrival of the probe pulse. The experimental data were
approximated with the following phenomenological functions,

I±
u,l(τ ) = F±

u,l + A±
u,l exp(∓τ/t±u,l)

+B±
u,l cos(�±

u,lτ + ϕ±
u,l) exp(∓τ/T ±

u,l), (1)

where F±
u,l , A±

u,l , B±
u,l , t±u,l , T ±

u,l , �±
u,l , and ϕ±

u,l are fitting
parameters, while the subscripts u and l denote the upper and
lower polariton modes, and the superscripts + and − denote the
regions of positive and negative τ , respectively. The presented
curves are measured at a relatively small pump power, which
corresponds to the polariton density �109 cm−2. The blueshift
of the spectral lines in this case is not resolved.

As seen from Fig. 2, the oscillations of the signal are
observed at positive as well as at negative delay times.
Moreover, the oscillations at τ < 0 decay slower than at
τ > 0, which becomes most pronounced at high pump powers
(see Fig. 3). Such an asymmetry of the signal decay is
typical for nonlinear optical phenomena driven by third-order
nonlinearities [22].

The main result of this work is that the Rabi oscillations
observed at the lower and upper polariton modes have an
opposite phase (see Fig. 2). This result is valid for all values of
pump and probe power used in our experiment. To understand
the origin of the inverse-phase oscillations and to specify
the nature of the signal at negative delays, we performed a
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FIG. 3. Oscillation decay time [T ±
l in Eq. (1)] as a function of

pump power at the lower polariton mode. The solid lines are guides
for the eye.

theoretical analysis of the polariton dynamics in pump-probe
experiments. The results of this analysis are presented in the
next section.

III. THEORY

To analyze the dynamics of the polaritons in our sample we
use coupled nonlinear equations which describe the evolution
of the photon mode in the microcavity and the exciton
polarization in QWs [18,23–25],

∂P

∂t
= [−i(ωx − ω̄ + αNx) − 	]P − i(�R − βNx)E,

∂E

∂t
= [−i(ωc − ω̄) − γ ]E − i�RP + E(t). (2)

Here, E(t) is the slowly varying amplitude of the electric
field in the center of the QW, P (t) is the slowly varying
amplitude of the excitonic polarization averaged over the QW
width, ωx and ωc, 	 and γ are the resonance frequencies and
decay rates of the exciton and photon modes, respectively,
�R is the Rabi frequency, which determines the coupling of
exciton and photon modes, E(t) and ω̄ are the amplitude and
the optical frequency of the incident electric field, Nx = |P |2
is the exciton population, and α and β are real parameters.
Equations (2) are analogous to optical Bloch equations that
describe four-wave mixing in bulk materials [26].

The incident electric field is a sum of the pump and probe
fields inside a cavity, E = E1 exp(ik1r) + E2 exp(ik2r), where
k1 and k2 are the wave vectors of the pump and probe
fields inside the cavity, and r is a coordinate. We model the
amplitudes E1,2 to be proportional to delta functions in the
time domain E1 = N1δ(t − t1), E2 = N2δ(t − t2), where N1

and N2 are the amplitudes, which we assume to be real, and
t2 − t1 = τ is the delay time.

Nonlinear terms proportional to Nx enter the first equation
in Eqs. (2) and describe two possible nonlinearities in our
system. The first one, ∝ α|P |2P , is the blueshift of the exciton
mode (or the so-called anharmoniclike nonlinearity), and the
second one, ∝ β|P |2E, is the reduction of the Rabi frequency

(or the so-called two-level-like nonlinearity) [23,27]. These
nonlinear terms result in the coupling of pump and probe
signals, and consequently in Rabi oscillations of the output
field. The biexcitonic nonlinearity studied in Ref. [23] is
neglected in the following.

The electric field and polarization inside the cavity are the
sum of the pump and probe components E = E1 exp(ik1r) +
E2 exp(ik2r) and P = P1 exp(ik1r) + P2 exp(ik2r). In the
limit of small nonlinearities, αNx,βNx � �R , the approxi-
mate solutions of Eqs. (2) have a form

E1,2 = Ē1,2 + δE1,2, P1,2 = P̄1,2 + δP1,2, (3)

where Ē1,2 and P̄1,2 satisfy Eqs. (2) at α = β = 0, and
δP1,2 and δE1,2 are small corrections due to the presence of
nonlinearities.

The time evolution of Ē1,2 and P̄1,2 is given by [23]

P̄j (t) = −iNj

�R

�̃R

sin �̃R(t − tj )

× exp

[
− γ̃ − i�

2
(t − tj )

]
θ (t − tj ),

Ēj (t) = Nj

[
cos �̃R(t − tj ) − i

�

2�̃R

sin �̃R(t − tj )

]

× exp

[
− γ̃ − i�

2
(t − tj )

]
θ (t − tj ). (4)

Here, �̃R =
√

�2
R + �2/4 and � = ωc − ωx is the cavity

mode detuning, γ̃ = (γ + 	)/2, θ (t) is a Heaviside func-
tion, and we assume ω̄ = ωc. In the derivation of Eqs. (4)
we neglected small terms proportional to γ /�R � 1 and
	/�R � 1.

The nonlinear terms proportional to exp(ik2r), which give
rise to Rabi oscillations in the direction of the probe pulse, are

Fnl = −iα|P1|2P2 + iβ(|P1|2E2 + P ∗
1 P2E1). (5)

In the experiment we measure the Fourier transform of the
output signal in the direction of the probe pulse, which is
proportional to

Iω = |E2,ω|2 = |Ē2,ω|2 + Ē2,ω(δE2,ω)∗ + (Ē2,ω)∗δE2,ω,

(6)

where Fω is the Fourier transform of F , Fω = ∫
F exp(iωt)dt ,

and the asterisk means the complex conjugate. In Eq. (6) we
neglected a small contribution |δE2,ω|2, which is proportional
to the second power of nonlinearities α and β. Note that the first
term in Eq. (6) is a transmission coefficient of the microcavity
structure and does not depend on τ .

Solving Eqs. (2) in the frequency space, we find for the
Fourier transforms Ē2,w and δE2,ω,

Ē2,w = iN2
ω + � + i	

(ω + � + i	)(ω + iγ ) − �2
R

,

(7)

δE2,ω = i�RFnl,ω

(ω + � + i	)(ω + iγ ) − �2
R

,

where Fnl,ω is a Fourier transform of Eq. (5). Using Eqs. (6)
and (7) we find for the oscillating transient signal at upper and
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FIG. 4. Left panel: Transient signals calculated using Eqs. (9),
(11), and (12). The parameters used are �R = 5 ps−1, � = −3 ps−1,
γ = 	 = 1 ps−1, and α/β = 5. Right panel: Phase shift between Rabi
oscillations at LP and UP modes at τ > 0. �R = 5 ps−1, γ = 	 =
1 ps−1.

lower polariton modes,

Iu,l ≡ Iω(ωu,l) = 2N2�R(ωu,l + �)

(2γ̃ ωu,l + γ�)2
Re{Fnl,ω(ωu,l)}, (8)

where ωu,l ≈ −�/2 ± �̃R are the real parts of the upper
and lower polariton modes under the conditions γ /�R � 1,
	/�R � 1, which are fulfilled in the experiment, and Re
denotes the real part of a complex number.

It follows from Eqs. (4), (5), and (8) that the intensities I+
u,l

at τ > 0 and I−
u,l at τ < 0 have a form

I±
u,l = I0e

−|τ |/T ±
(ωu,l + �)

(2γ̃ ωu,l + γ�)2

× [A±
u,l + B±

u,l sin 2�̃Rτ + C±
u,l cos 2�̃Rτ ], (9)

where I0 = −2N 2
1 N 2

2 �4
R/�̃4

R . The calculations yield

T + = 1/γ̃ , T − = 2/γ̃ , (10)

A+
u,l = 1

8

(
α + ±�̃R − �

�R

β

)
, B+

u,l = �̃R

12γ̃

(
α − �

�R

β

)
,

C+
u,l = − 1

32

(
α − ±2�̃R + �

�R

β

)
, (11)

and

A−
u,l = ±β

8
, B−

u,l = �̃R

12γ̃

(
α − �

�R

β

)
,

C−
u,l = 1

32

(
3α + ±2�̃R − 3�

�R

β

)
. (12)

It is noteworthy that the parameters in the phenomenological
Eq. (1) are related to the ones in Eq. (9) as T ±

u,l = t±u,l =
T ±, A±

u,l ∝ A±
u,l , B±

u,l ∝
√

(B±
u,l)

2 + (C±
u,l)

2
, and tan ϕ±

u,l =
B±

u,l/C±
u,l .

With the use of Eqs. (9), (11), and (12) let us now
analyze the behavior of Rabi oscillations for the two types
of nonlinearities given by Eq. (5) (see Fig. 4). For the
anharmoniclike nonlinearity (β = 0, α �= 0) the intensities

at the upper and lower modes I±
u,l differ only by the sign

of the numerator in Eq. (9), which results in opposite-phase
oscillations.

In the case of the two-level-like nonlinearity (α = 0, β �= 0)
the situation is more complicated. It is seen from Eq. (11) that
for � �= 0 the main contribution to I±

u,l is given by B±
u,l , which

is parametrically large (�̃R/γ̃ � 1). This results again in
opposite-phase oscillations. However, if � = 0, the coefficient
B±

u,l vanishes and the oscillations are governed by C±
u,l , which

gives in-phase oscillations.
In general, in-phase oscillations occur in the region of pa-

rameters when B±
u,l � C±

u,l , i.e., for α/β − �/�R � γ̃ /�̃R .
Since γ̃ /�̃R � 1, this is a very narrow region in the vicinity of
α/β = �/�R . In the remaining region of the parameters, the
phase between the oscillations on the upper and lower modes is
equal to ±π . We note that in our sample � < 0 and therefore,
since α,β > 0, inverse-phase oscillations occur for any ratio
between α and β.

To understand the origin of inverse-phase Rabi oscillations
it is also instructive to use a quantum approach based on
the secondary quantization of photon and exciton modes and
the transition to the polariton basis. The classical values E

and P are related to the average values of the exciton and
photon field annihilation operators ψ̂x and ψ̂c as P = 〈ψ̂x〉 and
E = 〈ψ̂c〉. Both approaches give identical results for the time
evolution of P and E; the derivation of Eq. (2) starting from the
quantum model can be found, e.g., in Ref. [25]. In the strong-
coupling regime it is convenient to switch to the polariton
basis with the lower- (upper-) branch polariton operators
ψ̂l = c1ψ̂x + c2ψ̂c, ψ̂u = c2ψ̂x − c1ψ̂c, where c1,2 are the
Hopfield coefficients [28], which define the photon and exciton
contributions at the upper and lower polariton states, and there-
fore the spectrum of the microcavity transmission coefficient.

We cannot work in the polariton basis using both of
the nonlinearities considered in Eq. (5), because the second
nonlinearity, which describes the saturation of the oscillator
strength, enters only the first equation in the system (2).
Indeed, at β �= 0 the system matrix is not Hermitian and
its eigenvectors are not orthogonal, so the polariton wave
functions presented above are not the eigenstates of the system
under study. Hence we limit our consideration to the case of
α �= 0, β = 0. In the limit of small nonlinearity, αNx � �R ,
the straightforward calculations yield

|c1|2 = |c1(0)|2 − 2α�2
R(

�2 + 4�2
R

)3/2 Nx,

|c2|2 = |c2(0)|2 + 2α�2
R(

�2 + 4�2
R

)3/2 Nx, (13)

where |c1,2(0)|2 = (1 ± �/
√

�2 + 4�2
R)/2 are the Hopfield

coefficients at Nx = 0. The coefficients c1 and c2 describe the
photon contribution to the upper and lower polariton states,
respectively, and therefore Eqs. (13) give information about
the microcavity transmission coefficient at the corresponding
frequencies. Due to the constraint |c1|2 + |c2|2 = 1 [and
as seen from Eqs. (13)], any change in |c1|2 induced by
nonlinearity results in an opposite change of |c2|2, leading
to opposite-phase Rabi oscillations of the transient signal.
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FIG. 5. Pump-probe signals of quantum beats between the I and
IV quantum-confined excitonic states in the 95 nm InGaAs/GaAs
quantum well. The signals were measured by tuning the detected
photon energy at the I and IV excitonic resonances. The frequency
of the signal oscillations corresponds to the energy splitting between
these states.

IV. DISCUSSION

The opposite-phase signal in the region of positive delays
(the standard pump-probe signal) is governed by a nonlinearity
of the type (P1P

∗
1 )P2, corresponding to the scattering of the

probe pulse on the excitonic polarization created by the pump
pulse. In the region of negative delays, the oscillating signal
(the four-wave mixing signal) is governed by the nonlinearity
(P2P

∗
1 )P1, which has the same mathematical form, however,

in that case it corresponds to the scattering of the pump pulse
on the polarization pattern created by the simultaneous action
of the pump and probe pulses. Such an asymmetry should
result in a twofold increase of the signal decay time at τ <

0 (T +) compared to τ > 0 (T −), as confirmed by Eq. (10).
Such behavior is observed in experiments in a wide range of
pump powers for the LP mode and at low pump powers for
the UP mode (see Fig. 3). The increase of the T −/T + ratio
at higher pump powers for UP mode might be attributed to
exciton-exciton scattering, which drives the phase relaxation
of polarization.

To confirm that the inverse-phase behavior of Rabi oscilla-
tions is a specific feature of microcavity systems with strong
light-matter coupling, we performed the same experiment
for a quantum well structure without Bragg mirrors. We
investigated the sample with an InGaAs quantum well of 95 nm
width and 2% indium concentration. In the absorption and
photoluminescence spectra we observed a series of narrow
lines corresponding to optical transitions to or from the

quantum-confined excitonic levels. Detailed characteristics of
the sample and experimental details can be found in Refs.
[29,30].

Figure 5 shows the intensities of the pump-probe signals
measured at energies corresponding to the transitions to
the first and fourth quantum-confined levels. The energy
difference between the levels is approximately 2 meV, which
is comparable to the Rabi splitting in the microcavity sample.
One can see distinct signal oscillations, caused by quantum
beats between the excitonic states. In contrast to the microcav-
ity sample, the oscillation phases at the two energies coincide,
which is typical for quantum beats between matter excitations,
such as excitons [31]. Indeed, for excitonic quantum beats the
microscopic mechanism of the pump-probe signal is related
mainly to the depopulation of the ground state due to pump
beam excitation [32]. In this case the quantum beats observed
at optical transitions into two excited states have equal phases.

V. CONCLUSION

To conclude, we studied a transient pump-probe signal
through a microcavity heterostructure with an embedded
InGaAs quantum well. The studies revealed well-pronounced
oscillations related to the quantum beats between the lower
and upper polariton modes (vacuum Rabi oscillations). The
principal result is that the observed oscillations measured at
the lower and upper polariton levels have opposite phase. As
revealed by the theoretical analysis, the opposite phases of the
oscillations are related to the specific light-matter character of
the polariton states in the microcavity, in contrast to quantum
beats between pure matter excitations. The experiments
showed that, in agreement with theoretical predictions, the
oscillations in the region of positive delay time between the
pump and probe pulses decay twice faster than in the region
of negative delay time.
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