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Spin dynamics of quadrupole nuclei in InGaAs quantum dots
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Photoluminescence polarization is experimentally studied for samples with (In,Ga)As/GaAs self-assembled
quantum dots in transverse magnetic field (Hanle effect) under slow modulation of the excitation light polarization
from fractions of Hz to tens of kHz. The polarization reflects the evolution of strongly coupled electron-nuclear
spin systems in the quantum dots. Strong modification of the Hanle curves under variation of the modulation
period is attributed to the peculiarities of the spin dynamics of quadrupole nuclei, which states are split due to
deformation of the crystal lattice in the quantum dots. Analysis of the Hanle curves is fulfilled in the framework
of a phenomenological model considering a separate dynamics of a nuclear field BNd determined by polarization
of the ±1/2 nuclear spin states and of a nuclear field BNq determined by polarization of the split-off states ±3/2,
±5/2, etc. It is found that the characteristic relaxation time for the nuclear field BNd is of order a fraction of a
second, while the relaxation of the field BNq is faster by about two orders of magnitude.
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I. INTRODUCTION

Hyperfine interaction of an electron localized in a quantum
dot (QD) with nuclear spins forms a strongly coupled electron-
nuclear spin system [1,2]. This system is considered to be
promising for realization of quantum information processing
devices [3–5]. The realization of spin qubits assumes some
stability of the spin system required for the storage and
processing of quantum information. In QDs, the optically
polarized electron transfers its spin moment into the nuclear
subsystem where the spin orientation may be conserved for a
long time controlled by nuclear spin relaxation processes.

The main process destroying the nuclear spin polarization
is believed to be the transverse relaxation in local fields caused
by the dipole-dipole interaction of neighboring nuclear spins.
Characteristic time of the relaxation, T2, for nuclei with spins
I = 1/2 is of order 10−4 s [1]. The effective local fields, Bdd ,
are a fraction of a millitesla and can be easily suppressed by
external magnetic fields exceeding these local fields.

In the case of self-assembled QDs, the stabilization of
nuclear spin orientation is possible, in principle, in the absence
of external magnetic field [6]. Due to noticeable difference in
the lattice constants of QDs and barrier layers, some elastic
stress appears in the QDs causing mechanical deformation of
the crystal lattice. The deformation results in a gradient of
crystal fields acting on nuclei from neighboring atoms and
splitting the nuclear spin states for quadrupole nuclei with
I > 1/2 [1]. Because the strain-induced quadrupole splitting
in self-assembled QDs typically greatly exceeds Zeeman
splitting in the local fields, the spin orientation of quadrupole
nuclei is pinned to the principal deformation axis and is not
destroyed by the dipole-dipole interaction [7]. In this case, the
stability of the nuclear spin system should be determined by
processes of longitudinal spin relaxation of quadrupole nuclei
with characteristic time T1 � T2. Although many publications

are devoted to the nuclear spin polarization [6,8–21] (see also
review articles [2,22–24]), there are very few works where the
relaxation dynamics is studied for quadrupole nuclei in detail
[25–27]. The dynamics of quadrupole nuclei is also discussed
in Refs. [9,28,29].

In this paper we report on experimental study of
spin dynamics of quadrupole nuclei in the singly charged
(In,Ga)As/GaAs QDs. The nuclear spin polarization was
studied in optical experiments by detection of the electron
spin orientation via polarized secondary emission of the QDs
in a transverse magnetic field (the Hanle effect). We have
found that, when the photoluminescence (PL) of the samples
under study is excited by light with the modulated helicity of
polarization, the Hanle curves strongly depend on the modula-
tion frequency. We have developed a phenomenological model
based on the consideration of separate polarization dynamics
of the ±1/2 nuclear spin doublets and of the split-off doublets,
±3/2, ±5/2, etc. The analysis performed using a pseudospin
approach proposed in Ref. [30] has allowed us to extract
contributions from polarization of these different groups of
spin doublets into the effective nuclear field acting on the
electron spin.

II. EXPERIMENTAL DETAILS

We studied two samples prepared from one heterostruc-
ture with InAs/GaAs QDs grown by the Stranski-Krastanov
method. Sample A was then annealed at temperature Tann =
900 ◦C and sample B at temperature Tann = 980 ◦C. The
annealing gives rise to the diffusion of indium atoms into the
barriers so that the indium concentration and, correspondingly,
the crystal lattice deformations decrease at higher annealing
temperatures. Theoretical modeling shows [31] that the defor-
mation is of about 3% for sample A and 1% for sample B.
The quadrupole splitting of the nuclear spin states strongly
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depends on the deformation [32]. It is considerably smaller
for sample B comparing to that for sample A. Therefore, the
experimental study and analysis of two samples allows one to
highlight the role of quadrupole splitting of nuclear states in
the observed effects.

The QDs under study contain one resident electron per dot
on average due to δ-doping of barriers by donors during the
epitaxial growth. There are 20 layers of the QDs with areal
density of about 1010 cm−2 separated by 60-nm-thick GaAs
barriers [33]. Optical characterization of the samples is given
in Ref. [34]. The photoluminescence (PL) band in sample A
corresponding to the lowest optical transitions in the QDs is
centered at photon energy EA = 1.34 eV with the half width at
half maximum (HWHM) δEA = 9 meV. A similar PL band in
sample B is shifted to the higher photon energy due to smaller
indium content, EB = 1.42 eV with δEB = 7 meV.

In our present experiments, dependence of circular polar-
ization of PL is measured as a function of the magnetic field
applied perpendicular to the optical axis. The depolarization
curves (Hanle curves) are measured under optical excitation
by a continuous wave (cw) Ti:sapphire laser into the wetting
layer of each sample (EWL = 1.459 eV for sample A and
EWL = 1.481 eV for sample B). Polarization of the laser
radiation is slowly modulated between σ+ and σ− by an
electro-optical modulator followed by a quarter-wave plate
with a frequency varied from fractions of Hz to several kHz.
No resonant effects studied in Refs. [34,35] are observed at
such slow modulation of the polarization.

The PL is dispersed by a 0.5-m spectrometer and detected
with a silicon avalanche photodiode. The circular polarization
degree, ρ = (I++ − I+−)/(I++ + I+−), is measured using a
photoelastic modulator operating at a frequency of 50 kHz
and a two-channel photon counting system. Here I++ (I+−) is
the PL intensity for co- (cross-) circular polarization relative
to that of excitation. In the maximum of the PL band of the
QDs, the polarization is negative and reflects the mean spin
polarization of resident electrons as was extensively discussed
earlier [36,37]. Hereafter we use the maximal absolute value
of ρ obtained at the center of the PL band for each sample,

ANCP = max |ρ(ω)|, for the quantitative characteristic of
the electron spin polarization [37], Sz = ANCP /2, along the
optical axis. Because the resident electrons are interacting with
the QD nuclei, the negative circular polarization (NCP) can
be used as a sensitive tool to monitor the nuclear spin state
[37–39].

III. EXPERIMENTAL RESULTS AND ANALYSIS

A. Hanle curves at optical excitation with
modulated polarization

Typical Hanle curves for different modulation periods of
excitation polarization are shown in Fig. 1. As one can see,
the Hanle curves for sample A [panel (a)] annealed at the
lower temperature is considerably broader than the curves for
sample B [panel (b)]. For both the samples, the shape of the
Hanle curves strongly depends on the modulation period. At
large periods as well as at the excitation with a fixed (cw)
polarization, a well-resolved W structure is observed in small
magnetic fields indicating a dynamic nuclear polarization
(DNP) acting on electron spin as an effective nuclear field
[40]. The W structure becomes smoothed and then almost
disappears when the modulation period decreases. Besides,
the Hanle curves noticeably shrink with the period shortening.
At the smallest periods used in the experiments, the Hanle
curves acquire almost Lorentzian shape. Experiments also
show that the Hanle curve width monotonically decreases with
the decrease of excitation power down to HWHM = 8 mT
for sample A and HWHM = 1.5 mT for sample B at zero
limit of excitation powers (not shown here). Such regularity is
typical for depolarization of electron spins with no nuclear spin
effects [1].

It is important that, in spite of the large overall modification
of the Hanle curves, the polarization degree measured at
zero magnetic fields is almost independent of modulation
frequency. It approaches some value with the rise of excitation
power and becomes also almost independent of the power
at strong enough excitation. We assume that this stability
of polarization indicates the total polarization of electron
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FIG. 1. Hanle curves for sample A (left panel) and sample B (right panel) measured at the optical excitation of one circular polarization
(cw) as well as with the modulated polarization with periods given in the legends. Excitation power P = 14 mW for sample A and 10 mW for
sample B. Diameter of laser spots on the samples, d ≈ 60 μm. Sample temperature T = 1.8 K.
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spins in the QDs at zero magnetic field. The deviation of the
experimentally obtained value of the polarization from unity
is most probably caused by contribution of nonpolarized PL
from the neutral or doubly charged QDs [34].

Remarkable difference in behavior of the Hanle curves
is observed for two samples studied; compare Fig. 1(a) and
Fig. 1(b). Namely, for sample B with the higher annealing
temperature, strong modification of the Hanle curve is ob-
served even at large modulation period, Tmod = 1 s, while for
sample A the modification is hardly seen at the ten times
shorter period. Besides, the Hanle curve narrowing for sample
B is followed by a strong increase of polarization far beyond
the W structure. No such increase is observed for sample A.
This difference in the Hanle curve behavior indicates large
difference in the dynamics of nuclear spin system in these two
samples.

The analysis of the complex shape of the Hanle curves is the
main topic of the rest of the paper. As shown in Ref. [21], the W
structure and the shape of central part of the Hanle curves for
the QDs under study can be well described in the framework of
a phenomenological model. The model considers the electron
spin precession about an effective magnetic field, which is the
sum of the external magnetic field, B, an effective field of the
DNP (Overhauser field) [41], BN , and an effective field of
the nuclear spin fluctuations, Bf [42].

In the GaAs-based structures with no quadrupole effects,
the regular nuclear field is developed, in Hanle experiments,
parallel rather than antiparallel to the external magnetic field
because of the negative sign of the electron g factor [1]. The
W structure, in particular, the dips in the structure, are formed
due to the large nuclear field, which magnifies the effect of
small external magnetic field on the electron spin [21,40].
An increase of the magnetic field results in a decrease of
the nuclear field and, correspondingly, in a partial recovery
of the electron spin polarization that forms a W structure of
the Hanle curve. At larger magnetic fields, i.e., at the wings
of the Hanle curves, the electron polarization is effectively
suppressed by the joint action of the external and nuclear
magnetic field. Therefore, it would be expected that the
modulation of excitation polarization suppressing the nuclear
polarization should partially restore the electron polarization
at the wings of the Hanle curve.

Experimentally observed evolution of the Hanle curves
strongly differs from this prediction. As seen in Fig. 1, the
increase of modulation frequency is followed by a smoothing
of the W structure that indicates the decrease of nuclear
polarization. At the same time, the width of the Hanle curves
decreases, rather than increases, as predicted by the standard
model [1].

We assume that the main reason for such behavior is the
quadrupole effects in the nuclear spin system [7]. Due to
presence of a gradient of crystal field, the spin doublets ±3/2,
±5/2, etc., are split-off from doublet ±1/2. In the structures
under study, the gradient is mainly induced by the crystal lattice
deformation. The principal axis of this deformation is directed
along the growth axis of the structures that is along the optical
axis in our experiments [32]. The quadrupole splitting caused
by this deformation is studied in detail in Ref. [34].

At the presence of quadrupole splitting, behavior of the
±1/2 doublet and that of the split-off doublets in the magnetic

field orthogonal to the deformation axis (the transverse field)
are very different. Hereafter we call the components of nuclear
field created by polarization of the ±1/2 and ±3/2, etc.,
doublets the dipole and quadrupole components, respectively.
The dynamics of the dipole and quadrupole components is
different because of strong suppression of the electron-nuclear
flip-flop-mediated spin transitions between the ±1/2 and
±3/2, etc., states. The suppression comes from the large
difference in the energy of the quadrupole splitting of nuclear
spin states and of the Zeeman splitting of spin states of the
resident electron so that the energy conservation rule cannot
be satisfied in these transitions.

According to Ref. [7], the split-off nuclear spin states are
weakly affected by the transverse magnetic field due to small
effective nuclear g factor and the quadrupole components of
nuclear field conserve their orientation. Correspondingly, the
electron spin polarization is also conserved due to hyperfine
interaction with the stabilized nuclear spins. Only at large
magnetic fields when the Zeeman splitting becomes compa-
rable with the quadrupole splitting, the nuclear spins are no
longer pinned to the major axis of the electric field gradient.
Correspondingly, the nuclear spin orientation is destroyed and
the electron polarization decreases that forms the wings of the
Hanle curve.

The modulation of excitation polarization suppressing the
quadrupole component of the nuclear field should result in
narrowing the Hanle curve. The modulation-induced sup-
pressing of the dipole component should modify the W
structure of the Hanle curves. Different dependencies of
the dipole and quadrupole components on the modulation
frequency qualitatively explain complex behavior of the Hanle
curves observed experimentally. An accurate analysis of the
Hanle curves allowed us to obtain valuable information about
dynamics of both the dipole and quadrupole components of
the nuclear field.

B. Phenomenological model

To extract information about the dynamics of nuclear polar-
ization from the Hanle curves, we generalize the phenomeno-
logical model proposed in Ref. [21]. In particular, we consider
two effective nuclear fields acting on the electron spin. The first
one, the dipole field BNd , is determined by polarization of the
±1/2 nuclear spin states. The second one, the quadrupole field
BNq , is due to the polarization of the split-off states ±3/2, etc.
We should note that, in the (In,Ga)As-based structures, nuclei
of all chemical elements, including isotopes constituting the
structure, possess quadrupole moments.

The electron spin precesses in the total field, Btot, consisting
of several contributions:

Btot = B + BNd + BNq + Bf , (1)

where Bf is an effective field of the nuclear spin fluctuations.
Due to the fast precession of electron spin about Btot, only the
projection, SBtot , is conserved:

SBtot = (S0 · Btot)

|Btot| = S0
Btotz√
B2

tot

. (2)

Here S0 is the initial electron spin polarization created
by optical excitation along the optical axis (z axis). The
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electron spin polarization measured in the experiments Sz is
the projection of SBtot

on the direction of observation (the
optical axis). Correspondingly, the measured degree of PL
polarization is

ρ = Sz

S0
= B2

totz

B2
tot

. (3)

The electron spin precession competes with the spin relaxation,
which can be described by an effective field Bτ = h̄/(geμBτse)
where ge is the electron g factor, μB is the Bohr magneton, and
τse is the electron spin relaxation time. To take into account
the relaxation, we should generalize Eq. (3):

ρ = B2
totz + B2

τ

B2
tot + B2

τ

. (4)

For simplicity, we assume here that the relaxation time τse does
not depend on the external magnetic field. This assumption will

be verified by the simulations of Hanle curves described below.
Similarly to Ref. [21], we assume that the total field squared
can be expressed as

B2
tot = (B + BNdx + BNqx)2 + (BNdz + BNqz)

2 + 〈
B2

f

〉
. (5)

Here we use the fact that the external magnetic field is
directed along the x axis. We also assume that no valuable
nuclear polarization appears along the y axis. The nuclear
spin fluctuations are assumed to be isotropically distributed:

〈
B2

f

〉 = 〈
B2

f x

〉 + 〈
B2

fy

〉 + 〈
B2

f z

〉 = 3
〈
B2

f z

〉
. (6)

The z projection of the total field squared, B2
totz, is determined

by a similar way with taking into account only z components
of the regular and fluctuating fields. Finally we obtain

ρ(B) = Be

B0
e

= (BNdz + BNqz)2 + 〈
B2

f z

〉 + B2
τ

(B + BNdx + BNqx)2 + (BNdz + BNqz)2 + 3
〈
B2

f z

〉 + B2
τ

. (7)

Here Be = beSz is the z component of Knight field acting on
the nuclei and B0

e = beS0 is the Knight field at zero external
magnetic field. Constant be is proportional to the hyperfine
interaction constant [1]. It is considered as a fitting parameter.

We suppose that components of the nuclear field, BNdα

and BNqα with α = x,z, are determined by the nuclear spin
precession about the total field acting on the nuclei. The field
consists of the external magnetic field, B, and of the Knight
field, Be. For simplicity, we neglect the x and y components
of the Knight field because they are much smaller than the
external magnetic field.

Evolution of the nuclear field created by nuclei with
quadrupole splitting of spin states can be analyzed in the frame-
work of a pseudospin model proposed in Ref. [30]. According
to the model, each spin doublet with the spin projection, m =
±1/2, ±3/2, . . . , onto the principal quadrupole axis may be
considered independently, while the Zeeman splitting of the
doublet in an external magnetic field is considerably smaller
than the energy separation between the doublets determined by
the quadrupole splitting. The Zeeman splitting, δEm = gmβB,
can be described by an anisotropic nuclear g factor, gm. Here
β is the nuclear magneton. The nuclear spin polarization and,
correspondingly, the nuclear field are created along an effective
magnetic field, Beff

m = gmxB + gmzBe [43]. We should stress
that the direction of Beff

m deviates, in general case, from the
direction of vector sum of fields B and Be because of the
anisotropy of the nuclear g factor.

Using a simple vector model [21] one can obtain general
expressions for components of nuclear field:

BNmz
= BNm

B2
e

(g∗
mxB)2 + B2

e

,

BNmx
= BNm

(g∗
mxB)Be

(g∗
mxB)2 + B2

e

. (8)

Here BNm = BNd for m = 1/2 and BNm = BNq for m =
3/2 are the dipole and quadrupole nuclear fields at zero
external magnetic field. Their magnitude depends on the
excitation power. We consider them as fitting parameters. In the
case of In nuclei, there are also the nuclear spin doublets m =
5/2, . . . ,9/2. Their contribution in the quadrupole nuclear
field is found to be small as briefly discussed below (see
Sec. III C). We neglect this contribution to minimize the
number of fitting parameters.

Quantities g∗
mx = gmx/gmz in Eqs. (8) are the normalized

g factors determined as the ratio of g factors characterizing
interactions with the magnetic fields applied across and along
the principal quadrupole axis, respectively. In small transverse
magnetic fields, the splitting of nuclear states with m= ±1/2
(the dipole states) linearly depends on the magnetic field
and g∗

dx ≈ 2, while the Zeeman splitting of the doublet is
considerably smaller than the quadrupole splitting. We will
use this approximate equality because, as will be seen in the
next section, the dipole nuclear field significantly differs from
zero only in small magnetic fields.

The splitting of the ±3/2, ±5/2, . . . doublets is strongly
anisotropic in the transverse magnetic field and nonlinearly
depends on the magnetic field magnitude. For nuclei with
I = 3/2, splitting of the ±3/2 spin states is described by the
expression [44]

δE±3/2 = EQ

2
[a + (

√
1 − a + a2 −

√
1 + a + a2)], (9)

where a = 4γ h̄B/EQ. Here EQ is the quadrupole splitting
of the ±1/2 and ±3/2 doublets at zero magnetic field and γ

is the gyromagnetic ratio for the nuclei. Equation (9) allows
one to obtain an exact expression for the nuclear g factor.
We found, however, that this complex expression can be well
fitted for all the nuclei and magnetic fields considered here by
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a phenomenological formula:

g∗
qx = k

B2

B2 + B2



, (10)

where k and B
 are the fitting parameters. According to this
expression, the g factor quadratically rises with magnetic field
at small B and then reaches a constant value at B � B
. An
analysis shows that both the parameters are strongly different
for Ga and As nuclei due to different quadrupole splittings.
Therefore, to accurately model the nuclear field, a sum of
contributions of different nuclei should be considered. The
experimental results, however, do not contain sufficient infor-
mation required for separation of the different contributions.
We, therefore, simplify our analysis and suggest the simplest,
linear, dependence for the g factor,

g∗
qx = kB, (11)

to model the effective quadrupole nuclear field averaged over
all the nuclei. Results described in the next subsection show
that this dependence allows us to explain the main peculiarities
of the Hanle curves.

Substitution of expressions (8) into Eq. (7) gives rise to
an equation of the 9th degree relative to Knight field Be.
Solution of this equation for different magnetic fields gives
the field dependence of electron spin polarization that is the
Hanle curve. Comparison of the modeled Hanle curve with
that obtained experimentally allows us to determine fitting
parameters Bτ , be, BNd , BNq , Bf z, and k for each modulation
period.

To solve the problem we first obtained approximate values
of the parameters. For this purpose we fixed one parameter,
be = 4 mT for sample A and be = 2 mT for sample B, and
obtained other parameters by simple fitting procedure using
Eqs. (7) and (8). Then we solved the total equation using the
obtained values of the parameters as the initial ones and setting
the limits for their possible variations. We found that there is
only one root of the equation, which satisfies the physical
conditions: Sz is the real and positive quantity.

Numerical solution of the equation for different magnetic
fields allowed us to simulate Hanle curves by appropriate
choice of the fitting parameters. We have ignored some
asymmetry of Hanle curves observed experimentally (see
Fig. 1) and simulated only a part of each Hanle curve measured
at B > 0. An analysis has shown that the fitting parameters are
not noticeably changed when another part of Hanle curves is
modeled.

C. Analysis of Hanle curves

The phenomenological model developed above allowed us
to well describe the nontrivial shape of Hanle curves measured
for both the samples at different modulation periods. Examples
of the Hanle curves obtained in the model are shown in Fig. 2.
Good correspondence of the measured and simulated Hanle
curves allows us to obtain values of the fitting parameters
at each modulation period and, therefore, to evaluate their
frequency dependence. Although there are several fitting
parameters, values of most the parameters can be determined
independently because they control different features of Hanle
curves. In particular, parameters BNd and BNq , describing the
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FIG. 2. Examples of the Hanle curve simulations for samples A
(a) and B (b) for different modulation periods given in the legends.
Symbols are the experimental data and solid lines are the fits.

photoinduced dipole and quadrupole nuclear spin polarization,
determine the central part with W structure and the peripheral
part of the Hanle curves, respectively.

Examples of magnetic field dependencies of the dipole and
quadrupole components of nuclear field are shown in Fig. 3.
As seen, the x and z components of the dipole field have large
magnitude in small magnetic fields. In particular, the dipole
component BNdz has a maximal value at zero magnetic field
and rapidly decreases with B while component BNdx rapidly
rises in the same range of magnetic field (see inset in Fig. 3).
As discussed in Ref. [21], such behavior of the nuclear field is
responsible for the W structure in Hanle curves. Subsequent
decrease of the BNdx component with the further increase of
external magnetic field completes the W structure. Beyond the
W structure, i.e., in large magnetic fields, the dipole component
of the nuclear field is virtually absent.

The quadrupole field is weakly changed in small magnetic
fields. In particular, the x component of the field is almost
zero while the z component has some finite, almost constant,
value. It is the component which stabilizes the electron spin
polarization making the Hanle curve broad at slow modulation
of excitation polarization. At large external magnetic fields,
the dipole field almost disappears and the wings of the Hanle
curve are mainly determined by competition of the x and
z components of the quadrupole field. As one can see in
Fig. 3, the z component rapidly decreases at large B and the x

component increases that results in relatively sharp decrease
of electron spin polarization observed experimentally. So, the
dipole field forms the W structure and the quadrupole field
forms the wings of the Hanle curve.
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FIG. 3. Examples of the magnetic field dependencies of the
longitudinal and transverse components of the dipole and quadrupole
nuclear fields calculated for sample B using Eq. (8). The parameters
used in the calculation are extracted from the Hanle curve measured at
the modulation period Tmod = 300 ms. The magnetic field dependence
of Be is taken from the experimentally measured Hanle curve. Inset
shows behavior of components of the dipole field at small magnetic
fields. BNdz = 300 mT at zero magnetic field.

Let us now discuss other parameters of the model. Pa-
rameter Bτ is determined by time τse of the electron spin
relaxation; see comment to Eq. (4). As mentioned above, τse

and, correspondingly, Bτ depend on the excitation power but
should be independent of the modulation period. Therefore
we fixed the value Bτ = 18 mT. This value is obtained from
the Hanle curve width at the fastest modulation used when the
nuclear spin effects are negligibly small.

Parameter be [see Eq. (8)] characterizes the Knight field Be

averaged over all the nuclei interacting with the electron spin.
The magnitude of this parameter is determined by the electron
density on the nuclei [1]. The described above simulations
of the Hanle curves have shown that this parameter has to
be changed under variation of the modulation period. In
particular, be = 5.3 mT at slow modulation (Tmod > 0.01 s)
and be = 8 mT at fast modulation (Tmod < 0.01 s) for sample
A. For sample B, be = 3.8 mT at slow modulation (Tmod >

0.01 s) and be = 2.8 mT at fast modulation (Tmod < 0.01 s).
We assume that this variation of be with the modulation period
is due to different rates of spin relaxation for different nuclear
states. If the relaxation of some nuclear states is slower than the
modulation period, such nuclear states are “switched off” from
the joint electron-nuclear spin dynamics. Correspondingly, the
Knight field should be averaged over a subset of nuclear states,
which are not “switched off.” Difference in the magnitudes of
be for samples A and B is explained by different electron
densities on nuclei in these samples. Sample A contains QDs
annealed at lower temperature (Tann = 900 ◦C) than the sample
B (Tann = 980 ◦C) so that the indium content is larger, the
electron localization volume is smaller, and the hyperfine
interaction is stronger in sample A [31].

Parameter k describing nonlinear splitting of the ±3/2
doublets in magnetic field [see Eq. (11)] is found to be

almost independent of modulation period for both samples.
Its average value is k = 0.9 × 10−4 mT−1 for sample A and
k = 0.7 × 10−4 mT−1 for sample B. The obtained values
of k can be compared with those found from Zeeman
splittings of the ±3/2 states in different nuclei. According
to the data of Ref. [34], k(Ga) = 20 × 10−4 mT−1, k(As) =
1.3 × 10−4 mT−1 for sample A and k(Ga) = 40 × 10−4 mT−1,
k(As) = 7 × 10−4 mT−1 for sample B. As seen, these values
considerably differ for the Ga and As nuclei and are larger
than those obtained from the modeling of Hanle curves.

A possible reason for this difference of k obtained from
the experimental data and from the splittings can be related to
the fast phase relaxation of nuclear spin polarization caused
by fluctuating electron spin polarization under strong optical
pumping used in the experiments. An analysis shows [45]
that this relaxation should additionally weaken the effect of
transverse magnetic field on the nuclear spin dynamics.

Another possible reason is a contribution of the As nuclei
in an asymmetric atomic configuration containing one or few
In neighbors. The crystal field gradient caused by a statistical
occupation of lattice nodes by the In and Ga atoms gives
rise to a quadrupole splitting of spin states in the As nuclei
[1]. The principal axis of the gradient may be oriented along
different crystal axes. The quadrupole splitting in these nuclei
is stronger; therefore the value of k should be smaller. These
nuclei can be responsible for stabilization of the electron spin
polarization at large magnetic fields and, correspondingly,
for the wings of Hanle curves observed experimentally. This
contribution also explains the fact that the widths of the Hanle
curves for sample A and sample B are not so strongly different
(see Fig. 1) although the lattice deformation in sample A is
three times larger compared to that in sample B [34].

Finally we should note that the contribution of In nuclei
into the effect of stabilization of the electron spin polarization
is negligible because of the wide spread of Zeeman splittings
of different states (m = ±3/2, ± 5/2, . . . , ± 9/2).

D. Dynamics of nuclear fields

The simulation of Hanle curves described above allows
us to analyze evolution of the dipole and quadrupole nuclear
fields at the modulation of excitation polarization. Figure 4
shows the evolution of initial (photoinduced) values of nuclear
fields BNd and BNq for both the samples. The magnitudes of
nuclear fields, in particular, of the dipole component, obtained
in the simulations have relatively large spread. As already
discussed (see Fig. 3), the dipole component significantly
differs from zero only at small magnetic fields in the range
of the W structure of the Hanle curves. Therefore, any small
inaccuracy of experimental data in this range noticeably affects
the amplitude of this component obtained in the fitting. The
quadrupole component is determined in the larger magnetic
field range and, therefore, its magnitude is found with less
uncertainty. Nevertheless, in spite of the spread, the obtained
values of the dipole and quadrupole components demonstrate
a certain tendency in evolution of the nuclear spin polarization.

As seen from Fig. 4, all the nuclear fields tend to go to
some stationary values at slow enough modulation. These
stationary values are very different for different nuclear fields
and different samples. For sample A, as seen in Fig. 4(a), the
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BNq , and the field of nuclear spin fluctuations Bf on modulation
period Tmod for sample A (a) and sample B [(b), (c)]. Symbols are the
values extracted from the analysis of experimental data. Solid lines are
the fits by Eqs. (12) and (13) with characteristic times as follows: for
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dipole field BNd is only three times larger than the quadrupole
field BNq . For the strongly annealed sample B, this difference is
stronger; compare Figs. 4(b) and 4(c). As seen, the annealing
noticeable increases the dipole field achievable at the cw or
slowly modulated excitation.

Both the dipole and quadrupole fields decrease with
shortening the modulation period. The decrease of nuclear
fields is naturally explained by some inertia of the nuclear
spin system, which does not allow it to be reoriented during
the half-period of the modulation. This effect enables us to
estimate the characteristic relaxation times for each nuclear
field using a simple phenomenological function [46]:

BN = BN∞

[
1 − exp

(
−Tmod

τN

)]
. (12)

This equation well describes evolution of the dipole and
quadrupole nuclear fields in sample A and of the dipole field
in sample B. At the same time, evolution of the quadrupole
nuclear field in sample B cannot be fitted by this function and

we have to use a more complicated fitting function:

BN = BN∞

[
1 − a2 exp

(
−Tmod

τN1

)
− b2 exp

(
−Tmod

τN2

)]
,

(13)

with condition a2 + b2 = 1. Here BN∞ is the value of nuclear
field under the continuous wave excitation.

As follows from the fitting shown in Fig. 4, the relaxation
time of the dipole field for the stronger annealed sample B is
larger by about two orders of magnitude comparing to that for
sample A. So drastic difference in the relaxation rates points
out high sensitivity of the nuclear spin dynamics to quadrupole
effects. We should mention also that the relaxation dynamics
in bulk n-GaAs, where the quadrupole splitting is very
small, is further slowed down by a few orders of magnitude
[27,47–49].

Dynamics of quadrupole field in sample A is characterized
by a relaxation time, which is close to that for the dipole field in
this sample. In sample B, the dynamics of the quadrupole field
is generally faster than that of the dipole field but consists of
two components. The characteristic relaxation time of the fast
component is close to that for sample A. The slow component
is characterized by a large relaxation time of order that for the
dipole component in this sample.

Fitting of the Hanle curves allowed us to obtain the effective
field of nuclear spin fluctuations, Bf z. As one can see in
Fig. 4, the amplitude of fluctuations decreases with decreasing
period of the modulation. The dynamics of Bf z is similar to
dynamics of the quadrupole field and is characterized by a
single relaxation time for sample A and two relaxation times
for sample B.

IV. DISCUSSION

The phenomenological model used above for analysis of
experimental data is based on the approximation of the well-
separated nuclear spin doublets. This approximation is valid in
some limited range of the transverse magnetic field when the
Zeeman splitting of the doublets is considerably smaller than
the quadrupole splitting. However the experimental data ana-
lyzed in the present work are measured in the relatively wide
range of magnetic field of about ±100 mT where the Zeeman
and quadrupole splittings become comparable; see Ref. [34].
In such magnetic fields, the dipole (±1/2) and quadrupole
(±3/2, . . .) states are mixed that makes consideration of the
dipole and quadrupole fields in large magnetic fields to be not
applicable. A more accurate microscopic model is required for
analysis of the spin dynamics in quadrupole nuclei. To the best
of our knowledge, there is no such model so far. Therefore, we
consider the results obtained in the framework of our model
as a qualitative, rather than quantitative, characteristics of the
nuclear spin system.

The most important experimental result is the drastic
difference in evolution of the Hanle curves for two studied
samples. As seen in Fig. 1 for sample A annealed at the lower
temperature, the decrease of polarization modulation period
of the excitation is followed by a decrease of the width of the
Hanle curve with almost unchanged amplitude of its central
part. Evolution of the Hanle curve for the strongly annealed
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sample B is different. Namely, with the decrease of modulation
period the amplitude of wings of the Hanle curve decreases
while the amplitude of its central part beyond the W structure
increases.

The analysis performed in the framework of the model
described above allows us to conclude that the origin of
such large difference in behavior of the Hanle curves for
these samples is the large difference of relaxation rates of
the dipole and quadrupole nuclear fields. This difference is
particularly pronounced for the strongly annealed sample B
where the dynamics of the quadrupole field is considerably
faster than that of the dipole field; see Figs. 4(b) and 4(c). The
slow modulation of excitation polarization suppresses first the
long-lived dipole component of nuclear field in this sample.
The component depolarizes electron spin because it is directed
along the external magnetic field. Its suppression results in a
recovery of the electron polarization. The quadrupole compo-
nent of the nuclear field, whose relaxation is faster, is partially
conserved at the slow modulation of polarization. It is directed
along the optical axis and, therefore, stabilizes the electron spin
polarization. Both effects of the slow modulation of excitation
polarization make a contribution to the conservation of electron
spin polarization responsible for the increase of the central
part of the Hanle curve. The modulation at larger frequencies
suppresses also the quadrupole nuclear field that results in a
rapid depolarization of electron spin by the external magnetic
field and hence in the narrowing of the Hanle curve. So the
behavior of the Hanle curves observed in Fig. 1(b) is explained
by the competition of the dipole and quadrupole components
of nuclear fields.

In sample A, relaxation rates of the dipole and quadrupole
components are similar [see Fig. 4(a)] and they are syn-
chronously suppressed with the increase of modulation fre-
quency. This is why the central part of the Hanle curves
is weakly dependent on the modulation. Such dynamics in
this sample is possibly caused by a mixing of the dipole and
quadrupole nuclear spin states due to tilting of the principal
axis of the electric field gradient tensor or presence of some
biaxiality of the tensor observed for samples with low anneal-
ing temperature [32]. Similar although weaker distortions of
the electric field gradient are, probably, responsible for the
nonexponential dynamics of the quadrupole nuclear field in
the strongly annealed sample B; see Fig. 4(c).

Although there are no doubts in the large difference in
the relaxation rates of the dipole and quadrupole nuclear
fields in sample B, the physical origin of this difference is
unclear. One of the possible channels for fast relaxation of
the quadrupole field is the relaxation ±3/2 → ±1/2 caused
by a modulation of the crystal field gradient. In particular, the
crystal field gradient can be modulated by fluctuations of the
carrier density [25–27]. In the case of QDs with a relatively
deep potential well for carriers, the fluctuations are generally
small, at least at low sample temperature. However, in the case
of optical excitation of QDs, the fluctuations may be much
larger due to separate capture of electrons and holes so that this
mechanism of relaxation of the quadrupole states may become
effective. After the ±3/2 → ±1/2 relaxation, rapid precession
of the nuclear spins in the transverse magnetic field mixes the

±1/2 states due to the large effective nuclear g factor for this
doublet. For example, the precession frequency is of order
104 Hz in magnetic field of 1 mT. The backward relaxation
±1/2 → ±3/2, which occurs at any moment of the preces-
sion, should give rise to effective destruction of the quadrupole
field. This simplified picture of the relaxation process may
explain the rapid relaxation of quadrupole field observed
experimentally.

Finally we should mention one more effect observed at the
modulation of excitation polarization. This is the suppression
of the effective field of nuclear spin fluctuations, which is
observed at the shortening of the modulation period [Fig. 4(c)].
The suppression unambiguously follows from the fact of the
strong narrowing of the Hanle curve down to the purely
electron peak at the fast enough modulation of polarization. We
assume that the strong optical pumping with rapidly alternating
polarization may equalize the population of nuclear states
with spin down and spin up and, hence, partially suppress
the nuclear spin fluctuations, which supports orientation of
the electron spin [50]. The mentioned above almost total
coincidence of the dynamics of the nuclear spin fluctuation and
of the quadrupole nuclear field suggests that the quadrupole
states mainly contribute to the nuclear spin fluctuations. A
similar conclusion has been made in Ref. [51]. Theoretical
analysis of such behavior of the nuclear spin fluctuations for the
quadrupole nuclei requires a quantum-mechanical modeling
with a huge number of spin degrees of freedom, which is out
of the scope of the present work.

V. CONCLUSION

Strong modification of Hanle curves observed under mod-
ulation of excitation polarization is demonstrated to contain
valuable information about the dynamics of coupled electron-
nuclear spin systems in the studied (In,Ga)As/GaAs QDs.
To extract this information, we have developed a simplified
phenomenological model considering separate dynamics of
the dipole and quadrupole nuclear fields. In particular, the
quadrupole field can efficiently stabilize electron spin po-
larization in large magnetic fields up to 100 mT. At the
same time, the relatively fast relaxation of polarization of
the quadrupole nuclear states may considerably shorten the
electron spin lifetime. In the studied samples with different
quadrupole splittings, the lifetimes differ by about two orders
of magnitude.
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