
PHYSICAL REVIEW B 95, 195311 (2017)

Exciton mass increase in a GaAs/AlGaAs quantum well in a transverse magnetic field
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In this work we have investigated the exciton reflectance spectra of a high quality heterostructure with a
GaAs/AlGaAs quantum well in a transverse magnetic field (Voigt geometry). It has been shown that application
of the magnetic field leads to a decrease of energy distance between spectral features related to the excitonlike
polariton modes. This effect has been treated as the magneto-induced increase of the exciton mass. We have
shown that the hydrogenlike and diamagnetic exciton models are insufficient to describe the exciton behavior
in the intermediate magnetic fields studied. Considering the symmetry of the problem, we have developed a
phenomenological model which adequately describes the experimental data.
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I. INTRODUCTION

Effect of magnetic field on exciton states has been exten-
sively studied for a long time, since the middle of the last
century [1–7]. A pioneering work [1] demonstrated that the
exciton lines reveal Zeeman splittings and diamagnetic shifts.
In weak magnetic fields these effects can be described in the
framework of a hydrogen model. However, a strong enough
magnetic field significantly modifies exciton states giving rise
to a so-called “diamagnetic exciton” [2–5] when the magnetic
energy of moving carriers prevails over the Coulomb energy
of their interaction. Subsequent studies have shown that the
binding energy of diamagnetic excitons increases with the
magnetic field rise [6,7].

Modern epitaxial technologies allow one to grow high-
quality heterostructures for precise study of various effects.
A number of magnetic-field-induced effects related to the
quantum confinement of excitons has been predicted and
found in different structures in the last two decades, see, e.g.,
Refs. [8–13]. In particular, in the paper by Lozovik et al. [8],
the binding energy of indirect diamagnetic excitons in the
double quantum wells (QWs) was studied as a function of
the transverse magnetic field applied along the heterostructure
layers. In Refs. [9,10] the effect of the magnetic field
applied along or across the heterostructure growth axis was
considered for both direct and indirect excitons in the double
GaAs/AlGaAs QWs. The authors managed to experimentally
observe and theoretically explain the behavior of spectral
lines corresponding to the anticrossing of direct and indirect
excitons induced by the variation of the magnetic field.

In the case of direct excitons, the QW-width depen-
dence of the Zeeman splitting in the InGaAs/AlGaAs and
GaAs/AlGaAs has been theoretically and experimentally
studied in Refs. [11–15]. It was demonstrated that the variation
of g-factors characterizing the splittings is caused by the
heavy-hole-light-hole mixing. Similar study was done for
excitons in the wurtzite GaN/AlGaN QWs as well as for
charged excitons and for excitons localized at impurities in
the asymmetrically doped GaAs/AlGaAs QWs [16–18]. In
particular, a dependence of g factor on the magnetic field was

observed and explained by the magnetic-field-induced mixing
of heavy-hole and light-hole states.

Excitons in wide QWs in the external magnetic field is
typically studied by reflectance spectroscopy [19–25]. This
technique allows one to observe dozens of quantum confined
exciton states in high-quality heterostructures and to restore
the exciton dispersion introducing an effective wave vector
for exciton propagation across the QW. It was found that
the exciton propagation along the magnetic field (Faraday
geometry) leads to the Zeeman splitting of exciton states,
in which magnitude depends on the wave vector [20–23].
The application of the magnetic field perpendicular to the
direction of the exciton propagation (Voigt geometry) results in
a modification of the exciton dispersion, which is discussed in
several works [19,24–26]. Magnetic-field-induced effects have
been studied for several different types of heterostructures but,
in the case of the GaAs/AlGaAs QWs, these effects have been
studied only in the Faraday geometry [15,20].

This work is devoted to the study of the exciton dispersion
in a wide GaAs/AlGaAs QW in the transverse magnetic
field (Voigt geometry). Similar to works [19,20,22,24,25], the
exciton dispersion is obtained from reflectance spectra of the
structure. Theoretical analysis of the magnetic-field-induced
modification of the exciton dispersion encounters certain
difficulties. Particularly, it has been found that theoretical
models used in Refs. [19,20,22,24–26] are not suitable for
analysis of the exciton dispersion in the moderate magnetic
fields 0–3 T used in our experiments. In the cited works, the
approximation of a weak magnetic field has been exploited.
The hydrogenlike exciton wave functions were considered as
the basic set for the problem and the magnetic field effects were
analyzed in the framework of perturbation theory. However,
in our case, the magnetic field cannot be considered as a weak
one.

The exciton state in the opposite extreme of the strong
magnetic field can be described in the framework of the
diamagnetic exciton model [2–5,27–29]. It assumes that the
magnetic-field-induced changes of exciton energy is consider-
ably stronger than the Coulomb energy of the electron-hole
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interaction. The unperturbed exciton Hamiltonian includes
operators, which depend on the magnetic field, and the
Coulomb interaction is considered as a perturbation. As it
will be shown below, this model is also not accurate enough to
describe the magnetic-field-induced effects we discuss in the
present work. Namely, the exciton energy corrections induced
by the magnetic field are comparable with the Coulomb energy
of the electron-hole interaction so that the approximation of a
diamagnetic exciton does not fit the experimental conditions.
In other words, the nonadiabatic corrections in such an
intermediate magnetic field cannot be considered as small
ones [2]. An analytical solution of the problem taking into
account the nonadiabatic corrections has not been found yet.

For the analysis of our experimental data, we use the
diamagnetic exciton model as a zero approximation. In order to
include the nonadiabatic corrections to this approximation, we
consider quantum characteristics of the diamagnetic exciton
states as fitting parameters. These parameters are determined
by comparison with the experimental data. They can be used
to estimate the deviation from the diamagnetic exciton model.
In order to model the dependence of these fitting parameters
on external magnetic field B and on exciton wave vector K,
we exploit the invariant method (see, e.g., textbooks [30,31]).

The rest of the paper is organized as follows. In Sec. II we
describe the experimental results on reflectance spectra and
their phenomenological analysis. In Sec. III we discuss the
approximations of strong and weak magnetic fields as well as
their limitations in the description of exciton behavior in our
experiments. Also in this section we propose a generalized
diamagnetic exciton model for the case of intermediate
magnetic fields in the framework of the invariance method.
The main conclusions are given in Sec. IV.

II. POLARITON REFLECTANCE SPECTRA

In the present work we study the magnetic-field-induced
modification of the exciton dispersion by reflectance spec-
troscopy for a heterostructure with a wide GaAs/AlGaAs QW.
The heterostructure was grown by molecular beam epitaxy on
the [001] GaAs substrate. It contains the wide QW and several
technological layers of AlGaAs and AlAs, grown to prevent the
dislocation growth throughout the structure. Optical response
from the wide QW under study is not hindered in any way by
other layers of the structure, as they do not have resonance
states in the energy range of interest. Due to the gradient of
layer thicknesses, the actual thickness of the QW layer was
determined by transmission electron microscopy (TEM). To
minimize the error in the determination of layer thickness, the
TEM measurements were done near the point at the sample
surface where the reflectance spectra have been measured. The
measured thickness of the QW layer, LQW = 225 nm, is found
to be slightly smaller than the nominal thickness 240 nm set
in the growth program for the structure.

The reflectance spectra are measured at the nearly normal
incidence of the light beam to the sample surface (z axis).
The magnetic field was directed along the [11̄0] crystal axis
(x axis) that is perpendicular to the light beam (Voigt
geometry). The sample was placed in a continuous-flow
cryostat and held at temperature T = 1.5 K. We used a
femtosecond titanium-sapphire laser as a light source with
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FIG. 1. Reflectance spectra of the heterostructure with QW,
LQW = 225 nm, measured in the transverse magnetic field, varied
from B = 0 up to B = 3 T with step �B = 0.2 T. The magnetic
field is applied along the [11̄0] crystal axis. Incident light is polarized
across the magnetic field direction. Dashed lines show the magnetic-
field-induced shift of polaritonic resonances. Arrows point out the
spectral peculiarities appearing in the magnetic field.

emission spectrum covering the spectral range of the investi-
gated polariton resonances. To avoid the resonance broadening
due to exciton-exciton scattering, we used a low excitation
power (∼10−3 W/cm2) [32].

The reflectance spectra are measured for two linear po-
larizations of incident light, namely, along and transverse
to the direction of the magnetic field. Since we found no
principal difference between the spectra, we consider only
the reflectance spectra measured in polarization perpendicular
to the magnetic field.

Reflectance spectra for a variety of magnetic field values are
shown in Fig. 1. We attribute the peculiarities observed in the
spectra mainly to the heavy-hole exciton polaritons inside the
QW. The contribution of the light-hole excitons is considerably
smaller [33]. The strongest peculiarities correspond to the an-
ticrossing of the exciton and photon modes. The quasiperiodic
oscillations lying higher in energy can be attributed to the
standing polariton waves with wave vectors much larger that
the light wave vector (see details in Refs. [20,34–36]). These
oscillations can be treated as a polarization inside the QW,
governed by the quantum-confined exciton states [37].

Figure 1 clearly demonstrates the two main effects of the
magnetic field. First, there is a systematic energy shift of
spectral features related to the diamagnetic shift of exciton
states. The second effect is the decrease of the energy
difference between spectral features with increasing magnetic
field. These changes are related to the modification of the
exciton dispersion in the magnetic field discussed below.

Beside these two main effects, there are also several other
effects induced by the magnetic field. A strong modification of
the spectra is observed in the lower energy range. In particular,
new peculiarities appear with the magnetic field rise. Two of
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FIG. 2. Reflectance spectrum measured at zero magnetic field
(noisy curve) and its fit by Eqs. (1) and (2) (dashed curve). Numbers
indicate the quantum-confined exciton states.

them are indicated by arrows in Fig. 1. These peculiarities may
be attributed to the light-hole excitons, whose exciton-light
coupling increases due to their mixing with the radiative heavy-
hole excitons [16]. Another effect is a variation of amplitudes
of exciton resonances. For example, the intensities of low-
energy resonances increase with the magnetic field, while the
resonances with energy E > 1.52 eV almost disappear at a
relatively strong magnetic field. We do not discuss these effects
in the present paper in detail.

For a quantitative analysis of the two main effects described
above, the actual energy position of the quantum-confined
exciton states should be carefully determined from the exper-
imental spectra. Consider exciton resonances in the spectrum
at zero magnetic field, shown in Fig. 2. Each resonance is
an asymmetric contour, so the actual position of the state may
deviate from the position of the resonant peak. The high-energy
resonances are relatively weak and noisy, therefore an accurate
determination of their position also requires approximation
with an analytical function.

We used a model described in the textbook by Ivchenko
[28] and generalized in Ref. [38] for simulation of several well
spectrally separated exciton resonances. General expressions
for the reflectance spectrum are [38]

R(ω) =
∣∣∣∣ r01 + rQWe2iφ

1 + r01rQWe2iφ

∣∣∣∣, (1)

rQW =
Nmax∑
N=1

i(−1)(N−1)�0NeiϕN

(ω0N − ω) − i(�0N + �N )
. (2)

Here ω0N is the frequency of the N th exciton transition, �0N is
the exciton decay rate, and �N is the rate of various scattering
processes broadening the exciton resonance. Phases ϕN are
governed by the QW potential and may differ for different
resonances in case of the asymmetric QW potential [39]. Phase
φ describes the phase of electromagnetic wave acquired during
propagation from the sample surface to the QW. Parameter r01

describes the amplitude reflection from the sample surface.
In wide QWs, low-energy quantum-confined exciton states

are close to each other and the interaction with light may couple
these states. In this case the model described by Eqs. (1) and (2)

is not applicable and a more general model should be used [40].
To simplify the problem, we use Eqs. (1) and (2) for excited
exciton states only, for which the coupling is negligibly small.
An example of the reflectance spectrum simulation is shown
in Fig. 2. In the simulation we fixed phases ϕN almost for all
resonances, ϕN = 3.8, because the asymmetry of QW potential
is negligibly small for wide QWs. The exception is the phase
for the lowest resonance involved into the fit ϕ5 = 2.2. It is
affected by low-energy resonances.

As seen in Fig. 2, the simulation accurately reproduces ex-
citon resonances in a wide spectral range [41]. This simulation
allows us to precisely determine the exciton energies. We found
that there is a small systematic energy shift δEN ≈ 30 μeV
of the exciton energy position determined by the simulation
from the position of resonant maximum. The spread of this
shift is smaller than 10 μeV. We, therefore, may use a “naive”
method of determination of the exciton energy as the position
of resonant maximum with the systematic shift added. We
used this method if the additional resonances appearing in the
magnetic field hindered the accurate simulation of reflectance
spectra.

The exciton resonances in wide QWs typically correspond
to optical transitions to even or odd quantum-confined exciton
states [36,37]. The oscillator strength for other transitions (odd
or even, respectively) is much smaller. They can be seen as
small peculiarities between the main resonances in Fig. 2.

The identification of resonances is based on two assump-
tions well verified for wide QWs [35,37]. First, the exciton
dispersion is weakly affected by the QW interfaces and,
therefore, one can use the dispersion for bulk crystal. Far
beyond the anticrossing point, it is described by a parabolic
dependence on the exciton wave vector K:

E = h̄2K2

2M
+ EX. (3)

Here EX is the exciton ground state energy and M is the exciton
mass M = me + mh, where me and mh are the effective masses
of electron and hole, respectively. Second, the observed exciton
resonances correspond to the quantization of the center-of-
mass exciton motion described by the discrete values of exciton
wave vector:

KN = πN/L∗
QW, (4)

where N is the number of the quantum confined exciton
state. The effective thickness of QW, L∗

QW, differs from the
real QW thickness LQW by the double value of a transition
layer [42] frequently called a “dead layer” LD [43–46]. The
latter parameter depends on the QW thickness and, for LQW =
225 nm, its value LD ≈ 15 nm [45,46]. Correspondingly, the
effective thickness of the QW under study, L∗

QW = LQW −
2LD = 195 nm, with accuracy of a few nm.

The analysis shows that the energy positions of exciton
resonances are well described by Eqs. (3) and (4). The exciton
dispersion restored using these equations is shown in Fig. 3.
We used effective masses me = 0.067 m0 and mh = 0.45 m0,
where m0 is the free electron mass. This modeling also allows
one to assign certain numbers of the quantum-confined exciton
states to the exciton resonances observed (see Fig. 2). We
should note that number N cannot be directly found from the
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FIG. 3. Exciton dispersion curves for several values of the
magnetic field. Symbols are the experimental data and the curves
are fits by formula (3). Inset shows the dependence of inverse exciton
mass 1/M(B) on the magnetic field. Points are the values extracted
from the fit of dispersion data and the solid curve is the approximation
by formula (5).

experimental spectra because of dense exciton peculiarities
near the exciton-photon anticrossing point (see Fig. 1).

Similar analysis of reflectance spectra was performed for
the case of nonzero magnetic field. As it is shown in the next
section, the exciton dispersion should remain parabolic with
increasing magnetic field. It can be described by Eqs. (3) and
(4) if the exciton mass and the exciton energy are considered
depending on the magnetic field M(B) and EX(B). In the
phenomenological analysis of reflectance spectra, we assign
simple fit functions to these quantities. Using the appropriate
fitting parameters one can describe spectral positions of exci-
ton resonances using Eqs. (3) and (4) and, hence, determine
the exciton dispersion for each particular value of the magnetic
field.

Examples of the dispersion curves are shown in Fig. 3.
The curvature of dispersion curves clearly decreases with the
magnetic field, which indicates the increase of exciton mass
M(B). Respective values of the inverse exciton mass 1/M(B)
as a function of B obtained by fitting the dispersion curves with
Eq. (3) are given in the inset of the figure. The dependence is
well fitted by a parabolic function:

1

M(B)
= 1

M
− DMB2. (5)

Fitting parameter DM = (0.048 ± 0.002) m−1
0 T−2, where m0

is the free electron mass.
Beside the exciton mass variation, a diamagnetic shift of

the exciton ground state,

�EX(B) = EX(B) − EX(0),

was determined from the dispersion curves. We should note
that the accuracy of the shift determination is limited because
it is found using a limited number of experimental points.
The direct determination of this shift from the experimental
spectra, however, is even more problematic because of the
complex structure of the spectral features at the anticrossing
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FIG. 4. Dependence of the diamagnetic shift �EX on the
magnetic field. Points show values of �EX obtained from the fit
of dispersion curves by Eq. (3). Red solid curve is the fit by
parabolic dependence (6) with D2 = 0.085 meV/T2 in the range
0 < B < 1.5 T. Blue dashed line is the fit by linear dependence (7)
with D1 = 0.49 meV/T and D0 = −0.57 meV for B > 1.5 T.

point, which is, in addition, strongly modified by the magnetic
field, see Fig. 1.

The diamagnetic shift �EX(B) obtained by the extrapola-
tion procedure is shown in Fig. 4. According to the models of
the hydrogenlike [26,47] and diamagnetic excitons [2,4], the
diamagnetic shift should quadratically depend on the magnetic
field at B � BL and should tend to a linear dependence at
large B. Here BL is a critical magnetic field, at which the
cyclotron energy of electron-hole pair becomes equal to their
Coulomb energy in the hydrogenlike exciton (see next section
for details). For the case of an exciton in GaAs, BL ≈ 4 T.
We, therefore, fit the diamagnetic shift for B < 1.5 T by a
parabolic dependence:

�EX(B) = D2B
2, (6)

with fitting parameter D2 = (0.085 ± 0.004) meV/T2. For
B > 1.5 T, we use a linear dependence of �EX:

�EX(B) = D1B + D0. (7)

The fitting parameters are D1 = (0.49 ± 0.02) meV/T and
D0 = (−0.57 ± 0.04) meV. As seen in Fig. 4, functions (6)
and (7) well fit the experimental dependence in the respective
magnetic field ranges. At the same time, the obtained values of
fitting parameters D2 and D1 do not agree with those calculated
in the framework of the hydrogenlike and diamagnetic models,
which is discussed in the next section.

III. EXCITON IN MAGNETIC FIELD

For quantitative analysis of exciton energy, we choose a
coordinate system in which the x axis is directed along the
magnetic field so that B = Bx . We also choose this direction
as the quantization axis for the angular momenta. We consider
the excitons propagating along the z axis that is K = Kz. This
direction coincides with the growth axis of the heterostructure.
The total Hamiltonian of an exciton in the magnetic field
consists of the Hamiltonians for a free hole (the Luttinger
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Hamiltonian) and for a free electron, as well as of an operator
of their Coulomb interaction.

The analytical solution of Schrödinger equation with
this Hamiltonian is not possible in the general case. Two
approximations, the hydrogenlike model and the model of
diamagnetic exciton mentioned above, are typically used for
weak and strong magnetic fields, respectively. The criterion
of a strong magnetic field has been proposed by Elliott and
Loudon [2] and generalized by Zhilich and Monozon [48] for
excited exciton states:

βn = h̄


2RX

n2 = ε2
0h̄

3B

μ2e3c
n2 � 1. (8)

Here 
 = |e|B/(μc) is the sum of cyclotron frequencies of a
free electron and a hole, n is the principal quantum number
of an exciton state in the hydrogenlike model, and RX =
μe4/(2h̄2ε2

0) is the binding energy for an exciton state with n =
1 (exciton Rydberg). In formula (8), μ = mhme/(mh + me)
is the reduced exciton mass, where me = 0.067 m0 and
mh = m0/(γ1 − 2γ2) = 0.45 m0 are the effective masses of
an electron and a hole in GaAs, respectively [49]; m0 is the
free electron mass, γ1, γ2 are the Luttinger parameters, e is the
electron charge, ε0 = 12.56 is the permittivity of GaAs crystal
[50], and c is the speed of light. In particular, for the ground
exciton state (n = 1) in GaAs, β = 1 for the magnetic field
BL ≈ 4 T.

A. Weak magnetic field

First, we consider an approximation of the weak magnetic
field βn � 1 when the Coulomb interaction of a hole and an
electron in the exciton is much stronger than the interaction
with the magnetic field. The hydrogenlike Hamiltonian in zero
magnetic field can be used as the nonperturbed Hamiltonian in
this case. The nonperturbed exciton states are described by the
principal quantum number n. The effect of the magnetic field
on the exciton energy is usually calculated in the framework of
the first and higher orders of perturbation theory [19,24–26].
Particularly, the magnetic field mixes the ground 1s state with
an infinite number of the hydrogenlike p states of the discrete
energy spectrum as well as with the states of a continuum [26].

The binding energy of hydrogenlike exciton states rapidly
decreases with n as 1/n2. Therefore, even for a small, but
nonzero, magnetic field, the criterion of a strong magnetic
field (8) can be fulfilled for large enough n. For example, the
criterion (8) is fulfilled for states with n � 2 in the magnetic
field B > 1 T. Thus, the description of the magnetic field
effects in the framework of the hydrogenlike exciton model and
of the perturbation theory becomes inapplicable for relatively
low magnetic fields.

Let us consider, e.g., the diamagnetic shift of the lowest 1s-
exciton state shown in Fig. 4. In the framework of hydrogenlike
model, it is described by a parabolic dependence, similar to
Eq. (6), with coefficient D(H)

2 determined by expression [26,47]

D
(H)
2 = 1

4

(
m2

e

mh

+ m2
h

me

)(
eaB

Mc

)2

. (9)

Here aB = h̄2ε0/(μe2) is the exciton Bohr radius. For GaAs
this expression gives D

(H)
2 = 0.065 meV/T2. This value

is considerably smaller than that obtained from the fit of
experimental data shown in Fig. 4, D2 = 0.085 meV/T2. This
discrepancy points out that even the range 0 < B < 1.5 T used
in the fit cannot be considered as the range of small enough
magnetic fields for excitons in GaAs.

The approximation of a strong field is also not totally
applicable. Indeed, according to Refs. [3,28], the energy
of lowest state of the diamagnetic exciton should linearly
depend on the magnetic field with factor D

(DM)
1 = h̄
/(2B) =

eh̄/(2μc) ≈ 1 meV/T for GaAs. The fit of experimental data
gives smaller factor D1 = 0.49 meV/T (see Fig. 4).

These estimates show that both limits, the weak and the
strong magnetic fields, cannot be applied to describe the
experimentally observed behavior of the diamagnetic shift
and we should speak about an intermediate magnetic field.
Because there is no simple theoretical model for this case
[51], we consider a phenomenological approach based on the
model of a diamagnetic exciton as a zero approximation. Then
we consider some parameters of the model as the fitting pa-
rameters to take into account that the adiabatic approximation
(see, e.g., Refs. [2,5]) is broken for the intermediate magnetic
fields.

B. Intermediate magnetic field

In the framework of the diamagnetic exciton model, relative
motions of electrons and holes along and across the magnetic
field are considered to be adiabatically independent, because
the motion across the magnetic field is much faster than along
it, see, e.g., Refs. [3,28]. The motion across the magnetic field
is governed by the interaction of an electron and a hole with the
magnetic field because their Coulomb interaction is negligibly
small. The Hamiltonian describing this motion is

Ĥ⊥ = − h̄2

2μ

{
1

ρ

∂

∂ρ

(
ρ

∂

∂ρ

)
+ 1

ρ2

∂2

∂ϕ2

}

− eBh̄

2μc

∂

∂ϕ
+ e2B2ρ2

8μc2
, (10)

where ρ2 = y2 + z2 is the distance between an electron and a
hole in the yz plane, which is perpendicular to the magnetic
field.

A general expression for respective wave functions has the
form [6,28,29]

Rm
N = 1

λB

eimϕ

√
2π

√
N !

(N + |m|)!e
−η/2η|m|/2L

|m|
N (η). (11)

Here λB = √
(h̄c)/(eB) is the magnetic length, η = ρ2/(2λ2

B),
and functions L

|m|
N (η) are the associated Laguerre polynomials.

Quantities N and m = −N, . . . ,N are the quantum numbers
of Landau bands and subbands, respectively. The energy of
the relative electron-hole motion perpendicular to the external
magnetic field is

Ec = h̄


(
N + |m| + γm + 1

2

)
, (12)

where γ is of order of unity [29]. This expression describes
the diamagnetic shift of state with numbers (N,m). We should
note that the excited states of a diamagnetic exciton with

195311-5



S. YU. BODNAR et al. PHYSICAL REVIEW B 95, 195311 (2017)

N > 0 give a small contribution into the reflectance spectra
in comparison with the lowest state (N = 0, m = 0) and we
may not consider them. At the same time, the diamagnetic
shift of the lowest state calculated with N = 0 does not agree
with the experiment in our case of the intermediate magnetic
fields as it is already discussed above in this section. This
deviation is caused by an effect of the Coulomb interaction
on the relative electron-hole motion in the plane perpendicular
to the magnetic field. We should stress that, in the case of
a strong magnetic field (β � 1), the Coulomb-interaction
related corrections of exciton energy become negligibly
small [2].

To describe the experimentally observed diamagnetic shift,
we save N in Eq. (12) and consider it as a fitting parameter.
Its value can be found comparing this expression with a linear
approximation (7) of the diamagnetic shift N = (D1/D

(DM)
1 −

1)/2 = −0.25. The deviation of this parameter from zero,
which should be for the purely diamagnetic exciton, is not large
as compared to unity. In other words, the Coulomb interaction
causes relatively weak coupling of the diamagnetic exciton
states with N = 0 and N = 1 at magnetic fields B > 1.5 T.
This fact justifies the suggested phenomenological approach.

The relative electron-hole motion along the magnetic field
is described by Hamiltonian

Ĥ|| = − h̄2

2μ

∂2

∂x2
+ VN, m(x). (13)

Here VN, m(x) = 〈Rm
N |e2/(ε0r)|Rm

N 〉 is the one-dimensional
Coulomb potential for the relative electron-hole motion, r =√

ρ2 + x2, and x is the electron-hole distance in the x direction
that is along the magnetic field.

The exact analytical expression for this potential is too
complex and its substitution into the Schrödinger equation
does not allow one to obtain any analytical solution of the
problem. However, for N = 0 and m = 0, this potential is
well approximated by a simple function [3]:

V1d = − e2

ε0(a + |x|) + A2e2a

ε0(a + |x|)2
. (14)

Here a and A are the fitting parameters. The relative motion in
such a potential is described by the Whittaker function Wα,ν ,
where index α is the state number for the one-dimensional
exciton determined from the matching conditions at point x =
0; index ν = √

1/4 + 2Aa/aB [3].
The energy of relative electron-hole motion along the

magnetic field in such a potential, that is the exciton binding
energy, can be expressed as [3]

RX = RX

α2
. (15)

This energy slowly (sublinearly) depends on the magnetic field
[7,28,52]. Besides, it should also depend on the exciton wave
vector K . This dependence has not been analyzed in detail so
far. In the case of intermediate magnetic fields and relatively
small wave vectors (K � π/a0, where a0 is a lattice constant),
RX can be expanded in a series in powers of K and B, which
satisfy the symmetry of the system in the � point of Brillouin
zone for GaAs [30,31]. The symmetry permits any even powers
of B and K , including zero and negative powers, therefore we

should consider some physical arguments to choose the terms
in the series required for the following analysis.

The exciton motion across the magnetic field gives
rise to an appearance of an effective electric field Feff =
h̄[K × B]/(Mc), acting on the electron and the hole in
the reference frame of the exciton center-of-mass [6]. This
electric field increases the exciton binding energy due to
the quadratic Stark effect [53,54] when it is relatively small,
eFeffaB/RX �1. It is important that Feff ∝ KB, therefore we
expand RX in series in (KB)2n and consider only first two
terms:

RX = RX(1 + ξ2K
2B2). (16)

Here RX is the exciton binding energy at zero wave vector and
ξ2 is a fitting parameter.

The total wave function of a diamagnetic exciton can be
presented as

� = Rm
N (ρ)Wα,ν(x)eiKz, (17)

where function eiKz describes the motion of the exciton as a
whole particle. The total exciton energy is described as a sum
of the internal energy of the exciton, expressions (12) and (16),
and of the exciton kinetic energy:

E = h̄


(
N + 1

2

)
− RX(1 + ξ2K

2B2) + h̄2K2

2M
. (18)

Combining the last term in this expression describing the
kinetic energy with the second term in Eq. (16), we obtain

E = h̄


(
N + 1

2

)
− RX + h̄2K2

2M
(1 − ξMB2), (19)

where ξM = ξ2RX(2M/h̄2). The last term in this expression
can be treated as the kinetic energy of an exciton with an
effective mass depending on the magnetic field:

1

M(B)
= 1

M

(
1 − 2ξ2RX

h̄2 MB2

)
= 1

M
(1 − ξMB2). (20)

Comparing this expression with Eq. (5), we can determine
the value of parameter ξM = DMM = 0.025 T−2. We should
note that, at the maximal magnitude of magnetic field used
in the experiments, B = 3 T, the second term in expression
(20), ξMB2 = 0.23, that is considerably smaller than unity.
This confirms the applicability of expansion (16) in the case
of intermediate magnetic fields considered here.

The change of exciton mass in the intermediate magnetic
fields can be treated as the magnetic-field-induced coupling
of the relative electron-hole motion with the exciton motion
as a particle. We should note that, in the weak magnetic
fields when the hydrogenlike exciton model is applicable, the
modification of exciton mass is also caused by the magnetic-
field-induced coupling of the relative electron-hole motion
and the exciton motion as a whole [24,26]. This coupling also
results in a parabolic dependence of the inverse exciton mass
on the magnetic field. We therefore may expect a parabolic
dependence in the whole range of magnetic fields studied.
Good approximation of the experimental data shown in the
inset of Fig. 3 by the parabolic dependence (5) confirms this
conclusion.
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IV. CONCLUSION

We experimentally studied and theoretically analyzed
polariton reflectance spectra of a heterostructure with a wide
GaAs/AlGaAs QW in the transverse magnetic field varied
from zero to 3 T. We observed the magnetic-field-induced
modification of the exciton dispersion, which is detected as
a decrease of energy distance between exciton resonances
related to the quantum-confined exciton states in the QW. The
modification of the dispersion is treated as an increase of mass
of the heavy-hole exciton. The theoretical analysis is based
on the model of a diamagnetic exciton. In order to apply the
model to the case of intermediate magnetic fields, we used
some parameters of the model as the fitting parameters. This
approach allowed us to describe the experimentally observed

quadratic in the magnetic field decrease of inverse exciton
mass and the linear diamagnetic shift of the exciton ground
state in magnetic fields 1.5 < B < 3 T. The development of a
microscopic model, which could describe these effects, needs
further theoretical study.
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