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Nuclear spin cooling by helicity-alternated optical pumping at weak magnetic fields in n-GaAs
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The spin dynamics of localized donor-bound electrons interacting with the nuclear spin ensemble in n-doped
GaAs epilayers is studied using nuclear spin polarization by light with modulated circular polarization. We show
that the observed buildup of the nuclear spin polarization is a result of competition between nuclear spin cooling
and nuclear spin warmup in the oscillating Knight field. The developed model allows us to explain the dependence
of nuclear spin polarization on the modulation frequency and to estimate the equilibration time of the nuclear
spin system that appears to be shorter than the transverse relaxation time T2 determined from nuclear magnetic
resonance.
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I. INTRODUCTION

In semiconductors in which lattice nuclei have nonzero
spins, the electron-nuclear hyperfine interaction limits the
electron spin coherence unless the nuclear spin system is
polarized up to a high degree. On the other hand, dynamically
polarized nuclear spins can create a strong effective magnetic
field, namely the Overhauser field, BN , acting upon electron
spins. Therefore, control of the nuclear spin polarization
by, e.g., time-shaped optical or electric pumping may have
application potential [1], and the time scales on which the
Overhauser field develops and changes deserve thorough
investigation [2,3].

Since the nuclear spin system of a solid is relatively
weakly coupled to the crystal lattice, in many cases it
reaches a thermal equilibrium state characterized by a spin
temperature [4] that is different from the lattice temperature
[5]. The internal equilibrium in the nuclear spin system is
established via magnetic dipole-dipole interactions on the
time scale of T2 ∼ 10−4 s [6]. The spin temperature can
be many orders of magnitude lower, by absolute value, than the
lattice temperature [7], and it can be both positive or negative
[8,9]. Its evolution in the absence of pumping is governed by
various processes of spin-lattice relaxation, for example, via
a quadrupole mechanism [10–12] and, in the case of spatial
inhomogeneity, affected also by spin diffusion [13,14].

The dynamics of the nuclear spin temperature under optical
pumping is even more complex, because in this case nuclear
spins interact with nonequilibrium electrons. It is known that
the efficiency of nuclear spin cooling by circularly polarized
light decreases when the degree of circular polarization is
modulated. Obviously, nuclear spins can be efficiently cooled
if the modulation frequency is smaller than T −1

1 . However,
cooling is possible also at higher frequencies, ω � T −1

1 ,
because of the Knight field created by photoexcited electrons,
which alternates at the same frequency as the electron mean
spin [5]. In the case of high-frequency polarization modulation,
i.e., at frequencies much larger than T −1

2 , no cooling is
possible unless the modulation frequency is close to the nuclear
magnetic resonance (NMR) frequency in the applied magnetic

field. In this latter case, nuclear spins can be pumped via
so-called resonant cooling [5]. At even higher frequencies of
intensity modulation, implemented by pulsed lasers with the
pulse repetition rate exceeding 75 MHz, the resonantly driven
electron spin system can be prepared in a highly excited state
maintained at a large transverse magnetic field. In this case,
the phase relaxation of the electron spin precession might
be treated as a change of the temperature of the electron
spin subsystem, and, to equilibrate the temperature balance,
the nuclear spin system is cooled inducing a considerably
large Overhauser field [15]. Moreover, for strongly localized
electron spins, e.g., in the ensemble of singly charged quantum
dots, in the regime of electron-spin mode locking [16], the
Overhauser field provides a channel for the frequency focusing
of the electron spin coherence [17] considered as a method of
decoupling the electron spin from the nuclear spin ensemble
that is an alternative to deep cooling.

While polarization of a single spin can reach 99% [18],
the optimal strategy to achieve a highly polarized mesoscopic
nuclear spin state is currently a subject of discussion, while the
current record in a single quantum dot is 80% [19], and at least
an order of magnitude lower in quantum dot ensembles or bulk
semiconductors. The efficiency of nuclear spin optical cooling
in the intermediate frequency range T −1

1 < ω < T −1
2 has not

been investigated either experimentally or by a quantitative
theory. This paper aims to fill this gap.

Toward that end, a method originally developed to investi-
gate “spin inertia” [20] is adapted to examine the nuclear spin
dynamics in n-doped GaAs. As we will show, the Knight field
oscillating synchronously with the electron mean spin indeed
provides an off-resonant cooling of the nuclear spin system
up to frequencies of the order of T −1

2 . On the other hand,
the oscillating Knight field warms up the nuclear spin system.
The competition of these two processes results in a cutoff
frequency of nuclear spin cooling ω1/2, lying in between T −1

1

and T −1
2 . Knowing the parameters of the electron spin system,

one can use the measured ω1/2 to determine the parameters
of the nuclear spin correlator, primarily the value of T2 in
weak magnetic fields, which cannot be directly measured using
standard NMR techniques.
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II. EXPERIMENTAL RESULTS

The studied sample is an n-doped GaAs epitaxial layer
grown by liquid-phase epitaxy on top of a semi-insulating
(001) GaAs substrate. The 20 μm epitaxial layer was doped
by Si providing a donor concentration nd = 4 × 1015 cm−3

[21,22]. All measurements are done at the sample temperature
T = 1.6 K. The photoluminescence (PL) is excited by a
tunable Ti:sapphire laser operating at Eexc = 1.540 eV
corresponding to the absorption edge of the GaAs band-to-
band transition. The laser is focused on the sample surface
through an achromatic doublet (focal distance F = 200 mm)
into a spot of about 80 μm in diameter (1/e2 width) and the
PL is collimated with the same lens throughout all subsequent
measurements. The helicity of optical excitation is controlled
by an electro-optical modulator driven by a radiofrequency
harmonic oscillator that is used to avoid a possible impact of
higher-frequency harmonics. The time-dependent phase shift
of the optical frequency is converted into a linear polarization
modulation, which is further transformed into a modulation of
the circular polarization degree by a following quarter-wave
plate. This allows us to implement excitation protocols with
a fast continuous switch between circular right (σ+) and
circular left (σ−) light polarizations. The PL is collected
in reflection geometry, spectrally filtered by a 0.125 m
fixed-slit monochromator eliminating the residual scattered
light, and dispersed by a 0.5 m single-grating spectrometer
followed by a gated single-photon counter. The analysis of the
circular polarization degree of the PL is done by a photoelastic
modulator followed by a Glan-Taylor polarizer. The intensities
of the circular left and circular right PL polarization
components are detected with a two-channel photon counting
device. The degree of circular polarization is obtained as
ρc = (I co − I cross)/(I co + I cross) with the intensities I co

and I cross detected at co-circular and cross-circular PL
polarization helicities with respect to the excitation. The
accurate gating of the I co and I cross intensities is provided by
precise time protocols operated using digital delay electronics
synchronized to the gating of the polarization detection
scheme such that ρc is accumulated only when the system is
illuminated with light reaching a circular polarization degree
above 80% during a single half-period of modulation. In some
experiments, to eliminate the possible impact of the nuclear
spin polarization, the helicity of the pumping light (σ+/σ−)
is modulated at a high frequency fmod exceeding several tens
of kHz.

The PL spectrum shown in Fig. 1(a) has four distinct
peaks corresponding to a recombination of the exciton (X),
the exciton bound on neutral and charged donors (D0X and
D+X), as well as the exciton acceptor complex (AX). The
spectrum also demonstrates a nonmonotonic behavior of the
PL circular polarization degree, as shown in Fig. 1(b). The
spin polarization is governed mostly by electrons localized
on donors [5], and the polarization time T1e rapidly increases
with increasing distance of the nucleus from the donor center.
Following Refs. [5,11], the part of the spectrum corresponding
to the D0X transition at Edet = 1.514 eV is further analyzed
in the magnetic field. The choice of this spectral energy is
motivated by minimizing the field-independent offset of the PL
polarization and obtaining a maximal deviation of ρc from its
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FIG. 1. (a) PL spectrum (excitation energy Eexc = 1.55 eV) of
n-doped GaAs measured at B = 0 T. (b) Spectral dependence of
the PL circular polarization degree. (c) Circular polarization degree
vs transverse magnetic field (Voigt geometry, Bz = 0) measured at
alternating helicity of excitation fmod = 50 kHz. The electron spin
relaxation time τs = 20 ns is evaluated. (d) Magnetic-field depen-
dencies of the circular polarization degree (Faraday configuration,
Bx = 0) measured for the D0X transition (Edet = 1.514 eV) at fast
modulation of the helicity of excitation fmod = 200 kHz (black
curve) and fmod = 1 kHz (green curve). The corresponding electron
correlation time τc = 310 ps. Solid lines in panels (c) and (d) result
from fitting with Eqs. (1) and (2), respectively.

equilibrium value detected at zero field, ρ0, when the magnetic
field is applied.

A magnetic field applied along the light propagation
axis (Faraday geometry) increases ρc, an effect known as
polarization recovery (PR) [Fig. 1(d)]. On the contrary, the
application of a transverse magnetic field (Voigt geometry)
leads to a decrease of ρc with increasing field due to the Hanle
effect [Fig. 1(c)]. Such a behavior is typical for n-doped GaAs
and allows one to determine the characteristic values of the
electron correlation time, τc, and the electron spin relaxation
time, τs .

Since at high enough modulation frequency fmod � T −1
2

the nuclear spin polarization is negligible [2], the Hanle curve
shown in Fig. 1(c) is, to a good approximation, a Lorentzian:

ρc(Bx) = ρ0

1 + B2
x/B

2
1/2

(1)

with ρ0 = 0.036 and B1/2 = 2.7 mT. The corresponding
spin relaxation time for steady-state conditions is evaluated
as (τ ∗)−1 = τ−1 + τ−1

s , where τ ∗ = h̄/μB |ge|B1/2, μB =
9.274 × 10−24 J T−1 is the Bohr magneton, and |ge| = 0.44
[23] is the electron g factor. Thus, we get the electron lifetime
τ = 10 ns [6] taking into account that τs = 20 ns for our
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conditions as evaluated from the fitting of the experimental
data in Fig. 1(c).

To evaluate τc, the dependence of the ρc in Fig. 1(d) on
the longitudinal magnetic field Bz is measured. In this case,
the electron spin z component increases due to a change of the
spin relaxation time [23]. Supposing a simple field dependence
[2] τ ′

s = τs(1 + μ2
Bg2

eB
2
z τ

2
c /h̄2) and ρc = ρ∞τ ′

s/(τ + τ ′
s), we

obtain

ρc(Bz) = ρ∞
1 + τ

τs
[1 + (μBgeBzτc/h̄)2]−1

, (2)

where ρ∞ is the polarization degree reached in the limit of
large magnetic fields.

We have traced the dependence of ρc on the longitudinal
magnetic field up to Bz = 0.25 T [see Fig. 1(d)]. The electron
spin polarization saturates at a certain value providing a PR
dependence that represents a wide inverted Lorentzian curve
given by Eq. (2). The extracted correlation time of the donor-
bounded electron is τc = 310 ps. A small additional linear
asymmetry of the saturating PR amplitude at high enough
positive and negative fields due to equilibrium paramagnetic
polarization of electron spins is also observed, however a
fast modulation of the pump helicity at fmod = 200 kHz
removes this effect, as shown in Fig. 1(d). The width of the
obtained PR curve does not depend strongly on the frequency
fmod in the range of 0.9–12 kHz, allowing us to conclude
that the condition of short correlation time τc � τs [22] is
fulfilled throughout the experiments reported in the rest of
this work.

Next, we investigate the spin dynamics in a tilted magnetic
field. First, scanning Bz, we find a tiny additional PR signal
in small longitudinal fields [Fig. 2(a)]. Then applying a small
transverse field Bx with magnitude of the order of B1/2 and
scanning Bz, we find a wider PR signal [Fig. 2(b)]. The results
of such scans are shown in Fig. 2(b), where a comparison of
the PR curves at Bx = 0 and 1 mT is given. Note that the
narrow recovery of ρc is present even when Bx = 0, which
is a result of an uncompensated transverse component of the
laboratory magnetic field (including the Earth field) of about
±0.2 mT.

Using the measured PR curves, we investigate the dynamics
of the spin polarization recovery. As shown in Ref. [20],
a measurement of the PR as a function of the modulation
frequency, fmod, gives information on the dynamics of the
spin system. As one can see from Fig. 2(c), the amplitude
of the dip around Bz = 0, APR, decreases with increasing
fmod. We associate the observed dynamics with nuclear spin
polarization: the polarization-modulated pumping results in
nuclear spin cooling [5], the cooled nuclear spins are aligned
by the static transverse field, and they create the Overhauser
field that enhances the Hanle effect. To evaluate the dynamics
of the Overhauser field, data processing is performed following
Ref. [24]. First, a set of Hanle curves obtained at fast
modulation (fmod = 50 kHz) is analyzed from which ρ0 and
B1/2 are obtained as functions of Pexc. Second, the values
of ρc (Bz = 0) shown in Fig. 2(c) are associated with the
corresponding points in the Hanle dependencies, and the
magnitude of the effective field Beff acting on the electron spin
is extracted. We note that the PR curves shown in Fig. 2(c)
are obtained at a fixed transverse field Bx = 1 mT. Therefore,
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FIG. 2. (a) Manifestation of the additional tiny PR signal in
small longitudinal fields (Faraday configuration, Bx = 0) measured
for the D0X transition (Edet = 1.514 eV) at continuous-wave (CW)
excitation. (b) Recovery of the PL circular polarization degree by a
longitudinal magnetic field in the absence of a transverse magnetic
field (circles) and in the presence of Bx = 1 mT (squares). (c)
PR curves measured at different frequencies of modulation in the
presence of a transverse magnetic field. Solid lines in panels (b)
and (c) result from fitting with a bell-shaped function: ρc(Bz) =
ρsat − APR/(1 + B2

z /�
2
B ), with ρsat, APR, and �B being fitting

parameters.

the Overhauser field can be expressed as BN = Beff − Bx .
The results of this analysis are shown in Fig. 3. As seen
there, the dependencies BN versus modulation frequency
fmod represent decreasing functions that are expressed in the
following by Eq. (12), and the best fit for these dependencies
is provided by Lorentzian functions with characteristic widths
of about 1 kHz, which corresponds to a time on the order
of a millisecond. The process of nuclear spin polarization is
suppressed when the frequency of modulation is comparable
to or larger than T −1

2 [5]. The observed effect, however,
develops on a somewhat longer time scale (0.5 � ω1/2/2π �
1.5 kHz) and is power-dependent. In the following, we will
show that the observed cutoff frequency is not T −1

2 , even
though it can be related with T2 and used for its experimental
evaluation.
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FIG. 3. Calculated Overhauser fields (BN ) vs fmod. Solid lines
are fits with Lorentzian functions given by Eq. (13), from which the
values of the cutoff frequencies ω1/2 are extracted. The inset shows the
Overhauser fields log10[BN ] for different powers of optical excitation.

III. MODEL

The physical origin of the observed effects of modulation
frequency can be understood as follows. We point out that the
observed phenomenon is measured for excitation by light with
alternating helicity, creating a time-dependent nonequilibrium
average spin of electrons 〈S〉 = S0 cos(ωt), where S0 is the
initial electron polarization and ω = 2πfmod. As a result of
the dynamic polarization, a time-dependent spin flow into the
nuclear spin system appears given by j(t) = Q 〈S(t)〉 /T1e,
where Q = 4I (I + 1)/3, I is the nuclear spin number, and
T1e is the time of nuclear spin relaxation by electrons via the
hyperfine interaction [5].

The electron spin acts on the nuclear spin system also as an
oscillating Knight field Be = be 〈S〉. Since the nuclear spins
are subjected to a magnetic field, the spin flow induces an
energy flow,

qs(t) = − h̄γN [B + Be(t)]j(t)

= − h̄γNQ

T1e

[
BzS0 cos(ωt) + beS

2
0 cos2(ωt)

]
. (3)

Here, γN is the nuclear gyromagnetic ratio, Be = beS0 is the
Knight field amplitude, with be being the strength of the Knight
field of a fully polarized electron, and the negative sign reflects
cooling of the nuclear spin system. Upon averaging over the
modulation period, the first term in Eq. (3) vanishes while the
second contributes to the time-averaged energy flow,

qs = − Q

2T1e

h̄γNbeS
2
0 . (4)

On the other hand, the oscillating Knight field heats up the
nuclear spins. The corresponding heating energy flow is

qω(t) = −h̄γN

dBe(t)

dt
IB(t) = h̄γNωbeS0 sin(ωt)IB(t), (5)

where IB(t) is the projection of the time-dependent average
nuclear spin on the direction of the Knight field. The time-

dependent IB(t) includes two contributions: IB(t) = I′
B(t) +

I′′
B(t). The term I′

B(t) is induced by the Knight field via the
magnetic susceptibility, χ̂ (ω), of the nuclear spin system as
I′
B(t) = χ̂ (ω)Be(t). In turn, I′′

B(t) results from an accumulation
of the spin flow j(t) coming from optically pumped electrons.
The relation of I′′

B(t) and j(t) is determined by relaxation
of the nonequilibrium nuclear spin, and it can be written
as I′′

B(t) = ∫ t

0 GN (t − τ )j(τ )dτ , where the Green function,
GN (t), is expressed via a correlator of the nuclear spin
fluctuations [25] GN (τ ) = 3

I (I+1) 〈δI (t)δI (t − τ )〉. As follows
from the definition, GN (0) = 1, and at weak fields it falls down
on the time scale of T2, so that

∫ ∞
0 GN (τ )dτ = T2.

Since IB consists of two components, the energy flow given
by Eq. (5) also has two terms: qω = q ′

ω + q ′′
ω, which contribute

to the energy balance in different ways. While (according to
the fluctuation-dissipation theorem [25]) the imaginary part
of the susceptibility in the high-temperature approximation is
inversely proportional to the system temperature (χ̂ω ∝ �−1

N ),
the first term, q ′

ω(t) ∝ I ′
B(t), depends on the nuclear spin

temperature �N explicitly. By averaging over the modulation
period, one finds

q ′
ω(t) = Q

8
(h̄γN )2ω2(beS0)2βĜ′

ω. (6)

Here, β = (kB�N )−1 and Ĝ′
ω = ∫ ∞

0 GN (τ ) cos(ωτ )dτ . Con-
sequently, q ′

ω provides an additional energy relaxation channel,
known as the warmup of the nuclear spin system by the
oscillating Knight field. The second term, q ′′

ω(t) ∝ I ′′
B(t), on

the other hand, does not explicitly depend on �N :

q ′′
ω(t) = h̄γNbeQS2

0

2T1e

ωĜ′′
ω, (7)

where Ĝ′′
ω = ∫ ∞

0 GN (τ ) sin(ωτ )dτ . Therefore, q ′′
ω(t) enters

the balance equation for the inverse spin temperature β as
a source, similarly to qs . The balance equation reads

∂β

∂t
= − β

T1
+ qs + q ′

ω + q ′′
ω

CN

, (8)

where CN = 1
3I (I + 1)(h̄γN )2(B2 + B2

L) is the heat capacity
of the nuclear spin system. Taking ∂β/∂t = 0, we obtain the
following expression for the inverse spin temperature:

β = −
(

1 + 1

2

b2
eS

2
0

B2 + B2
L

ωT1Ĝ
′
ω

)−1

× 3T1beQS2
0

2I (I + 1)T1eh̄γN

(
B2 + B2

L

) (1 − ωĜ′′
ω). (9)

The steady-state nuclear spin polarization corresponding to β

and established in the external magnetic field is given by

〈I 〉
I

= I + 1

3
h̄γNβB = −BbeQS2

0T1

2IT1e

×
(

1 + 1

2

b2
eS

2
0

B2 + B2
L

ω2T1Ĝ
′
ω

)−1
1 − ωĜ′′

ω

B2 + B2
L

. (10)

In the vicinity of a donor, T1 ≈ T1e, and we estimate its
value according to Ref. [26],

1

T1e

= 2

3
S(S + 1)b2

eγ
2
Nτc

B2 + ξB2
L

B2 + B2
L

, (11)
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where ξ � 3. Remarkably, the steady-state nuclear spin polar-
ization scales linearly with be, as follows from Eq. (10) when
T1e is determined by Eq. (11). Thus, the normalized frequency
dependence

〈I 〉ω
〈I 〉0

=
(

1 + ω2Ĝ′
ω

S2
0

γ 2
N

(
B2 + ξB2

L

)
τc

)−1

(1 − ωĜ′′
ω) (12)

does not contain be, and thus it is not sensitive to the shape of
the wave function of the donor-bound electron. Hence, Eq. (12)
can be used universally.

At high frequencies of modulation, limω→∞ ωĜ′′
ω =

GN (0) = 1. Therefore, 〈I 〉ω tends to zero. For this reason,
no cooling of the nuclear spin ensemble is possible at high
modulation frequency, i.e., at ω � T −1

2 . The exception is
the case when a strong transverse field is applied and GN (t)
oscillates at the frequency of the nuclear magnetic resonance.
In this case, resonant cooling is observed [5].

At low frequencies of modulation, ω � T −1
2 , 1 − ωĜ′′

ω 
1, and Ĝ′

ω  Ĝ′
0. As a result, Eq. (12) simplifies to

〈I 〉ω
〈I 〉0

= 1

1 + ω2/ω2
1/2

, (13)

where the cutoff frequency is given by

ω1/2 = 1

S0

√
τc

Ĝ′
0

γN

√
B2 + ξB2

L. (14)

Note that ω−1
1/2 is not equal to any nuclear spin relaxation time,

neither T1 nor T2, but it is related to T2 via the zero-frequency
Fourier component of GN .

The magnitude of S0 can be evaluated from the experiment
provided that ρ0 = S0. As shown in Fig. 4(a), the power
dependence of S0 demonstrates saturation that can be described
by a single exponent, as follows from a simple rate equation
for the populations of the spin-up and spin-down states subject
to a generation term Pexc. The frequency dependencies of the
Overhauser field shown in Fig. 3 are fitted with Lorentzian
functions, from which the cutoff frequencies are extracted as
a function of the excitation power Pexc. Since τc does not
depend on Pexc, as shown in Fig. 4(b), the power dependence
of ω1/2 is only mediated by S0 and represents a curve decaying
with increasing Pexc, as shown by the triangles in Fig. 4(c).
Equation (14) can be used to fit this dependence with a
single variable parameter Ĝ′

0 ≈ 12 μs, as displayed by the
solid line in this figure. In this fitting, we take γN/(2π ) ≈
9.3 kHz/mT as an estimate for the nuclear gyromagnetic ratio
averaged over all nuclear species (75As, 69Ga, and 71Ga with
weights 0.5, 0.3, and 0.2, respectively [27]), ξ = 3, and BL =
0.15 mT [28].

The fit of the experimental data allows us to determine Ĝ′
0.

Note that when B � BL, Ĝ′
0 ≈ T2. At B = 0, the correlator

G′
ω is centered at zero frequency, and at field B > BL its

maximum is shifted to the Larmor frequency in field B.
Therefore, the zero-frequency value, in this condition, does not
determine T2, and the relaxation time should be extracted from
the spectrum G′

ω. To evaluate T2 from our experimental data,
we use a simple model of the nuclear spin correlator. Consider
the correlator in a weak external magnetic field to have the form
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FIG. 4. (a) Electron mean spin polarization (squares) and
its fit with a saturating exponential function: S0(Pexc) = S∞[1 −
exp(−Pexc/P0)] (solid line). The fit parameters are S∞ = 0.041 and
P0 = 2.6 mW. (b) Power dependence of the electron correlation time.
The solid green line shows a linear fit with τc = 320 ps. (c) Cutoff
frequency of the Overhauser field buildup vs excitation power Pexc

(triangles). The solid line shows a fit of the data with Eq. (14). The
inset shows the corresponding nuclear spin correlator Ĝ′

0 as a result
of normalization of ω1/2 to S0. The solid black line shows a linear fit
with Ĝ′

0 = 12 μs.

of a decaying oscillation GN (t) = cos(�Lt) exp(−t/T2), with
the Fourier components being

Ĝ′
ω = T2

2

(
1

1 + (�L + ω)2T 2
2

+ 1

1 + (�L − ω)2T 2
2

)
, (15a)

Ĝ′′
ω = T2

2

(
T2(�L + ω)

1 + (�L + ω)2T 2
2

+ T2(�L − ω)

1 + (�L − ω)2T 2
2

)
, (15b)

where �L = γNB is the nuclear Larmor frequency.
Within this approximation, the fitting parameter Ĝ′

0 found
from the experimental data makes it possible to evaluate the
nuclear spin relaxation time T2 in a weak magnetic field. Since
the correlator already at Bx = 1 mT demonstrates clearly
a resonant behavior (Fig. 5), its value near zero frequency
is determined by the isotope with the smallest gyromag-
netic ratio: γN [75As] = 4.596 × 107 rad/(T s), γN [69Ga] =
6.439 × 107 rad/(T s), and γN [71Ga] = 8.181 × 107 rad/(T s),
i.e., arsenic. One can plot the frequency dependence Ĝ′

ω

calculated for B = 0 and 1 mT (Fig. 5). Thereby, we calculate
T2 = (γNBL)−1 ≈ 114 μs, which agrees with the commonly
accepted values T2 ∼ 10−4 s [6]. As one can see from the
figure, the correlator has the maximum value Ĝ′

0 = T2 when
the external field is zero. If the field is applied, the Fourier
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FIG. 5. Normalized real Fourier component of the correlator of
the nuclear-nuclear interactions vs frequency for B = 0 (dashed line)
and B = 1 mT (solid lines) calculated for the 75As nuclear species.
The filled area defines the range of frequencies ω < ω1/2 observed
in the experiment. The black filled circle represents the value of the
correlator determined from experiment [see the inset in Fig. 4(c)].
The thick red line represents the Ĝ′

ω calculated for the best fit of G′
0

(T2 = 55 μs), and the thin, solid, and dashed black lines are calculated
for the spin-spin relaxation time T2 = (γNBL)−1 ≈ 114 μs.

maxima are shifted to the positive and negative frequency
values of the Larmor precession, and Ĝ′

ω drops. Its value
extracted from the experiment is, however, still larger than the
simple model predicts (point in Fig. 5). Therefore, an extended
model for the correlator GN (t) needs to be developed. Since
this is far beyond the scope of the current work, we simply
evaluate the value of T2, which explains the experimental value
of G′

0 = 12 μs. Note that for the frequencies of modulation
used in all our experiments (see the filled area in Fig. 5), the
correlator G′

ω changes weakly, and its value is approximately
equal to G′

0 within the fitting inaccuracy. This justifies a
posteriori the assumptions of our theoretical model. We find
this value to be T2 = 55 μs, which is two times smaller

than the one estimated through BL ≈ 0.15 mT [6] that was
used to evaluate the complex behavior of the nuclear spin
relaxation in NMR [29,30]. It is also several times smaller than
the T2 = 100 μs value measured in GaAs/AlGaAs quantum
wells [31] and T2 = 270 μs for lattice-matched GaAs/AlGaAs
quantum dots [32], where the measurements were done at
B ∼ 1 T. The most likely origin of this difference is that in
our weak-field experiments, the external magnetic field B is
comparable to the local field BL, and, therefore, the nonsecular
part of the dipole-dipole interaction may come into play, thus
increasing the rate of the nuclear spin relaxation.

IV. CONCLUSION

In summary, the spin relaxation of the nuclear spin ensem-
ble has been studied in n-doped GaAs crystal using a modified
spin inertia method. We find that optical pumping with light
of alternating helicity induces a fast buildup of the Overhauser
field. The dynamics is observed on a subsecond time scale
showing a frequency cutoff that varies by several times upon
increasing the pumping power. The experimental results are
interpreted within a developed model, which predicts a drop of
the nuclear spin polarization when the light helicity modulation
rate reaches a characteristic frequency ω1/2, determined by
the spin correlation time of donor-bound electrons and the
nuclear spin-spin relaxation time T2, which was estimated as
T2 = 55 μs, i.e., noticeably shorter than the T2 ∼ 2 × 10−4 s
determined by NMR methods at high magnetic fields.
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