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Ferromagnetism in the vicinity of Lifshitz topological transitions
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We show that the critical temperature of the ferromagnetic phase transition in a quasi-two-dimensional hole
gas confined in a diluted magnetic semiconductor quantum well strongly depends on the hole chemical potential
and hole density. Significant variations of the Curie temperature occur close to the Lifshitz topological transition
points, where the hole Fermi surface acquires additional components of topological connectivity due to the filling
of excited size-quantization subbands. The model calculations demonstrate that the Curie temperature can be
doubled by a weak variation of the gate voltage for a CdMnTe/CdMgTe quantum-well-based device.
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I. INTRODUCTION

Quantum wells (QWs) based on diluted magnetic semi-
conductors (DMS) have been attracting attention for several
decades due to their unusual magneto-optical properties [1–3].
One of the most interesting observed effects that is potentially
promising for applications in semiconductor spintronics is
carrier-induced ferromagnetism [4,5]. Magnetic ordering of
the spins of magnetic ions may occur due to their exchange
interaction with spins of delocalized carriers, typically holes.
In particular, the doping of III-V semiconductors by Mn2+ ions
results in formation of acceptor states [6], or even impurity
bands in the case of heavy doping [7–10]. The holes coming
from these acceptors help in achieving ferromagnetic ordering
at elevated temperatures [11].

Ferromagnetic ordering of spins of magnetic ions at rela-
tively low concentrations (several percent) can be described
in terms of the Ruderman-Kittel-Kasuya-Yosida (RKKY)
mechanism. The record Curie temperature achieved due to this
mechanism in III-V semiconductors doped with Mn reaches
hundreds of Kelvin [11,12] for the best quality samples. The
most optimistic theoretical estimates predict ferromagnetism
in GaMnAs at moderate Mn concentrations even at room
temperature [11]. Yet, it turns out that a significant amount of
holes are compensated due to the interstitial Mn incorporation
[13] that reduces the ferromagnetic transition temperature.

In contrast to III-V semiconductors, in II-VI semiconduc-
tors Mn ions do not form acceptor states. Therefore they
weakly affect the band structure of the host semiconductor.
This is why, when describing the coupling of magnetic ion
spins with carriers in II-VI semiconductors, one can rely
on a symmetry-based band description. This allows for a
straightforward description of the electronic properties of
diluted magnetic QWs.

The correlation between the RKKY interaction strength and
the carrier density of states in bulk crystals is well known
[14,15]. It was confirmed theoretically for carriers with a
parabolic dispersion in systems of arbitrary dimension [16,17].
Studies of DMS structures also revealed this correlation both
experimentally [4,18] and theoretically [19,20]. It was also
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shown that the Curie temperature is proportional to RKKY
interaction strength, and consequently to the density of states.
The electronic density of states can be efficiently controlled by
an external bias in quantum confined semiconductor structures
[21]. This paves way to an efficient control of the Curie
temperature with an external electric field in specially designed
diluted magnetic quantum structures. We note that the variation
of the Curie temperature with the external bias has been also
demonstrated in bulk systems [22]. Here we argue that a
similar effect, but of a much larger magnitude, may be realized
in diluted magnetic quantum wells, where the Fermi level
approaches the electronic topological transition point.

In particular, we show that the critical conditions for the
ferromagnetic phase transition in the studied system become
extremely sensitive to the chemical potential of the hole gas
in the vicinity of topological transition points in the valence
band. This opens the way for efficient control of the Curie
temperature in such structures by an external bias. Switching
on and off the ferromagnetism may be achieved by a weak
variation of voltage applied to a properly designed diluted
magnetic QW. This property, based on the fundamental physics
of Lifshitz topological transitions, may open the way to
realization of a new class of spintronic devices.

It is well known that once the electronic chemical potential
crosses the bottom of one of the size-quantization subbands in
a quantum well, the Fermi surface acquires a new component
of topological connectivity. This transition is a particular case
of the Lifshitz topological transition [23]. It was recently
demonstrated that such transformations are accompanied by
spikes in the entropy per particle as well as by spikes in
the temperature derivative of the chemical potential of the
electron or hole gas [24]. Below we show that the magnetic
susceptibility of the system experiences similar spikes in the
vicinity of the Lifshitz transition points. This leads to a very
strong variation of the Curie temperature with a weak variation
of the chemical potential of the hole gas that may be achieved
by the application of an external bias.

II. MODEL

Let us consider a CdMnTe/CdMgTe QW, embedded in a
gated structure schematically shown in Fig. 1. The gate voltage
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FIG. 1. The considered model structure contains a single CdM-
nTe QW sandwiched between CdMgTe barriers. The gate voltage
applied to the structure controls the concentration of holes in the QW.

Ug applied to the structure controls the density of the two-
dimensional hole gas (2DHG) confined in the QW, nh. Within
a linear approximation, nh = CUg/|e|, where e is the electron
charge and C is the structure capacitance. In what follows, for
simplicity we assume that the capacitance C is independent
of the gate voltage and it is governed by the geometry of the
structure rather than by the density of states [25,26].

A ferromagnetic ordering of the Mn ions’ magnetic
momenta is possible due to the RKKY interaction between
the ion spins mediated by the 2DHG [1–5]. Due to the
exchange interaction between the hole and Mn spins, the
fluctuations of the latter give rise to hole spin polarization
which, in turn, provides positive feedback to the Mn spin
system. Quantitatively, in bulk semiconductors the exchange
interaction of d electrons of Mn ions with the hole spin is
described by the effective Hamiltonian [2,3,27]

Hexch = −
∑

i

Jpdδ(r − Ri)( J · I i), (1)

where Jpd is a constant, J are the matrices of the hole angular
momentum 3/2, I i are the Mn spin operators described by the
spin-5/2 matrices, and the summation is carried out over all
Mn ions enumerated by the subscript i. In Eq. (1), r and Ri

are the position vectors of the hole and ith Mn, respectively. In
a QW structure, Eq. (1) should be averaged over appropriate
size quantization states. Hereafter we consider only heavy-
and light-hole states and disregard the spin-orbit split-off
branch due to significant energy separation between the �8

and �7 valence bands [28]. We assume that the system
shown in Fig. 1 contains a symmetric QW grown along the
z ‖ [001] axis. Diagonalizing the Hamiltonian (1), we obtain
a series of the heavy- and light-hole subbands, hhν and lhν,
respectively, with ν = 1,2, . . ., with corresponding envelope
functions ϕhhν(z), ϕlhν(z). The exchange interaction of the
heavy and light holes with magnetic ions is described by

Hhh = −
∑

i

Jhhν,i(shh,zIi,z)δ(ρ − �i), (2a)

Hlh = −
∑

i

Jlhν,i[slh,zIi,z + 2(slh,xIi,x + slh,yIi,y)]

× δ(ρ − �i). (2b)

Here Jhhν,i = 3Jpd |ϕhhν(zi)|2, Jlhν,i = Jpd |ϕlhν(zi)|2, ρ and �i

are the in-plane position vectors of the hole and ith Mn ion,
shh,z is the z component of the heavy-hole pseudospin (shh,z =
±1/2 for Jz = ±3/2), and slh is the light-hole pseudospin.
Note that in QW structures the exchange interaction is

anisotropic both for the heavy and light holes. A particularly
strong anisotropy is found for the heavy holes, where the
interaction described by Eq. (2a) acquires the Ising form.

In order to illustrate the appearance of the magnetic phase
transition and estimate the Curie temperature Tc in the Mn
spin system we use the mean field approach. We take into
account only interaction between z-spin components of Mn
ions and holes, and represent the thermodynamic potential in
the form

� = I 2
z

2χ (Mn)
+ s2

hh,z

2χ (hh)
+ s2

lh,z

2χ (lh)
− Iz(Jhhshh,z + Jlhslh,z)

+μBBz(gMnIz + ghhshh,z + glhslh,z), (3)

where gMn, ghh, and glh are the Mn and hole g factors,
respectively; μB is the Bohr magneton; Bz is the z component
of the external magnetic field; Iz, shh,z, and slh,z are the spin
densities of Mn, heavy, and light holes; and Jhh and Jlh are the
averaged exchange interaction constants for the corresponding
hole states [29]. Here χ (Mn) is the noninteracting susceptibility
of Mn ions,

χ (Mn) = I (I + 1)nMn

3kBT
, (4)

with I = 5/2 being the Mn spin and nMn the density of Mn ions
on the sample, and χ (hh) and χ (lh) are the static susceptibilities
of the heavy and light holes. Note that the susceptibilities
defined here provide the link between the spin density and the
field-induced level splitting, e.g., Iz = −χ (Mn)gMnμBBz.

In Eq. (3) we take into account only contributions linear and
quadratic in Iz, shh,z, and slh,z, neglecting the magnetization
and magnetic field effect on the susceptibilities. This is valid as
long as the exchange energy is small compared to the hole size-
quantization and kinetic energies, while the exchange energy
can become comparable with the temperature. Estimations
show that this condition is also fulfilled in the system under
consideration.

Minimizing � with respect to Iz, shh,z, and slh,z allows us
to obtain the effective susceptibility of the Mn spin system as

χ̃ (Mn) = χ (Mn)

1 − (
J 2

hhχ
(hh) + J 2

lhχ
(lh)

)
χ (Mn)

. (5)

Since, in accordance to the fluctuation-dissipation theorem, the
spin susceptibility is proportional to the spin-spin correlation
function [30], χ̃ (Mn) = S〈I 2

z 〉/kBT , where S is the normaliza-
tion area, the divergence of the susceptibility corresponds to
the phase transition point. It follows from Eqs. (4) and (5) that
the divergence occurs where the denominator vanishes, which
yields the self-consistent equation for the Curie temperature
[2–4],

Tc = I (I + 1)nMn

3kB

(
J 2

hhχ
(hh) + J 2

lhχ
(lh)

)
. (6)

The expression (6) is valid provided that kBTc � μ, where μ

is the hole chemical potential, otherwise the ground state of
the hole gas is strongly modified by the exchange interaction
with magnetic ions. Calculations show that this condition is
indeed fulfilled for the studied structure.

We follow the standard approach [30] to analyze the
applicability of the mean-field treatment. We consider a
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fluctuation of the thermodynamic potential given by

δ� = g

(
∂sz

∂ r

)2

+ bI 4
z

2χ (Mn)
, (7)

where g and b are constants. The parameter b can be
found from the development of the Brillouin function in a
series and retaining the cubic terms: b = (I 2 + I + 1/2)/
[10I (I + 1)n2

Mn]. For long wavelength fluctuations with wave
vector q, the effective Mn susceptibility reads [cf. Eq. (5)]

χ̃ (Mn)
q ≈ χ (Mn)

1 + (qls)2 − Tc/T
. (8)

Here ls =
√

gχ (h). This approximate equality holds for
T − Tc � Tc and qls � 1. Equation (8) allows one to obtain
the correlation radius of fluctuations (above Tc) in the standard
form

rc = ls√
1 − Tc/T

. (9)

Note that the applicability of the mean field approximation is
restricted by the requirement of the relative weakness of the
spin density fluctuations. Namely, the mean square fluctuation
of Iz per unit square, δI 2

z ∼ kBTcχ̃
(Mn)/r2

c , must be small with
respect to the average value of the spin density square I 2

z .
The latter is obtained in the mean field approximation, i.e., by
means of minimization of the functional � + δ� [see Eqs. (3)
and (7)] omitting the fourth-order term: I 2

z = (Tc − T )/(2bTc).
This analysis brings us to the conclusion that the mean field
approximation is valid in the temperature range given by

Gi � |T − Tc|
Tc

� 1, (10)

where the quantity Gi = (nMnl
2
s )

−1
plays the role of the

Ginzburg-Levanyuk number [30] in the two-dimensional case
under consideration. One can see that the inequality (10) is
fulfilled in diluted magnetic CdTe-based QWs. Indeed, the
parameter ls for free holes at low temperatures can be estimated
as ls ∼ k−1

F , where kF is the hole wave vector. Hence, the
condition Gi � 1 means that the density of holes is low in
comparison to the density of Mn ions, which is always the
case. For example, in our case minimal 1% Mn concentration
corresponds to ≈1014 cm−2, and hole concentration usually
does not exceed 1013 cm−2.

For a noninteracting hole gas, the susceptibility can be
written as [30]

χ (h) = − 1

4S
∂2	(j )

∂μ2
= 1

4

∂nj

∂μ
. (11)

where 	(j ) ≡ 	(j )(μ) is the (grand) thermodynamical poten-
tial, μ is the chemical potential, and nj is the density of the
corresponding hole states, j = hh or lh. The latter can be
conveniently expressed in terms of the density of the hole
states, gh(E), as

nh =
∫ ∞

0

gh(E)dE

exp
(

E−μ

kBT

)
+ 1

, (12)

where the energy is reckoned from the hh1 subband size
quantization energy. In what follows, Eqs. (11) and (12) are

used to numerically calculate the susceptibilities of the hole
gas as functions of temperature and the hole density and to
solve Eq. (6) in order to find the Curie temperature Tc as a
function of the hole density or gate voltage.

Before presenting the numerical results, let us focus on
the simplified analytical model, which takes into account
only one type of holes but provides a clear physical picture
of the effect of topological Lifshitz transitions on the hole
spin susceptibility and the ferromagnetic order of Mn spins.
Let us represent the density of heavy-hole states as g(E) =
(m∗/πh̄2)

∑
ν �(E − Ehhν), where m∗ is the heavy-hole effec-

tive mass, Ehhν are the energies of the size-quantized subbands,
and �(E) is the Heaviside step function [24,25]. Furthermore,
let us assume that relevant temperatures are low enough so that
the thermal broadening in Eq. (12) can be disregarded and the
heavy-hole susceptibility can be recast in the form

χ (hh) = g(μ)

4
= m∗

4πh̄2

∑
ν

�(μ − Ehhν). (13)

It follows from Eq. (6) that the Curie temperature Tc ∝
J 2

hhnMnχ
(hh)(μ) as a function of the hole chemical potential μ

demonstrates a steplike increase as soon as μ touches the next
heavy-hole subband. This is because the hole Fermi surface
acquires a new component of topological connectivity, giving
rise to the Lifshitz phase transition. It is accompanied by the
steplike increase of the density of states since with further
increase of the chemical potential more subbands start to get
filled [23]. Hence, the Curie temperature increases by a certain
value at the point of the Lifshitz transition. These results
are corroborated by the numerical analysis below. We note,
however, that Eq. (13) cannot be used in the narrow vicinity
of the topological transition point where |μ − Ehhν | � kBT .
The kinks in the Tc(μ) dependence predicted by Eqs. (6) and
(13) are smoothed out, as shown below, due to the thermal
broadening of the electron distribution function.

III. RESULTS AND DISCUSSION

Figure 2 shows the results of numerical calculations for
a 10-nm thick CdMnTe/CdMgTe QW. In order to find the
energy dispersion of the heavy and light holes (hhν and
lhν subbands, respectively) and the corresponding effective
exchange interaction constants Jhhν and Jlhν , we have numeri-
cally diagonalized the Luttinger Hamiltonian in a way similar
to that in [31,32]. We made use of the fact that, at zero in-plane
hole wave vector k‖, the states with |Jz| = 3/2 (heavy holes)
and |Jz| = 1/2 (light holes) are decoupled. Hence, we first
found the heavy- and light-hole functions ϕhhν(z) and ϕlhν(z)
at k‖ = 0. Second, we represented the hole wave functions
at k‖ 
= 0 as linear combinations of ϕhhν(z) and ϕlhν(z), and
diagonalized the obtained matrix Hamiltonian. The calculated
densities of states and energy dispersions for the hole subbands
are shown in Fig. 2, panels (a) and (b) respectively.

In the studied range of energies, the heavy- and light-hole
states are substantially mixed due to the off-diagonal elements
of the Luttinger Hamiltonian. This results in the energy
nonparabolicity and anticrossing behavior of the dispersion
curves presented in Fig. 2(b). To illustrate the mixing in more
detail we present in Fig. 2(a) the partial contributions of the
heavy and light holes to the total density of states, calculated
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FIG. 2. (a) Densities of hole states in a 10-nm CdMnTe/CdMgTe
QW (black) and the partial contributions of the heavy- (red) and
light-hole (blue) states to the density of states. (b) Subbands of size
quantization in a 10-nm CdMnTe/CdMgTe QW. In the calculation
we used five basic functions for heavy and light holes and a spherical
approximation for the Luttinger Hamiltonian with the parameters
γ1 = 5.7, γ2 = γ3 = 1.7 [28] and a barrier height of 120 meV.

as

ghh(lh)(E) = 1

4π

∑
ν

dk2
‖

dE
C(ν)

hh(lh)(k‖), (14)

where the summation is carried out over all dispersion branches
at a given energy, C(ν)

hh(lh)(k‖) is the fraction of the corresponding
heavy (hh) or light (lh) hole state in the subband state
ν, and C(ν)

hh (k‖) + C(ν)
lh (k‖) = 1. Note that in the spherical

approximation employed here the dispersion is isotropic in
the QW plane.

The results of this calculation, presented in Fig. 2(a), show
the steplike behavior of the density of states. Moreover, the
total density of states as well as the partial contributions of
the heavy and light holes demonstrate sharp peaks followed
by shallow minima in the vicinity of the onset of the first
and second excited subbands; see lh1 and hh2 subbands
in Fig. 2(b) and the density of states in the vicinity of
≈20 meV hole energy in panel (a). This result is a hallmark
of heavy-light hole mixing, which is a specific feature of
the II-VI and III-V semiconductors. For the parameters of
the studied structure, the ground light-hole subband and
the excited heavy-hole subband are close in energy and are
strongly mixed via the off-diagonal ∝ −ik‖∂/∂z terms of the
Luttinger Hamiltonian. This mixing can be described within
the two-subband approximation, where the effective 2 × 2
Hamiltonian describing the hh2-lh1 doublet has the form

Hlh(k) =
(

Ehh2 + h̄2k2

2mhh
h̄vk

h̄vk Elh1 + h̄2k2

2mlh1

)
. (15)

Here k is the hole wave vector in the QW plane, Ehh2, Elh1

are the energies of size quantization of holes calculated at
k = 0, v is the parameter describing the hole mixing, mhh ∝
(γ1 + γ2)−1 and mlh ∝ (γ1 − γ2)−1 are the heavy- and light-

kx

ky

E

hh1
lh1
hh2

(a) (b) (c)

FIG. 3. The schematic illustration of the hole dispersion surfaces
cut by the Fermi energy in the cases of the Fermi energy lying below
the second hole subband bottom (a), below the third hole subband
bottom (b), and above the third hole subband bottom (c).

hole in-plane effective masses calculated neglecting the heavy-
light hole mixing, and v ∝ γ2〈hh2|kz|lh1〉. The Hamiltonian
(15) provides a small-k approximation to the 4 × 4 Luttinger
Hamiltonian. The Hamiltonian (15) can be easily diagonalized
with the energies

E± = Ehh2 + Elh1 + h̄2k2/2μ

2

±
√(

Ehh2 − Elh1 + h̄2k2/2M

2

)2

+ h̄2v2k2. (16)

Here 1/μ = 1/mhh + 1/mlh, 1/M = 1/mhh − 1/mlh. The
dispersion E−(k) of the low-energy branch is, in general,
a nonmonotonic function of the wavevector and has, in
agreement with Fig. 2(b), minima at |k| = k0. In the vicinity
of the minima it can be approximated as Elh1 ≈ h̄2Em + (k −
k0)2/2m∗, where Em is the bottom of the first excited subband
and k0 is the wave vector corresponding to the subband bottom.
As a result, the extremum loop is formed as seen in Fig. 3,
where in panels (a), (b), and (c) the cuts of energy dispersion
surfaces at different energies are presented. The density of
states has a one-dimensional-like singularity ∝ 1/

√
E − Em,

in agreement with the numerical calculation. Note that the
singularly can be strongly enhanced by the interface-induced
heavy-light hole mixing resulting from the chemical bond
anisotropy in cubic crystalline lattices [33]. At somewhat
higher energies an effective gap is formed between the first
and second excited subbands, which results in a minimum of
the density of states.

Let us now discuss the Curie temperature dependence
on the hole density or gate voltage in the QW structure,
presented in Fig. 4. In the calculation we took the following
values of the exchange interaction constants in Eq. (5):
Jhh = 3Jlh = 3Jp−d , with Jp−d = 59 meV nm3 being the p-d
exchange integral in the CdTe semiconductor [1–3]. In order
to relate the gate voltage Vg and the hole density n, we
used the plane capacitor relation n = CVg/e, where e > 0
is elementary charge and the capacitance C = 20 nF/cm2

(C/e = 1.25 × 1011 cm−2/V). The chosen capacitance is
close to the real observable value in CdTe solar cells [34].

Figure 4 shows that each Lifshitz transition in the system is
accompanied by a steplike increase in the Curie temperature.
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FIG. 4. Dependence of the Curie temperature on the bias voltage
and the hole concentration for three values of the Mn concentration
in the QW; Jhh = 3Jlh = 3 × 59 meV nm3, device capacitance C =
20 nF/cm2.

In particular, the Curie temperature doubles with the bias
voltage, changing between 10 and 15 V. As expected, the
Curie temperature increases as the Mn content in the QW
increases [35], which makes steps in the dependence of Tc on
the gate voltage or hole density more pronounced. Due to the
thermal spread of the hole Fermi-Dirac distribution functions,
the steps in the Tc dependence seen in Fig. 2(a) are smooth.
For the parameters used in the calculation, the square-root
singularity in the density of states in the vicinity of the first
and second excited subbands is not reproduced in the Tc

dependence on the hole density. The numerical analysis shows
that the heavy-light hole mixing should be unrealistically
high to obtain a pronounced nonmonotonic feature in Tc(μ)
dependence due to the singularity in the density of states.

Interestingly, the Curie temperature slightly decreases with
the increase in the hole density in the range of gate voltages
from 40 to 50 V. This corresponds to the hole chemical poten-
tial varying from 50 to 70 meV, approximately, where, in accor-
dance with Fig. 2(a), the heavy-hole fraction in the density of
states decreases because the corresponding subband becomes
more and more light-hole-like. Since the exchange interaction
between carriers and magnetic ions is dominated by the heavy-
hole contribution, the decrease of the heavy-hole density of
states results in the decrease of the Curie temperature. We note
that, for a Curie temperature of about 30 K, the corresponding
exchange interaction energy is of the order of 1 meV, much
smaller than the hole chemical potential ∼50 meV, which
justifies the approximate expression (6) for Tc.

IV. CONCLUSION

We show that the Curie temperature may be dramatically
changed by a small variation of the gate voltage in specially
designed doped diluted semiconductor QWs. Taking into
account the peculiarities of the complex valence band in a
zinc-blende semiconductor, we estimated that one can reach
the Curie temperature variation by a factor of 2 with a variation
of the applied voltage by about 5 V. The predicted effect
is caused by the steplike variations of the density of states
in the valence band in the vicinity of Lifshitz topological
transitions that can be controlled by the external bias. A strong
sensitivity of the Curie temperature to the applied voltage can
be used in semiconductor spintronic devices, in particular in
ferromagnetic switches and spin transistors.
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