
PHYSICAL REVIEW B 97, 235303 (2018)

All-optical quantum fluid spin beam splitter
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We investigate the spin behavior of the first excited state of a polariton condensate in an optical trap by means
of polarization resolved spectroscopy. The interplay between the repulsive polariton interactions and the gain
saturation results in a nontrivial spontaneous switching between the two quasidegenerate spatial modes of the
polariton condensate. As a result, the polarization pattern of the emitted light dramatically changes. Successful
harnessing of this effect can lead to a spin-demultiplexing device for polariton-based optical integrated circuits.
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Integratable spintronic devices are key elements for the
implementation of spintronic circuits and spin-based quantum
processors [1]. An important component of this architecture is
a coherent spin beam splitter that can separate particles having
different spins [2]. Since the first experimental demonstration
of stimulated amplification and Bose-Einstein condensation
(BEC) in semiconductor microcavities (MCs), polaritons have
emerged as a promising platform for spintronic devices. They
feature robust spin readout, long-range spin transport [3],
electrical control of the condensate energy and spin [4–6],
and room temperature operation [7]. Recent state-of-the-art
MCs exhibit polariton lifetimes of hundreds of picoseconds
and close to millimetre ballistic propagation lengths [8],
while electrical creation of a polariton condensate has also
been achieved [9]. Moreover, polaritonic systems have been
shown to feature a wide range of resonant spin switching
and multistability regimes [10,11], while the latest advances
have also demonstrated spin switching and bistability in the
nonresonant optical pumping configuration [12–14]. These
advantages have lead to extensive theoretical suggestions of
polariton-based spin circuits [15,16] as well as the realization
of polariton optical spin filters [17]. However, a configuration
that would allow for the directional and spatial separation of
the spin components of a polariton condensate is yet to be
demonstrated.

Coherent polariton circuits can be engineered by modifying
the potential landscape of the microcavity through deep etching
of the structure. In this way, a number of individual components
of circuits have been realized such as polariton wires and
routers [18,19]. Another approach is to modify the potential
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landscape for polaritons by optical means through the strong
excitonic interactions that dominate in the excitation region
[20,21]. This method has the advantage of being actively
tunable: different circuits can be created and tested on the
same sample simply by modulating the spatial profile of the
excitation [22]. This idea has led to the realization of different
components of future all-optical polariton-based circuits such
as all-optical polariton transistors [23] and amplifiers [24],
while the hybridization of etching techniques and optical
control has also been realized [25].

Although MC structures in the resonant excitation and
optical parametric oscillator (OPO) regime have been proposed
as the basis of spin-switching devices [10,11,26], the fine
control of the excitation energy required for the switching
operation hinders efficient applicability of these techniques.
Nevertheless, optical control of the circular polarization of
polariton emission has also been demonstrated under nonres-
onant optical injection in planar MCs [12,13,17,27,28], where
intricate spin patterns have been observed due to the TE-TM
splitting of the cavity mode [3,29,30].

In this paper, we study the first excited state of a polariton
condensate in an annular optical trap. For a perfectly symmetric
potential, we expect a twofold degeneracy of the first excited
state (�01,�10), while for balanced population of the spin states
the degeneracy is fourfold [Fig. 1(a)]. By introducing a small
ellipticity in the spatial profile of the excitation, we lift the
mode degeneracy (�El) of the trap and observe at threshold a
p-orbital state. In this regime, we identify a density-dependent
mode-switching behavior, where the coherent wave function
spontaneously switches its orientation between two orthogonal
axes. We allow for a small ellipticity in the polarization of
the pump that lifts the spin degeneracy (�Ez) of the trap
by inducing unequal spin populations. Examining the spin
components of the condensate, we find that they switch
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FIG. 1. Schematic representation of (a) the potential landscape of
the system, detailing the fourfold degeneracy and (b) spinor polariton
condensate wave functions and tunneling amplitudes in the trap.

independently and that, for a range of parameters, the two
spinor condensates are oriented perpendicularly to each other
giving rise to a butterfly spin pattern. We describe the system
behavior within the framework of a two mode-Gross-Pitaevskii
equation (GPE) model, where the two modes are coupled
due to the spatially inhomogeneous depletion of the exciton
reservoir and the repulsive exciton-polariton interaction.
Polaritons can escape the finite trapping potential through
resonant tunneling and are accelerated from the potential (by
�kx). In the regime where the two spinor wave functions
are oriented perpendicularly, the system spatially separates
polaritons, escaping the trap based on their spin [Fig. 1(b)].
These results demonstrate that polariton condensates in
optical traps offer unique possibilities for implementing spin
logic and spin-demultiplexing operations in a solid state
platform.

The structure we study here is a high quality (Q = 16 000)
5λ/2 GaAs microcavity with four triplets of 10 nm GaAs
quantum wells and a Rabi splitting of ∼9 meV. The sample
is held in a cold finger continuous flow cryostat at ∼6 K and is
excited with a single mode, continuous wave (CW) Ti:Sapphire
source that is tuned to the minimum of the photonic stop band at
754 nm. We use an acousto-optic modulator with a frequency
of 5 KHz and a duty cycle of 1% to periodically switch off the
CW optical excitation to avoid heating effects on the sample.
We shape the spatial form of the excitation spot with the use of
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FIG. 2. Orientation switching of single spin component. Normal-
ized intensity maps of (a),(b) S+ spinor component for P1 = 1.2Pth

and P2 = 1.4Pth and (c),(d) S− spinor wave function. The white
annulus in (a) outlines the excitation with the main axis of the
ellipse along the vertical direction. (e)–(f) GPE simulation of a single
component BEC for two densities above threshold, reproducing the
switching operation. The scale bar of (e) and (f) is in dimensionless
units of

√
2β/α�.

a phase spatial light modulator in Fourier space and project the
laser onto the sample with an optical system of two lenses and a
high numerical aperture (NA = 0.4) objective. The sample was
excited at a negative detuning of � = −5 meV were the lower
polariton mode has a calculated exciton Hopfield coefficient
of Xe = 0.25, while the heavy hole exciton emission at 6K is
at 1.456 eV. Photoluminescence emission from the sample is
collected through the same objective, while a dichroic mirror
filters out the optical excitation and with the use of a λ/4
wave-plate and a Wollaston prism, we simultaneously project
both spin components of the signal to our imaging apparatus.

We shape the nonresonant excitation into an annulus with
radius rmax = 10.8 μm and a very small ellipticity (ε ∼ 0.155),
while the full width at half maximum of the laser profile is
∼2.5 μm. The annular excitation creates a nearly parabolic
potential in the polariton energy landscape, effectively trapping
polaritons and allowing condensation in the center of the
potential for a given excitation density threshold (Pth ≈ 10.4 ±
0.2 mW). For these conditions, we observe that the dominant
spinor state just above threshold (P1 = 1.2Pth) has a p-orbital
symmetry that is oriented along the main axis of the ellipse
as shown in Fig. 2(a). Surprisingly, as we raise the excitation
power slightly further (P2 = 1.4Pth) we observe a switching
of the orientation of the p orbital as shown in Fig. 2(b) by π/2.
Here, the switching occurs between modes of the same order
(�01,�10) with an energy splitting of the order of ∼10 μeV,
depending on the trap asymmetry, in contrast to switching
between modes of different order where the energy spacing
is significantly higher (�En ∼ 50 μeV) [31] and where the
competition between modal gain and loss is enough to describe
the transition [32,33]. Considering that the finite potential
allows for polaritons to tunnel through the trap, this effect can in
principle be used to seed and switch on subthreshold, optically
or electrically created polariton states outside the optical trap,
and thus perform routing operations [19,23].
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FIG. 3. False colorscale spin textures and total intensity for
aligned spinor wave functions at P = P1 (a), (b) and for perpendicular
spinor components at P = P2, (c), (d) respectively. (e) Sz component
for r = 5 μm radius, outlined by the yellow circle in (a) and (c),
plotted against azimuthal angle for P1 (black triangles) and for P2

(inverse red triangles).

Polariton condensates confined in parabolic optical traps
demonstrate remarkable spin effects such as spin switching
[12,13], spin bistability [14], and ferromagnetic phase tran-
sitions [12]. Polaritons have +1 and −1 spin projections to
the growth axis of the MC that lead to right- and left-circular
polarized photoluminescence. Resolving also the second spin
component of the condensate, we note that at the onset of
condensation, both are in the same configuration, though one
component is populated more strongly (∼ × 11), yielding a
very high circular polarization of the emission of more than
80% [Figs. 2(a) and 2(c)]. As we increase the density to reach
the switching threshold, we observe that when the dominant
component switches its orientation [Fig. 2(b)], the low intensity
spinor retains its initial configuration [Fig. 2(d)]. Nevertheless,
as the two states are now primarily populated from different
regions of the annular reservoir, the relative density ratio is
reduced to only ∼2.2.

From the two spin images, we construct the real space map
of the third Stokes parameter Sz = (S+ − S−)/(S+ + S−), as
well as the total intensity of the emission. In Figs. 3(a) and 3(b),

Sz and the total intensity are depicted for excitation power
P1 = 1.2Pth, showing the familiar spatial features of the �01

trapped state. For P2 = 1.4Pth, the spatial profile of Sz shows
a spin precession around the core of the two orthogonally
oriented components, whereas the total real space intensity
distribution for this power resembles a doughnut or vortex
state as expected from the linear superposition of the individual
components, Figs. 3(c) and 3(d). In Fig. 3(e), the angular profile
of the polarization map for the two excitation powers across
the yellow circle of Figs. 3(a) and 3(c) is plotted, showing how
the polarization profile of the collective mode changes from a
nearly uniform angular distribution to an oscillating one.

Two-mode model. In the following, we neglect the coupling
between the two polariton spin components, assuming weak
effective spin-orbit interaction and weak interaction of polari-
tons with opposite spins. We also assume slow spin relaxation
in the exciton reservoir on the timescale of its lifetime [34]. This
allows us to treat each of the two decoupled spin components
as an independent spinless condensate. In the mean field
approximation, the latter is described by the wave function
�(r,t), which obeys the open-dissipative GPE [35]:

i
∂�

∂t
=

[
− ∇2

2m
+ n

2
(α + iβ) + α1

2
|�|2 − i

�

2

]
�. (1)

Here m is the effective mass, � is the inverse polariton lifetime,
and h̄ = 1. The effective complex potential for polaritons
depends linearly on the exciton reservoir density n(r,t). Its
real part stems from the polariton repulsion by the reservoir,
the strength of which is given by α. The imaginary part in
turn describes stimulated scattering from the reservoir into the
condensate, and is given by β. Finally, the repulsion strength
of polaritons with the same spins is given by α1 ≈ X2α, with
X being the exciton Hopfield coefficient.

The GPE Eq. (1) is supplemented with the semiclassical
equation on the exciton reservoir density:

∂n

∂t
= P(r) − (β|�|2 + γ )n, (2)

where the gain term P(r) is due to the inhomogeneous nonres-
onant optical pump and γ is the reservoir decay rate, while we
neglect exciton mobility in the reservoir.

To describe the polariton eigenstates confined in the elliptic
optical trap, we assume a paraboloidal form of the reservoir
density n(r,ϕ) = n(ϕ)r2/R2, where R sets the size scale of the
trap, and the angular density part

n(ϕ) = N0 + n0 + n1 cos (2ϕ) + n2 sin (2ϕ), (3)

where N0 is the reservoir density at the polariton lasing
threshold, which is derived below, n0, n1, and n2 are the
angular harmonics of the reservoir density variation from
N0. Alternatively, the angular dependent part of the exciton
reservoir density may be introduced as

δn cos (2(ϕ − θ )) = n1 cos (2ϕ) + n2 sin (2ϕ), (4)

with θ being the angle of the elliptic trap main axis.
In the linear regime, the polaritons are thus confined in a

complex harmonic potential

U (r,ϕ) = mω2
+

2
r2 cos(ϕ − θ )2 + mω2

−
2

r2 sin(ϕ − θ )2, (5)
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characterized with complex frequencies

ω± =
√

N0α

mR2

(
1 + i

2

β

α

)(
1 + n0 ± δn

2N0

)
, (6)

corresponding to the size quantization along the two main axes
of the ellipse. Here we assumed the realistic case α � β for
simplicity. The eigenstate energies

Ei,j =
√

N0α

mR2

(
1 + i

2

β

α

)

×
[(

1 + n0

2N0

)
(1 + i + j ) + δn

2N0
(i − j )

]
, (7)

are set by the two quantum numbers i, j , corresponding to
size quantization along the elliptical axes. The wave functions,
characterising the coherent polariton emission spatial profile,
read

�i,j = exp

(
−ξ 2

+ + ξ 2
−

2

)
Hi(ξ+)Hj (ξ−), (8)

where ξ+=√
mRe{ω+}r cos(ϕ−θ ) and ξ−=√

mRe{ω−}r
sin(ϕ−θ ) and Hi(x) are the Hermite polynomials.

To account for polariton tunneling out of the trap potential,
one may add the following orders into the harmonic potential.
Phenomenologically, the tunneling rate may be accounted for
in the state-specific decay rate �i,j of the quantum state.
We address the experimentally relevant case where the max-
imum gain-loss difference Im{(1 + 2i)ω+ + (1 + 2j )ω−} −
�i,j corresponds to the first excited doublet of states i = 0,
j = 1, and i = 1, j = 0. In the following, we only keep
the effective polariton decay rate � = �0,1 = �1,0. The cor-
responding threshold reservoir density is then obtained by
equating the polariton lasing gain term, given by the imaginary
part of the confinement energy Eq. (7), to the loss term �:

N0 = αm

(
�R

2β

)2

. (9)

The doublet states Eq. (8) may be used to form a conve-
nient basis of vortices, corresponding to a radially symmetric
harmonic trap:

�±(r,ϕ) = Ar exp

(
±iϕ − m�

α

β

r2

2

)
, (10)

where A is the normalization constant. Low ellipticity of the
trap allows us to neglect both ground and the higher excited
states and treat it as a small perturbation, coupling the two basis
states, in the vicinity of the polariton lasing threshold. We thus
project the GPE Eq. (1) onto the basis Eq. (10), putting � =
ψ+�+ + ψ−�−. Excluding the optical frequency, we have in
the rotating frame

i
dψ±
dt

= �

2N0

(
α

β
+ i

2

)[
n0ψ± + δn

2
e∓2iθψ∓

]

+ α̃1[|ψ±|2/2 + |ψ∓|2]ψ±, (11)

where α̃1 = α1
∫ |�±|4d2r. From Eq. (11), we derive the

evolution of the condensate angular momentum s = ψ†σψ ,

where ψ = [ψ+; ψ−] and σ is the Pauli vector:

ds
dt

= �

2N0

[
n0s + 1

2
ns + α

β
[n × s]

]
+ α̃1sz[ez × s]. (12)

Here n = n1ex + n2ey with n1 = δn cos (2θ ), n2 =
δn sin (2θ ), and ex , ey , ez are the unitary vectors along the
principal axes of the system.

As the typical reservoir decay rate γ is much faster than
the dynamics of the condensate, reservoir densities in Eq. (12)
may be replaced with their equilibrium values, obtained from
from Eq. (2) and linearized in s: n0 = (P − 2β̃s)/γ , n1 =
(δP − 2β̃sx)/γ , n2 = −2β̃sy/γ . Here P is the the angular
independent part of the pumping power variation from the
threshold P0 = γN0, δP is its first angular harmonic and β̃ =
βN0

∫ |�±|4d2r. Equation (12) may be nondimensionalized
by scaling energies in γ and densities in N0. Defining for
convenience S = 2β̃s, τ = �t/2, η = α/β, and ξ = α1/(β�),
we arrive at

dS
dτ

= n0S + 1

2
nS + [(ηn + ξSzez) × S],

n0 = P − S, n1 = δP − Sx, n2 = −Sy. (13)

The first two terms in the right-hand part of Eq. (13) are the
gain-loss part of the angular momentum evolution, while the
third term describes its precession around an effective field,
stemming from polariton repulsion from the reservoir and
internal repulsion in the condensate.

We solve Eqs. (13) with the following parameters: η = 10,
ξ = 20 δP = 0.1. There are two trivial stationary points of
Eqs. (13), characterized with condensate populations S±(P ) =
±S±

x (P ) = (2P ± δP )/3. While the lower populated branch
S− is unstable, the other one is destabilized by the nonlinear-
ities of Eqs. (13) above the critical pumping power Pc = 0.2
(corresponding to 1.2Pth). At P > Pc, the only pair of stable
stationary solutions S(P ) is symmetry breaking. Vorticity (Sz)
sign in this phase is spontaneously chosen along with the sign
of Sy = −n0Sz/(ηδP ). The sign of Sx switches at the critical
point, corresponding to the abrupt rotation of the condensate
spatial density profile by π/2 at the switching power Pc. We
also consider for comparison the purely photonic case ξ = 0
with no polariton repulsion. In the latter case, the switching
occurs at P = 0.1 (corresponding to 1.1Pth), the Sx component
holds its value above the critical pumping and the condensate
occupation S0 = P coincides with the asymptote of S(P ). The
condensate population S(P ) is plotted in Fig. 4(a) along with
the trivial branches S±(P ), and the vectorial components of
S(P ) are shown in Fig. 4(b).

The spin patterns emerge in the case of elliptical pumping,
where the pumping in two spin polarizations P ± are different.
In the range of pumping powers where the predominantly
pumped spin component of the condensate is in the broken
symmetry phase P + > Pc, while P − < Pc, the two spin
components are spatially separated, resulting in the butterfly
spin pattern. Spin patterns corresponding to different pumping
power ranges are shown in Fig. 4(c). Note that artificial spatial
noise is added in the regions where the condensate density is
close to zero.

In conclusion, we have experimentally demonstrated and
theoretically described a mode-switching process in a polariton
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FIG. 4. The results of the spinless polariton condensate model,
stable solutions of Eqs. (13). (a) Population versus pumping power.
Mode switching occurs at Pc = 0.2. Trivial stationary branches S±

and nontrivial branch for the photonic case S0 are plotted with
dashed lines. (b) Angular momentum vectorial components. The
spatial densities in the trivial and the broken symmetry phases are
shown in the inset. (c) Circular polarization patterns in decoupled
spin components model. Butterfly spin pattern emerges where one
of the circularly polarized components is above threshold, while the
pumping of the other component is below threshold, e.g., P + > Pc,
while P − < Pc.

optical trap, where the condensate wave function sponta-
neously changes its orientation with an adiabatic pump power
increase. The effect is described by the nonhomogeneous
depletion of the reservoir from different spatial modes coupled
with the nonlinear interactions of the system. This config-
uration can, in principle, be exploited for the design and
implementation of on-chip polaritonic routers and transistors.
By means of polarization resolved experiments, we have shown
that the two spin components of a polariton condensate can
switch their orientation independently. Further examination of
this system can lead to the development of an integrable all-
optical spin beam splitter or spin demultiplexer. Furthermore,
as polariton condensate lattices have now been proposed as an
architecture for implementing quantum simulators [36] also
in the trap configuration [37], these p-orbital states can be
used for unidirectional coupling between neighboring nodes,
increasing the complexity of the systems that can be studied.

This work was carried out in the framework of the joint
Russian-Greek project ‘Polisimulator’ supported by the Min-
istry of Education and Science of The Russian Federation
(Project No. RFMEFI61617X0085), Greece and the EU Re-
gional Development Fund and the United Kingdom’s Engi-
neering and Physical Sciences Research Council (Grant No.
EP/M025330/1 on hybrid polaritonics). The data from this
paper can be obtained from the University of Southampton
ePrints research repository.
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