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We propose a concept of a quantum cascade laser based on transitions of bosonic quasiparticles

(excitons) in a parabolic potential trap in a semiconductor microcavity. This laser would emit terahertz

radiation due to bosonic stimulation of excitonic transitions. The dynamics of a bosonic cascade is

strongly different from the dynamics of a conventional fermionic cascade laser. We show that populations

of excitonic ladders are parity dependent and quantized if the laser operates without an external terahertz

cavity.
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Quantum cascade lasers (QCLs) are based on subse-
quent intersubband transitions of electrons or holes in a
Wannier-Stark ladder formed in a semiconductor super-
lattice subject to an external electric field [1–3]. Emitted
terahertz (THz) photons are polarized perpendicularly to
the plane of the structure and propagate in plane (which
is referred to as wave guiding or horizontal geometry).
QCLs differ from conventional lasers as they do not require
an inversion of electronic population for every particular
transition. Still, this is a fermionic laser, where the quasi-
particles emitting light obey the Pauli principle. Recently,
several proposals for bosonic THz lasers based on exciton
polaritons have been published [4,5]. These sources are
expected to generate THz light beams propagating in the
normal-to-plane direction (vertically) without external
THz cavities [6]. The emitted radiation is stimulated by
the final state (exciton-polariton) occupation, which is a
purely bosonic effect.

Here, we propose a concept of a bosonic cascade
laser that combines the advantages of QCLs (emission
of multiple THz photons for each injected electron)
and exciton-polariton lasers (no need for a THz cavity,
low threshold). We consider an exciton cascade formed
by equidistant energy levels of excitons confined in a
parabolic trap in a semiconductor microcavity. As
shown below, in such a geometry, the most efficient
THz transitions are possible between neighboring lev-
els. Parabolic traps for exciton polaritons have been
experimentally demonstrated, and an equidistant spec-
trum of laterally confined exciton-polariton states has
been observed. There are several ways to realize such
traps, including specially designed pillar microcavities
[7], strain induced traps [8], and optically induced
traps [9–11]. A particularly promising variation of these
designs would be a microcavity with a large parabolic

quantum well embedded. We consider the weak cou-
pling regime where the optical mode is resonant with
the mth exciton level to allow efficient pumping. The
other energy levels of the confined excitons would be
uncoupled to the cavity mode, forming a dark cascade
ideal for a high quantum efficiency device due to the
long radiative lifetime. This device would emit radiation
polarized in the direction normal to the quantum well
plane and propagating in the cavity plane in the wave
guiding regime. In this Letter, we formulate a kinetic
theory of bosonic cascade lasers and carry out a micro-
scopic calculation of the transition rates and quantum
efficiency of such a device. We show that the quantum
efficiency is at least 3 orders of magnitude larger than
previous designs based on stimulated emission [4] and
several orders of magnitude larger than the correspond-
ing fermionic cascade.
The occupation numbers of exciton quantum confined

states and the THz optical mode in our cascade laser can be
found from the following set of kinetic equations (0 is the
state with the lowest energy, and m is the state with the
highest energy, which is resonantly pumped):

dNm

dt
¼P�Nm

�
�WNmðNm�1þ1ÞþW 0Nm�1ðNmþ1Þ;

(1)

dNk

dt
¼ �Nk

�
þW½Nkþ1ðNk þ 1Þ � NkðNk�1 þ 1Þ�

þW 0½Nk�1ðNk þ 1Þ � NkðNkþ1 þ 1Þ�
8 1 � k � m� 1; (2)

dN0

dt
¼ �N0

�
þWN1ðN0 þ 1Þ �W 0N0ðN1 þ 1Þ; (3)
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dnTHz
dt

¼ �nTHz
�THz

þW
Xm

1

NkðNk�1 þ 1Þ

�W0 X
m

1

Nk�1ðNk þ 1Þ: (4)

Here, W ¼ W0ðnTHz þ 1Þ is the THz emission and
W 0 ¼ W0nTHz is the THz absorption rate, nTHz is the
THz mode occupation, and �THz is the THz mode lifetime.
The lifetime of the cascade levels, �, should include both
their radiative lifetime and their nonradiative lifetime,
which includes losses due to phonon scattering to states
with a nonzero in-plane wave vector, kk � 0. Above a

threshold pump power, it is not necessary to calculate
explicitly the dynamics of these states. We note that any
phonon or exciton-exciton scattering to kk � 0 states

would not be stimulated, and any population in a particular
subband can be expected to return to the kk ¼ 0 state of the
same subband by stimulated scattering. Phonon assisted
relaxation between subbands is also expected to have a
limited rate [12]. We assume that the matrix element of the
THz transition is (i) nonzero only for neighboring stairs of
the cascade and (ii) the same for all neighboring pairs. This
simplifying assumption allows for the analytical solution
of Eqs. (1)–(3). As we show below, condition (i) is
approximately true for parabolic wells, while assumption
(ii) can be easily relaxed in the numerical calculations.

We first consider the case where there is no THz cavity
and assume that THz photons leave the system immedi-
ately such that nTHz ¼ 0. The solid curves in Fig. 1 show
the dependence of the mode occupations on the pump
power in this case, which were calculated by numerical
solutions of Eqs. (1)–(3) for the steady state. For increasing
pump power, we see that the modes become occupied one
by one and that a series of steps appears, each correspond-
ing to the occupation of an additional mode. In the limit

W0� � 1, the position of the steps is given by P=W0 ¼
n2=ðW0�Þ2, where n is a half-integer. For high pump
powers, where all modes are occupied, two different
behaviors of the modes can be identified: the zeroth, 2nd,
4th, etc. modes continue to increase their occupation with
increasing pump power, while the 1st, 3rd, 5th, etc. modes
have a limited occupation. This effect persists indepen-
dently of whether an even or odd number of modes is
considered in the system.
Qualitatively, our results can be understood as follows.

Every mode in the chain experiences both a gain and a loss.
The last mode in the chain is unique since it only experi-
ences loss due to the finite lifetime rather than THz emis-
sion. Since it experiences loss only due to the lifetime,
we can expect that the last mode is strongly occupied in
the limit of high pump power. This means that the second-
to-last mode experiences a strong loss due to stimulated
scattering to a highly occupied state. Thus, the second-to-
last mode has a much smaller occupation. The third-to-last
mode then experiences only a small loss due to stimulated
scattering and so can again have a large occupation.
The series repeats such that alternate modes have high
and low intensity, with the highly occupied modes intro-
ducing a fast loss rate that limits the occupation of low
intensity modes.
Quantitatively, Eqs. (1)–(3) can be solved analytically in

the steady state, where
P

kNk ¼ P�, under the assumption
that W0� � 1, Nm � 1, and nTHz ¼ 0. In this regime, N0

and the populations of modes with even indices grow
linearly with the pump intensity [13]:

N2l ¼ N0 þ l

W0�
8 0 � l � dðm� 1Þ=2e: (5)

The populations of the odd modes are

N2l�1 ¼ l

W0�
8 0 � l � dm=2e: (6)

Results from Eqs. (5) and (6) are compared to the
numerical results in Fig. 1. We stress that the dependence
of the mode occupations on the parity of the level index is a
specific feature of bosonic systems that does not appear in
the corresponding fermionic cascade [13].
It is also possible to write an equation for the THz

emission rate:

dnTHz
dt

¼ W0

Xm

1

NkðNk�1 þ 1Þ: (7)

Results from Eq. (7) are compared to numerical calcu-
lation of the THz emission rate in Fig. 2(a). For high
pump powers, the rate increases linearly with the pump
power. This represents a limit to the quantum efficiency
of THz emission, which is given by the THz emission
rate divided by the pump rate, P, and plotted in Fig. 2(b).
The presence of the bosonic cascade allows quan-
tum efficiencies exceeding unity and several orders of
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FIG. 1 (color online). Dependence of the mode occupations in
the absence of a THz cavity on pump intensity, calculated
numerically from the kinetic Eqs. (1)–(3) (solid curves) and
analytically from Eqs. (5) and (6) (dashed curves). The vertical
gray lines correspond to the step locations given by P=W0 ¼
n2=ðW0�Þ2, where n is a half-integer. The parameters are W0� ¼
8:3� 10�7, m ¼ 9, and nTHz ¼ 0.
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magnitude larger than the quantum efficiency of the
corresponding fermionic system. ForW0� � 1, the quan-
tum efficiency of the bosonic cascade reaches dm=2e at
high pump powers. For a fermionic system, cascading
does not occur if W0� � 1, and the quantum efficiency is
given by W0� [13].

Figure 2(c) shows the typical time dependence of the
mode occupations after the pump is switched on (assumed
instantaneously). The enhancement of the scattering via
stimulated processes allows the system to reach equilib-
rium in a time less than 1=W0. The presence of multiple
dynamically changing effective scattering rates causes an
initially chaotic dynamics.

So far, we have considered the stimulated emission of
monochromatic but incoherent THz photons. To generate
coherent THz photons, an external THz cavity can be
considered, where macroscopic numbers of THz cavity
photons allow further stimulated enhancement of scatter-
ing between the modes. In this case, where upward tran-
sitions are allowed in addition to downward ones, the steps
observed in Fig. 1 are washed out, as shown in Fig. 3.
In contrast to Fig. 1, all modes continue to increase their
population with increasing pump power. Figure 4(a) shows
the THz emission rate as a function of the THz photon
lifetime. For fixed pump intensity, higher THz emission
rates are observed than in Fig. 2(a). Figure 4(b) shows the
dependence of the THz emission quantum efficiency on
the THz photon lifetime. An increase of the THz photon
lifetime can increase the quantum efficiency, however, not
beyond the limit ofm=2 already observed in the absence of
a THz cavity.

Let us now demonstrate the feasibility of THz transitions
between the size-quantized levels of excitons in a parabolic
quantum well. The two-particle Hamiltonian for an elec-
tron and a hole reads

H ¼ � @
2

2�

@2

@�2
� e2

��
� @

2

2M

@2

@R2
þ Vðze; zhÞ: (8)

Here, M ¼ me þmh, � ¼ memh=M is the reduced mass
of the electron-hole pair, � ¼ re � rh ¼ ðx; y; zÞ is the
relative coordinate, R ¼ ðmere þmhrhÞ=M ¼ ðX; Y; ZÞ is
the center-of-mass wave vector, and � is the background
dielectric constant. The quantum well potential Vðze; zhÞ is
written in the form Vðze; zhÞ ¼ Aez

2
e þ Ahz

2
h, where con-

stants Ae;h denote corresponding stiffness. It is convenient

to rewrite Vðze; zhÞ as a function of the center of mass Z
and relative motion z coordinates with the result V ¼
V0ðZ; zÞ þ V1ðZ; zÞ, where V0ðZ; zÞ ¼ ðAe þ AhÞZ2 þ
ðAhm

2
e þ Aem

2
hÞz2=M2 does not mix center-of-mass and

relative motion and

V1ðZ; zÞ ¼ 2

M
ðmhAe �meAhÞZz (9)
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FIG. 2 (color online). (a) Dependence of the THz emission rate
on pump intensity in the absence of a cavity for different
numbers of modes in the chain (values of m are marked on the
plot). Solid curves show results from numerical solutions of
Eqs. (1)–(3); dashed curves show the results of Eq. (7) that are
valid for high pump powers. (b) Dependence of the quantum
efficiency on pump intensity [the values of m are the same
as in (a)]. (c) Time dynamics for m ¼ 6, P ¼ 3� 1013W. The
parameters are W0� ¼ 8:3� 10�7 and nTHz ¼ 0.
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FIG. 3 (color online). Same as in Fig. 1 with a THz cavity.
�THz ¼ �=100.
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FIG. 4 (color online). (a) Dependence of the THz emission rate
in the presence of a THz cavity on the THz photon lifetime.
Different curves correspond to different pump powers (marked
on the plot in units of W). (b) Dependence of the quantum
efficiency on the THz photon lifetime for the same pump powers
as in (a). The parameters are m ¼ 9 and W0� ¼ 8:3� 10�7.
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mixes internal and center-of-mass degrees of freedom,
provided that mhAe � meAh.

In what follows, it is assumed that the potential is weak
enough; hence, in the zeroth approximation, the center of
mass can be quantized independently and zeroth order
wave functions have the form

�n;l;m;hðre; rhÞ ¼ Rnlmð�ÞYlmð#;’ÞFhðZÞ; (10)

where FhðZÞ are the eigenfunctions of the center-of-mass
potential ðAe þ AhÞZ2, h enumerates levels in this har-
monic potential, Rnlmð�Þ are the 3D-hydrogen-like radial
functions, and Ylmð#;’Þ are (3D) the angular harmonics of
relative motion. n, l, and m are the quantum numbers of
relative motion of an electron and a hole.

Let us consider the case when the energy of the 2p to 1s
transition of orbital states is matched to the level spacing,
@�, of the center-of-mass wave functions in the trap [note
that V1 may still be small due to compensation of Ae and Ah

terms in Eq. (9)]. The eigenstates of the bosonic cascade
can then be written as

j�; hi ¼ j1; 0; 0; hi � j2; 1; 0; h� 1iffiffiffi
2

p ; (11)

where the states are labeled as jn; l; m; hi. Dipole transition
elements between the two eigenstates at each level in the
cascade and those @� lower in energy are given by

jh�; h� 1jexj�; hij ¼ e

2
h1; 0; 0; h� 1jxj2; 1; 0; h� 1i

¼ 64
ffiffiffi
2

p
243

ea0; (12)

where the numerical factor arises from known matrix
elements of transitions in the harmonic oscillator and the
hydrogen atom [14,15]. For simplicity, we assume that
the populations of jþ; hi and j�; hi states in the cascade
are equal. The transition rates between different energies
in the cascade are then given by the transition rate corre-
sponding to Eq. (12) multiplied by a factor of 2. Following
Ref. [4], the transition rate between levels is W0�
1700s�1, where we took a0 ¼ 100 �A and a refractive index
of 3 corresponding to a GaAs based system. The 2p to
1s transition energy was calculated from Enp � Ens ¼
�R=n2, with R ¼ 5 meV. Taking � ¼ 500 ps, we then
have W0� � 8:3� 10�7.

We have neglected any energy splitting of the eigen-
states j�; hi, which is valid if the coupling energy given by
V1 is less than the inhomogeneous broadening of the
system. Note that the j�; hi are still the unique eigenstates
of the system, provided that the coupling energy exceeds
the decay rate given by the exciton lifetime.

To best characterize the specific case of a parabolic trap
with electron-hole mixing, we have also considered the
effects of higher order transitions [13] caused by the mix-
ing of states by V1ðZ; zÞ. Dipole transitions between next-
nearest-neighbor levels are forbidden; however, third order

transitions between next-next-nearest-neighbor levels are
possible [13]. In addition, we have considered the effect of
exciton-exciton scattering processes [13]. The results are
summarized in Fig. 5. The exciton-exciton interactions can
greatly smooth the quantized steps, while the influence of
first and third order transitions may distort the differences
in populations of neighboring levels. However, the parity
dependence can still be observed as nontrivial oscillations
of the level populations with increasing power.
Furthermore, high quantum efficiencies, exceeding unity,

are still possible [13] due to the weakness of third order
transitions and the fact that exciton-exciton pair scattering
conserves energy. Note, the number of THz photons that a
pair of excitons can emit before reaching the ground state is
unchanged even if exciton-exciton scattering takes place.
Finally, we note that the wave guiding geometry can

increase the active volume of the laser and, consequently,
the output power. Its drawback is a larger size compared
to the vertical cavity laser geometry. Lateral traps would
allow a more compact size of the device, while the matrix
elements of terahertz transitions are believed to be larger in
parabolic quantum wells.
In summary, we proposed the use of a bosonic cascade to

implement THz lasing with high quantum efficiency, above
unity. Such a device requires a parabolic trapping that can
be arranged in the plane of a semiconductor microcavity
via a variety of techniques or using parabolic wide quan-
tum wells. The THz transition matrix elements were calcu-
lated, making use of possible resonance between the level
spacing of center-of-mass wave functions and the 2p to 1s
transition energy. A series of steps in the mode occupations
of the bosonic cascade was predicted for increasing pump
power, which remain as visible oscillations in the presence
of exciton-exciton scattering and third order transitions.
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FIG. 5 (color online). Same as in Fig. 1, including exciton-
exciton scattering [13] and corrections to transition rates up to
third order in V1 (fourth order corrections vanish).
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