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We address, theoretically, the puzzling similarity observed in the thermodynamic behavior of
independent clouds of cold dipolar excitons in coupled semiconductor quantum wells. We argue that
the condensation of self-trapped exciton gas starts at the same critical temperature in all traps due to the
specific scaling rule. As a consequence of the reduced dimensionality of the system, the scaling parameters
appear to be insensitive to disorder.
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Introduction.—The ring-shaped boundary between
electron-rich and hole-rich regions in semiconductor quan-
tum wells remote from the central hot excitation spot
presents the unique setting for studying of the critical
behavior in exciton gases [1]. Indirect excitons formed on
the ring have extremely long lifetimes and high cooling
rates which allow them to reach a thermodynamic equi-
librium with the cold lattice. On the other hand, the strong
repulsion of exciton dipole moments oriented perpendicu-
larly to the plane of the structure prevents the system from
the formation of biexcitons [2,3] and makes possible the
observation of a Bose-Einstein condensed metastable state
[4,5]. The specifics of such Bose-Einstein condensation
(BEC) can be conveniently studied by analyzing the
exciton photoluminescence (PL) [6,7].
Intriguing phenomena have been recently observed in

the PL ring of dipolar excitons in coupled quantum wells
(CQWs) [8,9] and, independently, in a biased single
quantum well (SQW) structure [10]. With the lowering
of temperature the exciton cloud at the ring squeezes and
fragments into an array of beads seen as bright spots in the
PL spectra. Shift-interferometry measurements reveal that
each bead represents a macroscopically coherent exciton
state (a condensate). At the same time, no phase correla-
tions between different beads have been found [9]. These
local condensates are formed in different external con-
ditions, and their sizes vary along the ring. Indeed, though
the electrostatic interaction between excitons results in
screening of rapid fluctuations of the in-plane potential
[11], the weak disorder varying slowly in space is always
present. The effect of disorder on the formation of patterns
of exciton condensates is a challenging problem which has
not been addressed until now.
In this Letter we show that the pronounced dispersion of

sizes of the beads observed in the experiment [8–10] can be
described as accounting for a weak and smooth disorder

potential in the system. Surprisingly, the disorder does not
affect the value of the critical temperature Tc: BEC starts in
all the traps simultaneously, at the same temperature as
in the disorder free system. The situation resembles one in
multiband superconductors: in spite of the diversity of
coherence lengths and gaps of the Cooper pairs in different
bands at relatively low temperatures, the system unifies
close to the phase transition, and the transition occurs at a
unique critical temperature. This important result of our
model is consistent with the experimental studies [8–10].
In the absence of interactions and disorder, the cloud of

indirect excitons localized at the ring would condense
homogeneously at some temperature corresponding to zero
chemical potential. However, the time to reach kinetic
equilibrium and build up the long-range order in such an
ideal gas would be infinitely long [12]. The strong dipole-
dipole repulsion between excitons ensures fast thermal-
ization of the whole cloud, but BEC occurs at a lower
critical temperature Tc and would result in fragmentation of
the ring into a perfectly periodic array of localized con-
densates [13]. In the thermodynamic limit, the number of
beads would be determined by the balance between the
kinetic and entropy terms in the free energy of the exciton
system [14]. The exciton bead density profile along the
ring reproduces the shape of the self-trapping potential.
The latter can be assumed to be of a harmonic type for all
beads:

Vjðx; yÞ ¼
1

2
mω2

jx
2 þ 1

2
mω2

yy2; (1)

where x corresponds to the azimuthal and y to the radial
direction, j ¼ 1; 2;…; J is the index of the bead and,
in the absence of disorder, ω1 ¼ ω2 ¼ …≡ ωx [15].
Localization of the clouds in the radial direction y is due
to the macroscopic in-plane charge separation (see Fig. 1
and Ref. [16]). The chemical potential of each independent
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cloud μj can be calculated using the normalization
condition

NjðμjÞ ¼
Z

njðx; y; μjÞdxdy; (2)

where njðx; y; μjÞ is the density profile of this cloud [see
Eq. (7) below], X

j

NjðμjÞ ¼ N0; (3)

with N0 being the total number of excitons at the ring in a
steady state, and

μ1 ¼ μ2 ¼ � � �≡ μ; (4)

so that the three equations (2), (3), and (4) determine, in
fact, the unique chemical potential μ of the interacting
disorder free system.
The effect of disorder can be studied considering a

perturbative correction to the self-induced part of the local-
izing potential: the potential traps (1) acquire different
curvature (characterized by ωj) and contain a different
numberofexcitonsNj,while thechemicalpotentialμdefined
by (2) remains unchanged and the condition of kinetic
equilibrium (4) is not violated [17]. Below we show, that
at the experimentally achieved exciton densities, the latter
implies that thecriticalpointTc isnotaffectedbydisorderand
remainsuniquefor thewholesystem.Toobtain thisnontrivial
result we extend the principle of scale invariance on a

two-dimensional harmonically trapped gas and show that
all the beads belong to the same universality class.

Scale invariance.—Self-trapping along the ring alters
dramatically the density of exciton states, making it
possible to observe the true second order phase transition
in the thermodynamic limit. In this case the scale invari-
ance, generally taking place in the critical region [18], was
shown to be extended down to zero temperature [19,20].
A physical reason for this specific scaling is quenching of
finite size effects (negligibility of the kinetic energy term in
the mean field equation for a condensate) [19]. The relevant
thermodynamic functions of a trapped cloud can be
expressed in terms of two parameters: the critical temper-
ature of BEC of noninteracting particles in a harmonic trap
T0
c;j and the ratio ηj ¼ μjðT ¼ 0Þ=kBT0

c;j. In what follows
we show that the scaling parameters are the same for all
localized exciton clouds.
By analogy with a three-dimensional problem [19,20],

the thermodynamic limit for a two-dimensional harmoni-
cally trapped gas can be formally obtained by letting the
total number of particles Nj in a trap increase to infinity,
and the oscillator frequency ωho;j ¼ ðωjωyÞ1=2 decrease to
zero, while keeping fixed the product ωho;jN

1=2
j . The latter

defines the critical temperature of an ideal gas in a
harmonic trap

kBT0
c;j ¼ ð6=π2Þ1=2ℏωho;jN

1=2
j : (5)

To account for contact interactions between the excitons
in the trap domain, we take advantage of the fact [12] that
as ωho;j → 0 the density profile of the jth cloud njðx; yÞ is
fixed by the condition of local equilibrium

μ̄½njðx; yÞ; T� ¼ μjðTÞ − Vjðx; yÞ: (6)

Here μ̄ðn̄; TÞ is the value of a local chemical potential
calculated for a uniform system having the density
n̄ ¼ njðx; yÞ, while μjðTÞ is the chemical potential of the
cloud. By inverting the condition (6) one can write the
density njðx; yÞ in the form

njðx; yÞ ¼ n̄½μjðTÞ − Vjðx; yÞ; T�; (7)

where n̄ðμ̄; TÞ is merely the density of the uniform gas
expressed in terms of its chemical potential and temper-
ature. At T ¼ 0 one would obtain the well-known Thomas-
Fermi result for the condensate:

njðx; y; T ¼ 0Þ ¼ 1

V0

½μjðT ¼ 0Þ − Vjðx; yÞ�θ½μjðT ¼ 0Þ

− Vjðx; yÞ�; (8)

where θðxÞ is the Heaviside step function. In practice,
tracing the local value of the chemical potential μ̄ðx; yÞ

FIG. 1 (color online). Calculated potential profile for the radial
motion of an indirect exciton in the vicinity of the ring (solid line)
and the model harmonic trap (dashed line). Details of the
calculation can be found in [16]. The localization is due to the
macroscopic charge separation (color inset on the left) which
induces an in-plane electric field. The field tilts the exciton
dipoles and thus reduces their potential energy. At low temper-
atures, excitons condense at the potential minimum located near
the charge boundary. As a consequence of strong repulsive
interactions, the density profile of the exciton condensate is very
smooth and merely reproduces the shape of the trap (dotted-
dashed line).
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allows one to reproduce the density profile of a cloud and
vice versa [21].
Using the normalization condition (2) and Eq. (8) one

finds the chemical potential at T ¼ 0 in the form

μjðT ¼ 0Þ ¼
ffiffiffiffiffiffiffiffiffi
mV0

πℏ2

r
ℏωho;jN

1=2
j ; (9)

and the ratio

ηj ≡ μjðT ¼ 0Þ
kBT0

c;j
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
π

6

mV0

ℏ2

r
: (10)

Crucially, in contrast to the case of a three-dimensional gas
[19], the quantities ηj in (10) are not dependent on the
oscillator frequencies ωj and ωy characterizing the trap and
on the number of particles in a cloud Nj. Providing that the
condition (4) is satisfied, this implies that the critical
temperature of an ideal gas T0

c;j is also the same for all
traps, so that one can write

η1 ¼ η2 ¼ � � �≡ η; (11a)

T0
c;1 ¼ T0

c;2 ¼ � � �≡ T0
c: (11b)

In order to show that the quantities η and T0
c are the scaling

parameters, we follow Ref. [12] and introducing a new
variable ξ≡Vjðx;yÞ rewrite the identity (2) in the form [16]

2ðkBT0
cÞ−2

Z
6

π

ℏ2

m
n̄ðμ − ξ; TÞdξ ¼ 1; (12)

where we have used Eq. (7) with μj replaced by μ according
to (4). Inversion of the equation (12) yields the general
dependence μ ¼ μðT; T0

c; ηÞ for the chemical potential of
the trapped cloud. Because of the dimensionality arguments
this expression can be recast in the form

μ ¼ kBT0
cfðt; ηÞ; (13)

where t≡ T=T0
c is the reduced temperature, f is a generic

function which satisfies fð0; ηÞ ¼ η.
Equation (13) exhibits the anticipated scaling in terms of

η and T0
c. By analogy, one can show the scaling of all other

thermodynamic functions. Having in mind the result (11)
one can conclude that all the beads belong to the same
universality class defined by η and T0

c. In particular, the
critical point is unique for the whole system even in the
presence of disorder. To illustrate this important result,
let us estimate Tcðη; T0

cÞ for a small η, where the
simplest Hartree-Fock scheme can be applied [20]. In this
approximation,

fðt; ηÞ ¼ ηð1 − t2Þ1=2 (14)

and Tc can be found solving the transcendental equation
μðTc; T0

c; ηÞ ¼ ϵ½μðTc; T0
c; ηÞ; Tc� with ϵ being the lowest

eigenvalue of the single particle Hamiltonian Hsp;j ¼
Vjðx; yÞ þ 2V0njðx; yÞ. Using Eqs. (7), (13), and (14)
one finds [16]

Tc ¼ T0
c

�
1þ x2ðηÞ

η2

�−1=2
; (15)

where xðηÞ is a root of π2x ¼ 6η2Liðe−xÞ, LiðxÞ is the
Eulerian logarithmic integral [22].
The scaling arguments given above are based on the local

density approximation (LDA) given by Eq. (7) or, equiv-
alently, (6). Experimental [21] and ab initio [23] studies
show that LDA for 2D gases is already valid to a good
accuracy for ∼104 particles. This corresponds to the
experimentally achieved exciton densities in a bead [8].
However, since an exciton gas is quite different from usual
atomic gases, it is worth discussing the applicability of
LDA for the beads in details.

The validity of the local density approximation for the
beads.—To verify the validity of the Thomas-Fermi approxi-
mation for exciton clouds, we notice that the local chemical
potential μ̄ðx; yÞ given by Eq. (6) can be inferred from the
PL energy profiles along the ring measured in [7] and
shown there in Fig. 2. Indeed, the chemical potential μ̄ðx; yÞ
contributes to the energy of a photon emitted by an exciton
during recombination. Neglecting the thermal component
of the exciton gas, the average PL energy measured in [7]
for one bead can be written as

FIG. 2 (color online). (top) The T ¼ 0 Thomas-Fermi result
μ̄=kBT0

c ¼ η − ~x2 for the variation of exciton energy along the
ring (~x axis) at ~y ¼ 0 (the dashed red line). The exciton resonance
position measured in [7] from PL spectra is shown by the
solid line. The scaling parameters are η ¼ 1.6 and T0

c ¼ 4.5 K.
The Thomas-Fermi radius of the bead is measured to be
Rx ¼ 20 μm. (Bottom) The topological transformation of the
condensate density given by (19) conserving the total number of
particles N0 ¼

R
n0dxdy and the Thomas-Fermi energy

ETF ¼ V0

R
n20dxdy.
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EPLðxÞ − const ¼
R
μ̄ðx; yÞnðx; yÞdyR

nðx; yÞdy ¼ 4

5
μ̄ðx; y ¼ 0Þ;

(16)

with nðx; yÞ given by (8) where we have omitted the index j
for simplicity (this change in the notation will be kept until
the end of this section). We choose a bead in the middle of
Fig. 2 of Ref. [7], which has the most regular shape
compared to its neighbours. When expressed in reduced
units and multiplied by 5=4 to account for the averaging
along y axis [Eq. (16)], the energy profile of this bead reads
μ̄=kBT0

c ¼ η − ~x2 [Fig. 2], where ~x ¼ η1=2x=Rx and

Rx ¼ ½2μðT ¼ 0Þ=mω2
x�1=2 (17)

is the Thomas-Fermi radius. Here we have substituted
μðT ¼ 0Þ ¼ ηkBT0

c into the right-hand side of Eq. (6).
Note, that we do not adjust the scaling parameters: we find
η ¼ 1.6 using Eq. (10), where we substitute V0 ¼
1.7 μeV × μm2 calculated using the plate capacitor formula
with the correction factor [3]. In what concerns the
parameter T0

c, it can be estimated from the experimental
temperature at which the fragmentation and the build up of
the extended coherence occur T0

c ¼ 4.5 K [7].
Furthermore, using the Thomas-Fermi approximation

(17) for available values of the parameters η and T0
c one can

estimate the oscillator frequency ωy of the radial localizing
potential which would correspond to the experimentally
observed ring width 2Ry ∼ 10 μm. Remarkably, this poten-
tial can be obtained from the first principles, see [16]. The
result of this calculation is shown in Fig. 1 by a solid line.
The input parameters for the calculation procedure corre-
spond to those typical of the experiment. The dashed line
shows the model harmonic potential. We also plot the
ground state density profile for η ¼ 1.6 and T0

c ¼ 4.5 K
(we have assumed ωx ¼ ωy for simplicity). As one could
expect, the semiclassical condition ℏωy ≪ kBT0

c is well
satisfied.

The energy scale of the disorder.—Finally, let us estimate
the energy scale of the disorder potential which can induce
the significant dispersion of bead sizes observed in practice.
We do not wish to complicate the issue by taking into
account the thermal component of the gas and, therefore,
consider the fragmented exciton condensate at T ¼ 0. As
we have already explained, in the scaling regime this
restriction does not imply any loss of generality.
It is reasonable to assume that at T ¼ 0 the adjacent

condensates touch each other as it is shown schematically
in Fig. 2 (in order to minimize the interaction energy ETF).
In the Thomas-Fermi limit this means that the oscillator
frequencies fωjg satisfy the “ continuity” condition

X
j

½2μðT ¼ 0Þ=mω2
j �1=2 ¼ πR; (18)

where R is the ring radius. The smooth disorder can
fragment the condensate and vary the size of the beads
along the ring, while conserving the parabolic shape of the
bead density profiles njðx; y; T ¼ 0Þ. Interestingly, such
topological transformation of the exciton density can be
formally achieved by the replacement

fωjg → fωkg�; (19)

where fωkg� is a new set of oscillator frequencies,
k ¼ 1; 2;…; K, satisfying the condition (18) with k instead
of j and K ≠ J in general. One can check [16] that the
transformation (19) conserves the total number of particles
N0 [Eq. (3)].
This way, one can achieve the pronounced dispersion of

the bead sizes observed experimentally maintaining the
chemical potential μðT ¼ 0Þ corresponding to the disorder
free system. This suggests that the variation of the
disorder potential δ on the scale of the bead size is
much less than μðT ¼ 0Þ. Indeed, not only the sumP

j

R
njðx; y; T ¼ 0Þdxdy ¼ inv but also

X
j

Z
n2jðx; y; T ¼ 0Þdxdy ¼ inv (20)

under the topological transformation defined by (19).
Equation (20) defines the energy accumulated in the clouds
due to the repulsive interaction (the Thomas-Fermi energy)
ETF ¼ V0

P
j

R
n2jðx; y; T ¼ 0Þdxdy. To estimate the low-

est bound for δ one should go beyond the scaling limit. It is
shown in Ref. [14] that the kinetic energy correction to the
Thomas-Fermi approximation can be estimated as kBT0

c=η
(per one bead). Therefore, it is sufficient to introduce a
weak disorder which varies smoothly by

kBT0
c=N̄jη < δ ≪ μðT ¼ 0Þ≡ ηkBT0

c (21)

on the scale of the bead size so that one could observe its
effect on the fragmented exciton condensate (N̄j is the
average number of particles in a bead). The high sensitivity
of condensate sizes to the disorder reflects the fact that the
trapping potential along the ring is essentially self-induced.

Conclusions.—We have shown that the fragmented exci-
ton ring represents an array of trapped Bose-Einstein
condensates close to the thermodynamical limit. The
relevant thermodynamic functions of exciton clouds exhibit
scaling in terms of the parameters η and T0

c. With lowering
the temperature, the lakes of condensed excitons grow
maintaining the same chemical potential. The dispersion of
their sizes reveals weak and smooth structural disorder,
which is hidden from an observer above Tc. As a
consequence of the reduced dimensionality, such disorder
does not alter the scaling parameters. This explains the
experimentally observed universality in the thermodynamic
behavior of statistically independent exciton condensates.
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