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We propose a novel mechanism for designing quantum hyperbolic metamaterials with the use of
semiconductor Bragg mirrors containing periodically arranged quantum wells. The hyperbolic dispersion
of exciton-polariton modes is realized near the top of the first allowed photonic miniband in such a structure
which leads to the formation of exciton-polariton X waves. Exciton-light coupling provides a resonant
nonlinearity which leads to nontrivial topologic solutions. We predict the formation of low amplitude
spatially localized oscillatory structures: oscillons described by kink shaped solutions of the effective
Ginzburg-Landau-Higgs equation. The oscillons have direct analogies in gravitational theory. We discuss
implementation of exciton-polariton Higgs fields for the Schrödinger cat state generation.
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Introduction.—A remarkable similarity between propa-
gation of electromagnetic waves in inhomogeneous media
described by Maxwell’s equations and propagation of
photons in curved space-time described by the general
relativity laws offers a possibility of designing media where
light propagates along predefined curved trajectories. This
concept, known as transformation optics [1] not only
allowed emulating many gravitational effects such as
gravitational lensing [2], event horizon [3], etc., but also
led to a bunch of intriguing practical applications, such as
optical cloaking [4], and superresolution optical imaging
[5]. Construction of the media with predefined profiles of
electric and magnetic permeabilities is feasible with use of
metamaterials [6], artificial periodic structures whose
optical properties are governed both by the electromagnetic
response of individual structure elements and by the geo-
metry of the lattice. Hyperbolic metamatrials (HMMs) are
highly anisotropic media that have hyperbolic (or indefi-
nite) dispersion [7], determined by their effective electric
and/or magnetic tensors. Such structures represent the
ultra-anisotropic limit of traditional uniaxial crystals.
One of the diagonal components of either permittivity
(ε) or permeability (μ) tensors of HMMs has an opposite
sign with respect to the other two diagonal components.
Recently, HMMs have attracted enhanced attention both
due to the promising applications in quantum lifetime
engineering [8] and subwavelength image transfer [9],
and because of their relatively low production costs as
compared to other optical metamaterial designs. In contrast
to all-dielectric uniaxial anisotropic media for which both
dielectric permittivities are positive: ε1 ≡ εx ¼ εy > 0 and
ε2 ≡ εz > 0, in HMMs ε1 and ε2 have opposite signs in

some frequency ranges due to the presence of metallic
layers. As a result, the analogy between wave propagation
governed by the Helmholtz equation and the effective
Klein-Gordon equation for a massive particle with a
fictitious time coordinate can be obtained for the descrip-
tion of a coherent cw laser beam propagation in such a
structure. This analogy makes possible the creation of the
Minkowski space-time using HMMs [10]. Applications of
HMMs for modeling gravity and cosmology problems
within scalar ϕ4-field theories require introducing a strong
Kerr-like nonlinearity to the medium, [11,12]. However,
the nonlinear response of the conventional HMMs is
relatively weak. Moreover, most of the studied HMMs
are essentially periodic arrays of metallic inclusions,
characterised by large Ohmic losses and decay of the
electromagnetic field propagation.
To overcome these problems, in this Letter we propose

an approach for emulating quantum effects in curved space-
time using exciton polaritons in multilayer semiconductor
structures. Resonant HMMs may be realized in Bragg
arranged semiconductor quantum wells (QWs) or other
resonant photonic crystals [13]. We take advantage of the
giant optical nonlinearity introduced due to the exciton-
light coupling (cf. [14]) which is responsible for a number
of nontrivial topology effects in coherent exciton-polariton
fluids [15,16]. Specifically, in this Letter we consider
resonant semiconductor Bragg mirrors as a model system
for studying Higgs field properties. Light propagation in
such structures has been extensively studied both theoreti-
cally and experimentally [17–22]. In particular, the dra-
matic modulation of the reflectivity spectra of Bragg
spectra in the vicinity of exciton resonances was predicted
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in Ref. [18]. The peculiar dispersion of mixed photon-
exciton modes in Bragg arranged QWs has been discussed
in the literature (see, e.g., Refs. [19–22]). Here we show
that planar periodic semiconductor Bragg mirror structures
with embedded QWs allow for controlling the signs of
effective masses of mixed light-matter quasiparticles
termed Bragg exciton polaritons in order to create a
quantum HMM. The optical response of such a HMM
can be tailored by tuning the layer thicknesses in a periodic
structure [20].
Bragg mirror model.—The structure we consider is

schematically shown in Fig. 1(a). It consists of the periodic
array of alternating dielectric layers with QWs placed in the
centers of the layers of one type. The exciton frequency is
tuned to the high frequency edge of the second photonic
band gap, which is characterized by the saddle point in the
dispersion surface [20]. The Hamiltonian of the structure in
Fig. 1(a) has a form Ĥ ¼ Ĥph þ ĤX þ Ĥcoup þ Ĥnl where
Ĥph is the photonic part, ĤX is the excitonic part, Ĥcoup

accounts for the exciton-photon coupling, and Ĥnl is the
nonlinear part, which originated from the exciton-exciton
scattering. In the vicinity of the second photonic band gap
of the Bragg mirror one can diagonalize the linear part of
the Hamiltonian Ĥ, using the approach described in
Ref. [19] to obtain the dispersions of four exciton-polariton
branches P1, P2, P3, P4, which are shown in Fig. 1(b), see
the Supplemental Material for more details [23]. Hereafter,
we restrict ourselves only to the lower branch (LB)
neglecting the inter-branch scattering processes.
To describe the LB polariton wave function (WF)

associated with the Bragg mirror structure we start with
the Gross-Pitaevskii equation (GPE) for a mean-field
amplitude Ψðr; tÞ [23]

iℏ
∂Ψ
∂t ¼

�
−

ℏ2

2m∥
Δ∥ −

ℏ2

2m⊥
∂2

∂z2 − iℏγ0 þ gjΨj2
�
Ψ; ð1Þ

where m∥ and m⊥ are the components of the effective
mass tensor. The nonlinear coupling constant can be

approximated by g ≈ 6Eba3bDX4
1=dQW, where Eb is the

exciton binding energy, ab is the exciton Bohr radius,
D is the period of the structure, dQW is the QW width,
and V ¼ LxLyLz is the volume of the structure in Fig. 1,

X1 ≡ X1ð0Þ≃ 1=
ffiffiffi
2

p
is the Hopfields coefficient for the

lowest polariton branch; in Eq. (1) we neglect the nonlocal
character of polariton-polariton interaction. We have intro-
duced the dissipation term −iℏγ0 to account for the
radiative decay of polaritons. Here we consider a time-
resolved response of the dissipative polariton system
to the pulsed excitation which is accounted for in the
initial condition. An important peculiarity of our system
is the negative transverse component of the polaritonic
effective mass that tends to m⊥ ¼ −2π2ℏΩBðn1 þ n2Þ2=
n1n2D2ωBðωB −ΩBÞ, where ωB is the center of the second
photonic band gap, ΩB is the band gap half-width, n1;2 are
refractive indices of the layers. Meanwhile, the lateral
effective mass m∥¼2ℏn21n

2
2ðωB−ΩBÞ=c2ðn21−n1n2þn22Þ

is positive.
Notably the LB of polaritons is characterized by the

effective mass tensor whose diagonal components differ in
sign. In general the effective mass tensor is dispersive due
to the nonparabolicity of the polariton band; however, for
the wave vectors that are small compared to the inverse
period of the structure 1=D, one can safely assume the
tensor components are constant. Note that due to the
smallness of the effective mass, exciton polaritons remain
within the light cone, i. e., at the wave vectors smaller than
1=D, even at room temperature.
In the numerical calculations, we consider a GaN/AlGaN

layered structure with narrow InGaN QWs, for which
the exciton binding energy Eb is approximately 45 meV,
the exciton Bohr radius is ab ≈ 18 nm, dQW ¼ 10 nm,
and Rabi frequency ΩP ≈ 2π × 7.1 THz. Thicknesses of
the layers and their refractive indices are taken as
d1 ¼ 64.8 nm, n1 ¼ 2.55 and d2 ¼ 115.3 nm, n2 ¼ 2.15,
period of the lattice D ¼ d1 þ d2 is 180.1 nm; ωB is
calculated as approximately 2π × 726.2 THz and the pho-
tonic band gap width ΩB is about 2π × 12.1 THz. The
polariton decay rate γ0 is given by the photonic radiative
decay lifetime τ ¼ 1=γ0.
We transform Eq. (1) to the standard GPE by introducing

the new variable Ψðr; tÞ ¼ ϕðr; tÞe−γ0t as

iℏ∂tϕ ¼
�
−

ℏ2

2m∥
Δ∥ þ

ℏ2

2m
∂zz þ pðtÞ−1gjϕj2

�
ϕ; ð2Þ

where we denote m≡ jm⊥j. In Eq. (2) we suppose that
e−2γ0t ≈ 1 − 2γ0t≡ pðtÞ−1, cf. Ref. [26]. This approach is
applicable in the limit of γ0 ≪ ΩP, or at the time scale
such as t < 1=γ0. We focus on the stationary states
of LB polaritons representing the solution of Eq. (2) in
the form

-0.2
0.20

kρD
DK-3   -2   -1  0   1   2   3

1
QWQWQW

y

x
z

3.05

3.0

2.95

2.9

ω
)

Ve( 2

3

4

(a)
(b)

FIG. 1 (color online). (a) Schematic picture of the spatially
periodical structure (“Bragg mirror”). (b) Dispersion surface for
the GaN=Al0.3Ga0.7N Bragg mirror with In0.12Ga0.88N QWs
placed in the centers of the GaN layers. The parameters of the
system are given in the text.
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φðX; Y; ZÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
κ2κz
pðtÞ3

s
ϕðr; tÞ × exp

�
i
γ0m∥pðtÞ

ℏ

�
x2 þ y2 −

m
m∥

z2
�
þ i

E
ℏ
pðtÞt

�
; ð3Þ

where κ ¼ ℏ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V=2m∥g

p
, κz ¼ ℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V=2mg

p
are characteristic

macroscopic scales of the polaritonic system in the struc-
ture, E is the energy of the system. Substituting Eq. (3) for
Eq. (2) we finally obtain

∂ZZφ − ð∂XX þ ∂YYÞφ − ηφþGφ3 ¼ 0; ð4Þ

where η ¼ EV=g, G ¼ V=κ2κz. Polariton WF φ obviously
obeys a normalization conditionZ

L

0

dX
Z

L

0

dY
Z

LZ

0

φ2dZj
t¼0

≃ Nin; ð5Þ

where Nin is the initial total number of polaritons, the
dimensionless variables X ¼ pðtÞx=κ, Y ¼ pðtÞy=κ,
Z ¼ pðtÞz=κz; t̄ ¼ pðtÞt; LX ¼ LY ¼ L and LZ are char-
acteristic dimensionless lengths of the structure.
Linear regime.—The most interesting features of Eq. (4)

can be elucidated in the linear regime, i.e., for the ideal gas
of noninteracting polaritons occurring at g≃ 0 and for the
vanishing decay rate γ0 ≃ 0. This approach is equivalent to
the low density limit, where nonlinear effects caused by
polariton-polariton interactions can be neglected. In this
limit, the effective dispersion relation is obtained from
Eq. (4) substituting the plane wave solution Ψ ∝ eiQR:
η ¼ Q2

X þQ2
Y −Q2

Z. The corresponding dispersion surface
is shown in Fig. 2(a). The specific dispersion of Bragg
polaritons leads to the characteristic HMM divergence of
the photonic density of states [4]. In the same limit, Eq. (4)

supports the so-called X-wave solution defined as φxw ¼
CRe½v−1=2 exp ð−i ffiffiffi

v
p Þ� (cf. [27]), where we have redefined

v ¼ ηf½Δ − iðZ − Z0Þ�2 þ ðX − X0Þ2 þ ðY − Y0Þ2g; Δ is a
real-valued arbitrary coefficient that determines the wave
packet localization, X0, Y0, and Z0 define positions of the
center of the wave packet, C is the normalization constant
which can be estimated using the normalization condition,
Eq. (5). The solution φ2

xw is shown in Fig. 2(b) for the
parameters given above. Physically, the polaritonic X wave
represents a nondiffracted localized wave packet analogous
to diffractionless beams in optics [28].
Polariton Higgs field.—The behavior of our polariton

system is essentially modified in the presence of polariton-
polariton scattering, i.e., at g ≠ 0. Equation (4) with the
“time” variable Z represents the Ginzburg-Landau-Higgs
(GLH) equation, that is typically discussed in connection
with the Universe properties and bubble evolution [29]. In
order to study Eq. (4) it is convenient to represent the Higgs
field φ as a complex scalar field φ ¼ φ1 þ iφ2. The
“Mexican hat” Higgs potential W ≡Wðφ1;φ2Þ is shown
in Fig. 3(a). The false vacuum state corresponds to φ ¼ 0

while two real vacuum states are located at φ� ¼
� ffiffiffiffiffiffiffiffiffi

η=G
p ≡�s [11]. These two states correspond to two

minima of Higgs field potential. The state φ ¼ 0 is unstable
vs fluctuations, while the states φ� are stable. The behavior
of a polariton system governed by Eq. (4) can be easily
understood if we consider small perturbations ~φ1;2 defined
by φ1 ¼ φ0 þ ~φ1, φ2 ¼ ~φ2 ( ~φ1;2 ≪ φ0) where φ0 is the
ground state solution of Eq. (4).
Taking into account the global Uð1Þ symmetry proper-

ties of the Lagrangian for Eq. (4) it is possible to conclude
that the field ~φ1 possesses a mass whereas the field ~φ2 is
massless and represents a Nambu-Goldstone boson. Here
we focus on φ1 field properties. In order, Eq. (4) supports a
classical (static) kink or black soliton solution

φ0ðX; YÞ ¼ �s tanh½Θ�; ð6Þ

where Θ≡ ffiffiffi
η

p ðX − X0 þ Y − Y0Þ=2. In Eq. (6) the
parameters X0, Y0 characterize the position of the envelope
minimum. At X; Y → ∞ the soliton solution in Eq. (6) ap-
proaches two vacuum states φ�. Combining Eqs. (5) and (6)
we obtain a condition: Nin ≃ LZðL2η − 8 lnfcosh½ ~L�gÞ=G,
that determines the critical number of particles required for a
kink formation. Here we assume that X0 ¼ Y0 ¼ L=2 and
introduce the dimensionless parameter ~L ¼ L

ffiffiffi
η

p
=2.

The parameter s ¼ ffiffiffiffiffiffiffiffiffi
η=G

p
in Eq. (6) plays a crucial role

in the field theory, see, e.g., Ref. [11]. In the limit s ≫ 1,
the soliton can be treated as a classical object. We consider

(a) (b)

FIG. 2 (color online). (a) Isofrequency surface for Bragg
exciton polaritons in the linear dissipationless regime at g≃ 0,
γ0 ≃ 0. Values of QX;Y;Z are given in

ffiffiffi
η

p
units. The effective

masses of polaritons in the structure are m∥ ≈ 5.6 × 10−35 kg,
m⊥ ≈ −0.8 × 10−36 kg. (b) Normalized probability density φ2

xw

vs spatial R and Z variables; ðR − R0Þ2 ¼ ðX − X0Þ2 þ
ðY − Y0Þ2. The parameters are: Δ ¼ 0.031, Z0 ¼ LZ=2,
R0 ¼ LR=2 ¼ L=

ffiffiffi
2

p
, LZ ≈ 0.012, L ≈ 0.076, η ≈ 4.45 × 104,

Nin ≈ 3.43 × 104. Values of the parameters (except Δ) are taken
the same as for Fig. 3 and are discussed below.
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the oscillon field as a small perturbation for the φ function
in Z direction. In order to find it, we represent φ in the
form φ ¼ φ0 þ μδφ ( ~φ1 ≡ μδφ), where the oscillon sol-
ution δφ ¼ δφðX; YÞ cos ð ~ΩðZ − Z0ÞÞ characterizes lateral
excitations; we assume that the condition jφ0j ≫ μjδφj
is fulfilled. Substituting φ and Eq. (6) in Eq. (4)
and linearizing it with respect to δφ, we obtain a
Schrödinger-like equation F̂δφðX; YÞ ¼ ~Ω2δφðX; YÞ for
eigenstates (δφ) and eigenvalues ( ~Ω) of the operator
F̂¼−∇2

∥þ2η−3ηsech2½Θ�. For ~Ω2 ¼ 3η=2 the first excited
state of the system is given by δφðX;YÞ¼stanh½Θ�sech½Θ�.
The classical kink state φ0 becomes perturbed due to low

amplitude oscillations (fluctuations) of the Higgs field φ,
the state being called “Higgs oscillon”.
In Fig. 3(b) the perturbed kink φ2 as a function of X and

Y at fixed “time” coordinate Z is plotted. At X → ∞ and
Y → ∞ the black soliton solution approaches two vacuum
states φ2

� as the shadow plane in Fig. 3(b) shows. Taking
into account the finite size of the lattice in X and Y
directions and the periodicity of the system in the Z
direction (with a period of 2π= ~Ω) we consider the oscillon

formation in a 3D box LX × LY × LZ. We write down the
condition η ¼ 2π2n2=3L2

Z, which is relevant to the nor-
malized energy η≡ EnV=g. The square of a quantized
Higgs oscillon amplitude δφ2 is plotted in Fig. 3(c) for the
ground state ðn ¼ 1Þ.
Let us note that the energy density J of the polariton

Higgs field is J ¼ 1
2
½ð∂ZφÞ2 þ ð∂XφÞ2 þ ð∂YφÞ2 − ηφ2 þ

ðG=2Þφ4�, while the energy density J0 of the kink is
J0 ¼ 1

2
½ð∂Xφ0Þ2 þ ð∂Yφ0Þ2 − ηφ2

0 þ ðG=2Þφ4
0�. Since

jφ0j ≫ μjδφj, J approaches J0. Integrating J0 over the
space coordinates X, Y we obtain the energy density in the
Z direction as

E0;Z ¼ η

3G
ð2 − 3 ~L2 þ 8 ln ½cosh½ ~L�� − 2sech2½ ~L�Þ: ð7Þ

The energy density of “vacuum” states φ� is
J� ¼ 1

2
½−ηφ2

� þ ðG=2Þφ4
��. Hence the energy density in

the Z direction is E�;Z ¼ − ~L2η=G. Taking into account
Eq. (7) one can introduce the effective mass of the kink
M ∼ E0;Z − E�;Z. Physically static dark soliton behaves as
a relativistic particle with energy E ¼ Mc2 at rest, where c
is the speed of light, cf. [29]. Note that M is dependent on
the size of the lattice structure.
Topological Schrödinger cat states.—Now let us

discuss the Higgs field properties beyond the mean field
theory. The quantum tunneling between states φ�
representing two minima of the Higgs potential,
Fig. 3(a) is responsible for creation of field bubbles in
the gauge field theory [11]. The tunneling leads to
formation of the superposition (Schrödinger cat) states

jψ�i ¼ ½1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ e−2s

2Þ
q

�ðjϕþi � jϕ−iÞ, where jϕþi and
jϕ−i are macroscopically distinguishable Glauber’s coher-
ent states associated with fields ϕþ and ϕ−, respectively.
The “size of the cat” can be estimated via the overlap
integral of the states jϕ�i as ζ ¼ 1=hϕþjϕ−i ¼ e2s

2

[30].
The parameter ζ becomes larger in the limit s ≫ 1 which is
indeed experimentally achievable in realistic structures
[Eq. (6)]. Notably, the properties of states jψ�i are highly
nonclassical, see e.g., Ref. [31]. In particular, due to the
interference, a fringe pattern occurs between Gaussian bells
representing states jϕ�i in the Wigner function approach.
The negativity of this function that is inherent to the states
jψ�i is responsible for that. While the states jψ�i involve a
macroscopically large number of particles they can be used
for the generation of macroscopic entangled states (cf. [32])
of exciton polaritons in Bragg superlattices. The computa-
tional qubit states j0i and j1i can be associated with
mutually orthogonal states as j0i ¼ jψþi and j1i ¼ jψ−i,
cf. Ref. [33]. Alternatively, if the parameter e−2s

2

vanishes
rapidly, the topological states jϕþi and jϕ−i for the
quantum Higgs field itself may be considered as computa-
tional qubit states j0i and j1i [34]. In this case qubit
operations presume implementation of linear circuit

FIG. 3 (color online). (a) Schematic of Higgs potential W
versus φ1 and φ2 variables, (b) perturbed Higgs field (black
soliton) φ2, and (c) perturbation δφ2 versus dimensionless spatial
coordinates X and Y. The parameters are X0 ¼ Y0 ¼ L=2,
Z ¼ Z0 ¼ π=2 ~Ω, μ ¼ 0.2, Lx ¼ Ly ¼ 1.5 μm, Lz ¼ 2 μm,
g=V ¼ 1.58 μeV, E1 ¼ 70 meV. Upper shadow plane
ϕ2 ¼ η=G in (b) indicates vacuum state solution.
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networks and conditional photon detection [35].
Fortunately, such circuits can be designed using well
developed semiconductor technologies, [36,37].
In conclusion, we propose the realization of quantum

HMMs in a periodic planar semiconductor Bragg mirror
with embedded QWs. We demonstrate mapping of the
polaritonic GPE onto a nonlinear GLH equation, which
exhibits physically nontrivial features. In the linear case,
i.e., for noninteracting LB polaritons, we obtain a polariton
X-wave solution that is reminiscent of a nondiffractive
(spatially localized) matter wave packet. We predict for-
mation of kink-shaped states for weakly interacting polar-
itons. Small amplitude oscillations (oscillons) occur in a
perturbed polariton Higgs field due to fluctuations. Going
beyond the mean field theory, we obtain a Schrödinger cat
state as a macroscopic superposition of two vacuum states
φ�. Polaritonic nonlinear HMMs have a high potentiality
for the simulation of fundamental cosmological processes.
We are confident that the dissipative nature of exciton
polaritons should not be a major obstacle for observation of
the proposed coherent phenomena in state-of-the-art semi-
conductor Bragg structures. We note that due to the short
polariton lifetime, the coherent effects discussed in this
Letter are transient in a sense. In particular, the coherent
dynamics of polariton liquids may be accessed by coherent
methods of time-resolved spectroscopy, e.g., pump-probe
spectroscopy.
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