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Supplemental material: Hyperbolic Metamaterials
with Bragg Polaritons

I. BRAGG MIRROR MODEL. EIGENMODE EQUATION

We consider a semiconductor Bragg mirror schematically shown in Fig. 1. The structure consists of the periodic
array of the alternating dielectric layers with quantum wells (QWs) placed in the centres of one type of the layers. To
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FIG. 1. Schematic image of the structure. Infinite Bragg mirror infiltrated with quantum wells.

obtain the dispersion equation for the eigenmodes of this structure we use the transfer matrix technique1. A general
dispersion equation for the periodic structure can be written as

cos(KD) =
1

2
Tr(T̂ ),

where K is the Bloch wavevector, D is the period of the structure, and T̂ is the transfer matrix across the period of
the structure. In the case of our structure, T̂ can be written as a matrix product

T̂ = T̂d1/2T̂QW T̂d1/2T̂d2
,

where T̂d1/2 is the transfer matrix for the propagation over the half of the first layer. Further on we assume the
s-polarization of light (the electric field has no component, perpendicular to the layer interfaces). In this case the
transfer matrix is given by

T̂d1/2 =

(

cos(kz1d1/2)
ik0

kz1

sin(kz1d1/2)
ikz1

k0

sin(kz1d1/2) cos(kz1d1/2)

)

,

where k0 = ω/c, and kz1 =
√

n2
1k

2
0 − k2

ρ, and kρ = (kx, ky) is the in-plane wavevector component; n1 is the refractive

index of the first layer. The transfer matrix for the second layer is analogous.
The transfer matrix from the exciton QW can be written in the form

T̂QW =

(

1 0
2kzr
k0t

1

)

,

where r and t are the reflection and transmission coefficients for the QW which in the case of the s-polarization are
given by

r =
in1k0Γ0/kz1

ω′
X − ω − i(Γ + n1k0Γ0/kz1)

, (1)

t = 1 + r, (2)

where Γ0 is the exciton radiative decay rate, ω′
X is the renormalized exciton frequency which in the approximation

of infinitely thin QWs could be set equal to the exciton frequency ωX , and Γ is the nonradiative exciton decay rate.
Finally, we obtain the following dispersion equation:

cos(KD) = cos(kz1d1) cos(kz2d2)−
1

2
sin(kz1d1) sin(kz2d2)

(

kz1
kz2

+
kz2
kz1

)

+
ir

t

(

sin(kz1d1) cos(kz2d2) + sin(kz2d2)

[

kz1
kz2

cos2(kz1d1/2)−
kz2
kz1

sin2(kz1d1/2)

])

. (3)
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This equation implicitly defines the polariton eigenfrequency ω(K, kx, ky). In the absence of losses, for the fixed
value of K and kρ Eq. (3) has infinite number of solutions, corresponding to the infinite number of photonic bands in
photonic crystal. We however focus at the four solutions, corresponding to the coupling of exciton to two photonic
bands which have band centre frequencies closest to the exciton resonance.

In our calculations, we have considered the GaN/Al0.3Ga0.7N Bragg mirror with thin In0.12Ga0.88N QWs in the
centres of the GaN layers as a model system. The second photonic band gap centre ~ωB was tuned to 3 eV. The
refractive indices of the layers are n1 = nGaN = 2.55, n2 = nAlGaN = 2.15 and the thicknesses of the layers d1 = 64.8
nm, d2 = 115.3 nm. The radiative decay rate ~Γ0 of the InGaN quantum well exciton is 2 meV and the nonradiative
rate ~Γ is 0.1 meV. The exciton energy ~ωX is tuned to 2.95 eV. The dispersions of the eigenmodes for the given
parameters defined by Eq. (3) are shown in Fig. 2.
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FIG. 2. Dispersion surface for the GaN/Al0.3Ga0.7N Bragg mirror with In0.12Ga0.88N QWs placed in the centres of the GaN
layers. Refractive indices of the layers: nGaN = n1 = 2.55, nAlGaN = n2 = 2.15, refractive index contrast of QWs is neglected.
The thicknesses of the layers are d1 = 64.8 nm, d2 = 115.3 nm. The QW exciton frequency is tuned to the upper band edge of

the second photonic band, ~ωX = 2.95 eV.

In order to obtain the analytical approximations for the eigenenergy and effective mass tensor of the lower polariton
branch we first derive the band gap width. We take into account, that the even photonic band gaps are degenerate
in the quarter-wavelength Bragg mirror, where n1d1 = n2d2. Introducing the parameter ξ = n1d1/n2d2 and setting
K = 0,kρ = 0,Γ0 = 0 we then expand Eq. (3) over the small parameters (ξ − 1) and δ = ω/ωB − 1, where
ωB = 2πc/(n1d1 + n2d2) is the centre of the second photonic band gap. Expansion up to the second order with
respect to δ and (ξ − 1) gives us the second order algebraic equation for δ which has the solutions

δ̃ = ±1

2

(n2 − n1)(1− ξ)

(n1 + n2)
,

which correspond to the value of the half-width of the band gap ΩB = ωB|δ̃| ≈ 2π × 12.1 THz.

In the absence of QWs two resulting photonic bands have different symmetry properties. Namely, the electric field
of the lower band in the Γ point is symmetric in each layer and for the upper band it is antisymmetric at the band
edge. Thus, in the vicinity of the Γ point the upper band is not coupled to the excitonic mode and there are almost
bare flat excitonic mode and photonic mode which can be seen in Fig. 2.

Now we concentrate on the lower photonic mode. To obtain the analytical approximations for the effective masses
we have to expand Eq. (3) for K,kρ ≪ 1/D, and for Γ0 = 0 and for the frequencies in the vicinity of the band edge
ω ≈ ωB − ΩB. We also should perform the expansion over small ξ − 1. We finally obtain the expression for the
photonic branch dispersion:

ωph1 = ωB − ΩB +
1

2

(n2
1 − n1n2 + n2

2)

n2
1n

2
2

c2

ωB − ΩB
k2ρ −

1

2

n1n2

π2(n1 + n2)2
(ωB − ΩB)ωB

ΩB
D2K2.
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From this equation we can obtain the effective mass tensor components

mph⊥ = − ~ΩB

(ωB − ΩB)ωBD2

π2(n1 + n2)
2

n1n2

≈ −0.4× 10−33g, (4)

mph‖ =
~(ωB − ΩB)

c2
n2
1n

2
2

(n2
1 − n1n2 + n2

2)
≈ 2.8× 10−32g. (5)

Finally, in order to obtain the polariton dispersion, we first set K = 0,kρ = 0 and expand the Eq. (3) in the vicinity
of ω = ωB − ΩB but now for Γ0 6= 0 and for ω′

0 = ωB − ΩB . As a result, for the value of the Rabi splitting ΩP we
obtain:

ΩP =

√

n2

(n1 + n2)π
Γ0(ωb − ΩB).

To obtain the effective mass of lower polariton branch we have to expand Eq. (3) in the vicinity of ω = ωb−ΩB−ΩP

for the small K, kρ which gives the conventional result for the low-branch polariton masses in zero detuning case2:

m⊥ = 2mph⊥ ≈ −0.8× 10−33g, (6)

m‖ = 2mph‖ ≈ 5.6× 10−32g. (7)

In Fig. 3 we show that the obtained analytical expressions are in good agreement with the numerical dispersion
relations in the vicinity of the band edge. Thus, the effective mass approximation in the region |KD| < 0.1 and
|kρD| < 0.5 is fulfilled.
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FIG. 3. Dispersion characteristics calculated numerically solving Eg. (3) (solid red lines) and by using effective mass
approximation (dashed blue lines) for the lower polariton branch for (a) – kρ = 0 and (b) – K = 0.

II. GROSS-PITAEVSKII EQUATION FOR BRAGG POLARITONS

We consider only the lowest polariton branch and derive the Gross-Pitaevski equation for the polariton coherent
state introducing the kinetic energy operator

Ĥ0 = ~ω(i~
∂

∂z
, i~

∂

∂x
, i~

∂

∂y
).

The analytical expression for the kinetic energy operator is available only within the effective mass approximation,
which holds for kρ,K ≪ π/D and yields
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Ĥ0 = ~ (ωB − ΩB − ΩP ) +
~
2K2

2m⊥
+

~
2k2ρ
2m‖

. (8)

Thereafter we will omit the constant energy E0 = ~ (ωB − ΩB − ΩP ). We now obtain the Gross-Pitaevskii equation
for the lover polariton branch P1 without any loss of generality. The nonlinear term in the Hamiltonian written in
k-space is given by

Vnl =
6Eb a

3
bX

4
1 (D/dQW )

V

∑

k1,k2,q

P†
1,k1+qP

†
1,k2−q,P1,k1

P1,k2

=
g0
2
X4

1

∑

k1,k2,q

P†
1,k1+qP

†
1,k2−qP1,k1

P1,k2
, (9)

where X1 is the excitonic Hopfields coefficient for the lowest polariton branch which in the case of zero-detuning and
KD, kρD ≪ 1 can be approximated as X1 ≈ 1/

√
2. Then, if in the reciprocal space nonlinear potential is wavevector

independent, in the real space the potential may be approximated by a delta-function Vnl(|r− r′|) = gδ(r− r′), where
g = g0V X4

1 .
Then we introduce the bosonic field operator

Ψ̂ ≡ Ψ̂P1
(r, t) =

1√
V

∑

k

P1(k)e
ikr−iωkt (10)

that obeys the commutation relations:

[Ψ̂(r), Ψ̂†(r′)] = δ(r − r′), (11)

and all other commutators are zero. The Hamiltonian of the system in the real space reads

Ĥ =

∫

d3rΨ̂†(r)Ĥ0Ψ̂(r) +
g

2

∫

d3rΨ̂†(r)Ψ̂†(r)Ψ̂(r)Ψ̂(r). (12)

We then apply the commutation relations to obtain

i~
∂Ψ̂

∂t
= Ĥ0Ψ̂ + gΨ̂†Ψ̂Ψ̂. (13)

Finally, we assume that there is a macroscopic occupation in the ground state of P1. Next, we use mean-field ap-
proach to replace the corresponding polariton field operator Ψ̂(r) by its mean value 〈Ψ̂(r)〉 ≡ Ψ(r), which characterizes
the low branch polariton wave function3. We obtain a governing Gross-Pitaevskii equation for Ψ(r)

i~
∂Ψ

∂t
=

[

− ~
2

2m‖
∆‖ −

~
2

2m⊥

∂2

∂z2
+ g|Ψ|2

]

Ψ.
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