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We predict a strong enhancement of the critical temperature in a conventional Bardeen-Cooper-
Schrieffer (BCS) superconductor in the presence of a bosonic condensate of exciton polaritons. The effect
depends strongly on the ratio of the cutoff frequencies for phonon and exciton-polariton mediated BCS
superconductivity, respectively. We also discuss a possible design of hybrid semiconductor-superconductor
structures suitable for the experimental observation of such an effect.
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Introduction.—There have been enormous efforts to real-
ize superconductivity at higher temperatures, especially in a
formsimilar toBCS superconductivity [1],which involves the
formation of Cooper pairs. In the search of high Tc super-
conductivity, it is generally agreed that there are two main
ways to achieve high Tc: (a) by discovering or creating a
system where the mediators (phonons or other excitations) of
Cooper pairing have high characteristic energies (higher then
the typical Debye scale ωD found in BCS metals) and (b) by
increasing the coupling strength of the mediators with
electrons [2]. However, increasing the coupling strength
may lead to lattice instabilities [3], and materials with higher
Debye energy do not necessarily have larger coupling con-
stant. In this context, since the 1970s, special attention has
been paid to the out-of-thermal equilibrium systems, where
the strength of electron-electron couplingmay bemediated by
crystal excitations other than phonons. In particular, a lot of
works were devoted to the exciton-mediated superconduc-
tivity [4,5]. While there is no unambiguous experimental
evidence for the exciton-mediated superconductivity reported
until now, recently, the similar phenomenon of light-induced
superconductivity has been discovered [6,7]. In these experi-
ments, light serves for the generation of crystal excitations
similar to excitons that help electron-electron pairing.
In the last decade, several theoretical proposals on the

superconductivity mediated by a Bose-Einstein condensate
of excitons (exciton polaritons) have been published
[2,8,9]. These proposals are based on tremendous progress
in the experimental studies of bosonic condensates of
exciton polaritons at elevated temperatures [10]. These
studies pave way to the observation of superconductivity in
semiconductor structures under optical pumping.
While the light- or exciton-mediated superconductivity is

the focus of interest now, it is yet far from being clear what

kind of material system would be the most suitable for the
observation of such phenomena, especially at high temper-
atures. In the present Letter, we show a high potentiality of
hybrid superconductor-semiconductor systems, where the
interplay of a conventional phonon-mediated BCS and the
superconductivity mediated by an excitonic condensate may
lead to a sharp increase of Tc. Recent experiments [7] also
indicate higher superconducting temperatures when super-
conductivity is light induced. Our setup is, however, very
different from experimental systems of [6,7], and we do not
consider short-time superconductivity as in these experiments.
We develop a simple model illustrating how our

mechanism of achieving high Tc would work. We also
propose a specific experimental setup with a superconduc-
tor (SC)—quantum wells (QWs) heterostructure embedded
in a semiconductor microcavity shown in Fig. 1. In such a
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FIG. 1. The diagram of a structure suitable for observation of
the interplay of phonon- and exciton (bogolon)-induced super-
conductivity. A superconducting ring is deposited around pillar
semiconductor microcavity. DBRs denote distributed Bragg
reflectors. The condensate of polaritons is excited by a laser (a).
View from the top (b).
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setup, the combined effect of the phonon coupling in
conventional BCS superconductors and the light-induced
electron-electron coupling mediated by a bosonic conden-
sate of exciton polaritons should be realized. We revisit the
Bose-Fermi system considered in [8,11], but take into
account two types of bosonic excitations instead of one: the
“fast” bogolons resulting from density fluctuations of the
polaritons in the polaritonic Bose-Einstein condensate
(pBEC) [8,11] and the “slow” acoustic phonons of the
metal plate. By generalizing Gor’kov equations [12] for this
case, we derive critical temperature, which can be high due
to interference effects of the two interactions at long
distances and strongly depends on relative sizes of char-
acteristic cutoff frequencies for phonons and bogolons (the
excitations of the pBEC).
There are several significant advantages of our setup,

where superconductivity is assisted by light, over typical
suggestions from the past [4]. The seminal work [4] is
based on the original Ginsburg ideas of the excitonic
superconducting mechanism [13]. A thin metallic layer
on a semiconductor surface was suggested as a possible
experimental setup for realization of excitonic-mediated
coupling between electrons [4]. It was shown that in order
to see any results in Tc, the excitonic coupling constant λex
should be at least of the order of 0.2 or 0.3. These values of
λex turned out to be very challenging from an experimental
point of view and have still not been achieved (see also
Ref. [14] and references therein).
In our setup, the BCS coupling constant and therefore the

“bare” critical temperature Tc0 of the SC are those of a
well-known conventional BCS superconductor (along with
its characteristic Debye frequency ωD). The great advan-
tage of the exciton-polariton-induced coupling is that the
coupling strength can be controlled experimentally; e.g., it
was shown the coupling is proportional to polariton density
[8,11]. Moreover, the cutoff frequency of the polaritons ωB
can be also controlled and is defined by the microcavities’
properties. As we demonstrate below, the control of the two
parameters can lead to a notable increase of Tc in
comparison with Tc0. In our structure, any increase of
the measured Tc in comparison with the reference temper-
ature Tc0 will confirm the interplay of the two coupling
mechanisms.
Model Hamiltonian.—We develop a simple model for the

setup in Fig. 1. The setup comprises a semiconductor
microcavity with embedded QWs and a 2D layer of a
conventional SC separated from the wells by a thin barrier.
The bosonic condensate of exciton polaritons is generated
by a continuos wave (CW) pulse in the quasistationary
regime, which is a well-established technique nowadays
[15–17]. Its density N0 can be controlled by the pump
intensity. The diameter of the total structure could be around
50 μm or less with the micropillar diameter of 20–30 μm.
Importantly, the suggested experimental geometry

and structure design allow for the strong reduction of

light absorption in the superconducting ring. The light
absorption usually leads to an unwanted increase of the
effective temperature of the electron gas and therefore
hampers the experiments. We chose the quasi-2D geometry
since electron-exciton interaction that is crucial for the
exciton-mediated superconductivity is then maximized.
The Hamiltonian reads

H ¼ H0
e þH0

p þHe−e þHe−p þHp−p þHe−ph; ð1Þ
where H0

e, H0
p are the electron and polariton kinetic terms

H0
e ¼

Z
ψ†
αðxÞ

�
−

1

2me
∇2 − μe

�
ψαðxÞdx;

H0
p ¼

Z
ϕ†ðRÞ

�
−

1

2mp
∇2 − μp

�
ϕðRÞdR: ð2Þ

Here, the electron field operators are

ψαðxÞ ¼
1ffiffiffiffi
A

p
X
k

Ψk;αðxÞck ¼
1ffiffiffiffi
A

p
X
k

eik·xηack;

ψ†
αðxÞ ¼ 1ffiffiffiffi

A
p

X
k

Ψ�
k;αðxÞc†k ¼

1ffiffiffiffi
A

p
X
k

e−ik·xηac
†
k; ð3Þ

where ηa are the two spin functions, ck, c
†
k are fermionic

creation and annihilation operators, and A is the area of
the metallic plate. Polaritons are described by the field
operators

ϕðRÞ ¼ iffiffiffiffi
A

p
X
P

eiP·RbP;

ϕ†ðRÞ ¼ iffiffiffiffi
A

p
X
P

e−iP·Rb†P; ð4Þ

where P and R are the polariton’s center of mass momen-
tum and the polariton’s center of mass coordinate, and bP
and b†P are bosonic annihilation and creation operators.
The interaction terms in Eq. (1) include electron-electron

interaction

He−e ¼
Z

ψ†
αðxÞψ†

βðx0ÞVcðx − x0Þ

× ψαðxÞψβðx0Þdxdx0; ð5Þ
electron-polariton interaction

He−p ¼
Z

ψ†
αðxÞψαðxÞVe−pðx −RÞ

× ϕ†ðRÞϕðRÞdxdR; ð6Þ
interaction between polaritons

Hp−p ¼
Z

ϕ†ðRÞϕðRÞVp−pðR −R0Þ

× ϕ†ðR0ÞϕðR0ÞdRdR0; ð7Þ
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and electron-phonon interaction

He−ph ¼ −e
Z

ψ†
αðxÞψαðxÞVe−phðx − x0Þ

× ρðx0Þdxdx0: ð8Þ

Here, Vcðx − xÞ is the screened Coulomb repulsion poten-
tial, and Vp−pðR −RÞ is contact interaction between the
exciton- polaritons; electron-polariton Ve−pðx −RÞ and
electron-phonon Ve−phðx − x0Þ potential can be taken as
contact ones (see Supplemental Material [18]), ρðxÞ in the
background surface charge density of the lattice.
After performing the standard Bogoliubov transforma-

tion on the exciton-polariton condensate, we arrive to the
effective Hamiltonian, which takes into account the inter-
action of electrons with bogolons (elementary excitations
of the exciton-polariton condensate)

H ¼ H0
e þHe−e þHe−bog þHe−ph: ð9Þ

Here, we have

He−bog ¼ γ1

Z
ψ†
αðxÞψαðxÞϕ1ðxÞdx;

He−ph ¼ γ2

Z
ψ†
αðxÞψαðxÞϕ2ðxÞdx; ð10Þ

where ϕ1ðxÞ is the bosonic field operator of bogolons,
ϕ2ðxÞ is the field operator of phonons, and γ1ð2Þ is the
electron-bogolon (electron-phonon) coupling constant (see
Supplemental Material [18]).
Effective attraction and gap equation.—We now study

the system of electrons with the effective bogolon- and
phonon-mediated attractions (the Coulomb interaction is
neglected for the moment). The effective Hamiltonian will
then have two contributions (j ¼ 1, 2)

Heff
e−e ¼ −

Vj

2

Z
dxψ†

αðxÞψ†
βðxÞψβðxÞψαðxÞ; ð11Þ

where V1 ¼ ðγ21 þ γ22Þ and V2 ¼ γ22 have different ranges in
momentum space:V1 is constant for jξ0 − ξj < ωB, and zero
otherwise, while V2 is constant for ℏωB< jξ0−ξj<ℏωD
(with ξ, ξ0 being energies counted from the Fermi energy as
usual in the BCS theory). Here, we assumed the inequality
ωB < ωD for the following reason: the characteristic energy
cutoff for polaritonic condensates is expected to be of the
order of 100 K in high-quality inorganic microcavities,
determined by the Rabi splitting (which is tuneable and
depends on the microcavity parameters). For a conventional
weak-coupling superconductor (e.g., Al), we expect the
Debye energy to be of the order of 400 K, which is larger
than ℏωB and much larger than kBTc ≈ 1 K.

In the mean-field theory, the Hamiltonian (11) becomes

Heff
e−e ¼ −

Z
dxfΔ�

jðxÞψ↑ðxÞψ↓ðxÞ

þ ψ†
↓ðxÞψ†

↑ðxÞΔjðxÞg; ð12Þ
where we introduced two gap functions corresponding to
two different regions of interactions V1 and V2

ΔjðxÞ ¼ Vjhψ↓ðxÞψ↑ðxÞi: ð13Þ
We proceed in the standard way [19,20] in deriving the

gap equation (see Supplemental Material [18]), in some
ways similar to the case of a two-band superconductor [21].
The final equations for Δ1 and Δ2 can be written in the
following matrix form:

�Δ1

Δ2

�
¼

� ðλ1 þ λ2ÞI1 λ2I2
λ2I1 λ2I2

��Δ1

Δ2

�
; ð14Þ

where

I1 ¼
Z

ℏωB

0

dξ

ðξ2 þ Δ2
1Þ

1
2

tanh

�ðξ2 þ Δ2
1Þ

1
2

2kBT

�
;

I2 ¼
Z

ℏωD

ℏωB

dξ

ðξ2 þ Δ2
2Þ

1
2

tanh

�ðξ2 þ Δ2
2Þ

1
2

2kBT

�
; ð15Þ

λ1 ¼ Nð0Þγ21 is the effective coupling constant due to
bogolons, and λ2 ¼ Nð0Þγ22 is the effective coupling con-
stant due to phonons, Nð0Þ ¼ mpF/ð2π2Þ being the density
of states on the Fermi surface in 2D. One should note that
Δ1 and Δ2 are not two separate gaps but just two constants
which define one frequency dependent gap function.
Critical temperature.—The critical temperature Tc is

obtained by linearizing the gap equation (14) by requiring
T → Tc, Δ → 0

���� 1 − ðλ1 þ λ2ÞI1 −λ2I2
−λ2I1 1 − λ2I2

���� ¼ 0: ð16Þ

This is the determinant of the matrix in Eqs. (14) for the
eigenvalue equal to unity. In the limit T → Tc, Δ → 0,
the integrals I1 and I2 can be expressed in terms of the
digamma functions Ψ

I1 ¼ Ψ
�
1

2
þ ωB

2πTc

�
−Ψ

�
1

2

�
≈ ln

�
2eγωB

πkBTc

�
;

I2 ¼ Ψ
�
1

2
þ ωD

2πTc

�
−Ψ

�
1

2
þ ωB

2πTc

�
≈ ln

�
ωD

ωB

�
: ð17Þ

Here, the approximate values are valid for kBTc ≪ ℏωB <
ℏωD, and γ is Euler’s constant. The critical temperature is
then

kBTc ≈ 1.13ℏωB exp

�
−

1

λ1 þ λ�2

�
; ð18Þ
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where λ�2 is the logarithmically renormalized (enhanced)
interaction constant due to phonons

λ�2 ¼
λ2

1 − λ2 ln
ωD
ωB

: ð19Þ

One should note that in the limit ℏωD > ℏωB > kBTc, we
would obtain a similar to Eq. (18) expression for the critical
temperature but with ωB ⇄ ωD, and λ1 ⇄ λ2.
We now estimate the effect of Coulomb interaction along

the lines of [22] for weak coupling (one could also do it as
in [23] for strong coupling theory). We extend the Gorkov
equations for the case of three interacting constants (the
third constant M being effective Coulomb interaction with
the cutoff frequency ωC ¼ EF/ℏ). Introducing μ ¼ Nð0ÞM,
we get a similar to Eq. (16) (see also Supplemental Material
[18], Sec. III)

1 − ðλ1 þ λ2ÞI1 − λ2I2 þ λ1λ2I1I2

þ μ�ðI1 þ I2Þ − λ1μ
�I1I2 ¼ 0; ð20Þ

where μ� ¼ μ/½1þ μ lnðωC/ωDÞ� is the logarithmically sup-
pressed Coulomb interaction as usual. We solve Eq. (20)
numerically as well as analytically, using the approximate
expressions for the integrals (18). The analytical expression
is kBTc≈1.13ℏωBexp½ð−1/ðλ1þλ2−μ�Þ�.. and is valid in
the limit EF ≫ ℏωD ≫ ℏωB ≫ kBTc. In Fig. 2, we present
the results for Tc for fixed λ2, μ� and different ωB-s
(1%, 10%, 25%, 50%, 90% and 99% of ℏωD). We take

λ2 ≈ 0.3 and μ� ≈ 0.14, which approximately correspond to
Al. One should keep in mind that the validity range of the
results is determined by the smallest frequency, in this
case ωB.
We see from Fig. 2 that even small λ1 can lead to a

substantial increase of the critical temperature Tc in
comparison to the bare one Tc0, provided the cutoff
frequency for bogolons ωB is of sizeable effect compared
to ωD. Since both parameters (λ1 and ωB) are tuneable, the
setup we suggest is very promising for obtaining super-
conductors with strongly enhanced critical temperature. We
note that our simple model should be derivable from the
strong coupling limit by approximating α2FðωÞ by two δ
functions at ωB and ωD. The procedure should result in
further suppression of Tc at large λ − s, but would,
however, not change our main conclusions.
In Fig. 3, we present the dependence of the critical

temperature Tc, calculated by the direct numerical solution
of the gap equation exciton-polariton interaction potential
taken from Ref. [11] with the additional phononic coupling
(black curve), and by formula (18) (red curve)in the limit
ωB > ωD for a specific two-layered heterostructure, where
the superconducting layer is an aluminium sheet, while
pBEC is induced in the GaN layer. Parameters used for the
calculation are taken from Ref. [11]. The difference
between these results may come from nonproper derivation
of the exciton-polariton cutoff frequency ωB in both cases.
Conclusion.—We studied the superconducting critical

temperature of a hybrid system where Cooper pairing is
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FIG. 3. Critical temperature Tc of the two-layered structure of
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mediated by coupling to two types of excitations: the
Bogoliubov excitations of the condensate and the phononic
excitations of the metal plate. We show that the additional
coupling leads to a considerable enhancement of the critical
temperature. We propose a concrete experimental setup in
which superconductivity with the two couplings can be
realized and estimate the critical temperature for specific
realization of an Al superconductor coupled to a pBEC
from the GaN layer. Note that the chosen GaN/AlGaN
heterostructure allows for condensate stability up to the
room temperatures due to the high exciton binding energy
specific of the structure. Our model can be straightfor-
wardly generalized to the case of multiband superconduc-
tors, such as pnictides, for instance, with our main
conclusion about the dramatic increase of Tc remaining
qualitatively the same. For any specific structure, a detailed
calculation accounting for all terms in the Hamiltonian
(9) would be needed; however, the interplay between
phonon and exciton superconductivity will remain impor-
tant and will still result in the enhancement of Tc.
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