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Manifestations of quantum interference effects in macroscopic objects are rare. Weak localization is one
of the few examples of such effects showing up in the electron transport through solid state. Here, we show
that weak localization becomes prominent also in optical spectroscopy via detection of the electron spin
dynamics. In particular, we find that weak localization controls the free electron spin relaxation in
semiconductors at low temperatures and weak magnetic fields by slowing it down by almost a factor of two
in n-doped GaAs in the metallic phase. The weak localization effect on the spin relaxation is suppressed by
moderate magnetic fields of approximately 1 T, which destroy the interference of electron trajectories, and
by increasing the temperature. The weak localization suppression causes an anomalous decrease of the
longitudinal electron spin relaxation time T1 with magnetic field, in stark contrast with the well-known
magnetic-field-induced increase in T1. This is consistent with transport measurements, which show the
same variation of resistivity with magnetic field. Our discovery opens up a vast playground to explore
quantum magnetotransport effects optically in the spin dynamics.
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I. INTRODUCTION

The design of future spintronic and optospintronic devices
requires a detailed understanding of the correlation between
the electron conductivity and spin relaxation in prospective
material systems, such as semiconductors. The electron spin
relaxation in semiconductors depends strongly on whether
electrons are itinerant or localized [1,2]. Across the metal-to-
insulator transition (MIT), the spin relaxation changes as
dramatically as the conductivity [2,3]. Indeed, in the insulat-
ing phase, both conductivity and spin relaxation critically
depend on the overlap of thewave functions of donor-bound
electrons at low temperatures and on the number of delo-
calized electrons at higher temperatures. In the metallic
phase, in semiconductors without an inversion center, with
GaAs as a prototype system, the spin relaxation is governed
by spin-orbit coupling (Dyakonov-Perel mechanism) [4]
and, similarly to the conductivity, the spin relaxation
becomes suppressed by electron scattering events. The spin

relaxation rate is closely related to the electron diffusion
coefficient [5–7], so that charge transport phenomena are
generally expected to manifest also in spin relaxation
processes [8–11]. The situation becomes particularly
involved in the vicinity of the MIT, where quantum effects
become important [12,13].
While the mechanisms of electron spin relaxation in

semiconductors were largely clarified in theory back in the
1970s [14], for a long time, experiments could access the
electron spin dynamics only via the Hanle effect near zero
magnetic field. Since the 1990s, more advanced techniques
have become available, such as pump-probe methods
analyzing the Kerr (or Faraday) rotation [15,16] or polari-
zation-resolved photoluminescence [17–20], and elabo-
rated methods like resonant spin amplification [21,22],
spin noise spectroscopy [23–25], and spin inertia reorien-
tation [26]. Each of these tools has limitations related to the
achievable time resolution, the addressable time range, or
the applicable magnetic field. So far, access to the relation
between the electron diffusion and spin relaxation in the
vicinity of the MIT was hindered by experimental limi-
tations. Only recently was the pump-probe technique
extended to facilitate direct measurements of arbitrarily
long spin dynamics with picosecond time resolution across
a wide range of magnetic fields [27].
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On the other hand, the transport properties of semicon-
ductors that directly provide information about electron
diffusion are rather easily accessible in experiment. In weak
magnetic fields, the low temperature magnetoresistance is
negative due to the weak localization effect: The magnetic
field destroys the phase coherence of interfering paths and
increases the electron diffusion coefficient [28–35]. The spin-
orbit interaction has a pronounced impact on the low-field
magnetoresistance leading to positivemagnetoresistance, i.e.,
antilocalization, if the spin coherence of electrons is lost faster
than their phase [28]. Although weak localization or anti-
localization is expected to emerge in the spin dynamics
[13,36], it has not been identified in experiments so far.
In this paper, we demonstrate that weak localization

significantly slows down the itinerant electron spin relaxation
in the Dyakonov-Perel mechanism. Using the extended
pump-probe Faraday rotation technique, we study the longi-
tudinal electron spin relaxation time T1 as a function of
externalmagnetic field inn-dopedmetallic bulkGaAs.While
the classical theory [37] predicts an increase of T1 with
increasing field,mainly due to the cyclotronmotionof the free
carriers,we observe an anomalous decrease ofT1 inmoderate
fields B≲ 1 T. From transport measurements done on the
same samples, we observe that the negative magnetoresist-
ance is correlated with the anomalousmagnetic field depend-
ence of T1. We develop a theoretical model of the weak
localization effect in the spin relaxation of bulk semiconduc-
tors and find very good agreement between the calculations
and experimental data. Our results establish a strict relation
between the electron diffusion and spin relaxation in metallic
systems in the vicinity of the MIT. Thereby all-optical access
to weak localization is provided and a tool to probe locally
electron transport phenomena is developed.

II. EXPERIMENTAL DETAILS

The results are obtained on Si-doped GaAs samples with
electron concentrations of ne¼ 5.5×1014 cm−3 (2-μm-thick
layer grownby themolecular-beamepitaxy),3.7×1016 cm−3,
and 7.1 × 1016 cm−3 (140- and 170-μm-thick bulk wafers,
respectively).
For optical measurements, the samples are placed in the

variable temperature insert of a split-coil magnetocryostat
(T ¼ 2–25 K). Magnetic fields up to 6 Tare applied parallel
to the light propagation direction that is parallel to the sample
growth axis (Faraday geometry). The extended pump-probe
Kerr (Faraday) rotation technique is used to study the
electron spin dynamics. It is a modification of the standard
pump-probe Kerr (Faraday) rotation technique, where cir-
cularly polarized pump pulses generate carrier spin polari-
zation, which is then probed by theKerr (Faraday) rotation of
linearly polarized probe pulses after reflection (transmission)
from (through) the sample. Implementation of pulse picking
for both pump and probe beams in combination with a
mechanical delay line allows us to scan microsecond time

ranges with picosecond time resolution. Details of the
technique are given in Ref. [27].
Here, a Ti:Sapphire laser emits a train of 2-ps pulseswith a

repetition rate of 76 MHz (repetition period TR ¼ 13.1 ns).
The pump protocol uses a single pulse per excitation period.
The separation between these pulses is 80TR, 160TR, or
320TR in order to clearly exceed the characteristic time of
spin polarization decay. The sample with donor concen-
tration ne of 5.5 × 1014 cm−3 is studied in reflection
geometry (Kerr rotation) with the laser wavelength set to
819 nm, close to the donor-bound exciton resonance. The
samples with ne ¼ 3.7 × 1016 cm−3 and 7.1 × 1016 cm−3

are studied in transmission geometry (Faraday rotation),
with the laser wavelength set to 829 nm.
Magnetoresistance measurements were performed using a

standard four-terminal techniquewith a lock-in amplifier. The
measurement current (36 Hz, 100 μA) was checked not to
overheat the sample at the lowest temperature. Ohmic
contacts (with an almost T-independent resistance of about
100ohms)were obtained by annealing of indiumdrops on top
of the preliminary scratched wafer (10 min at 400 °C in
vacuum). A PPMS-9 cryostat and Cryogenics CFMS-16
system were used to set the temperature (2–40 K) and
magnetic field (up to 6 T). The magnetic field perpendicular
to the sample surface and current direction was swept from
positive tonegativevalueswith subsequent symmetrizationof
the data to compensate for inevitable contact misalignment.

III. RESULTS AND DISCUSSION

A. Experiment

The circularly polarized pump laser pulse creates spin
polarization along the magnetic field (Faraday geometry
Bkzk½001�), which can be detected by the delayed probe
laser pulse via Faraday rotation of its linear polarization.
Figure 1(a) shows the dynamics of the spin polarization for
exemplary values of the externalmagnetic fieldB ¼ 0, 2, and
6 T for the metallic sample with electron concentration
ne ¼ 3.7 × 1016 cm−3, which is somewhat above the MIT
threshold, nMIT

e ≈ ð1 − 2Þ × 1016 cm−3. The signal decays
monoexponentially with the longitudinal spin relaxation
time T1. It is seen from Fig. 1(a) that, as the magnetic field
grows, T1 first decreases, reaches a minimum, and then
increases. The nonmonotonic dependence of T1ðBÞ with a
minimum at about 1.5 T is further substantiated in Fig. 1(b)
by the solid spheres. The minimum in the T1ðBÞ dependence
becomes less pronounced for the sample with even higher
carrier concentration, while for the samples with lower donor
concentrations, belowMIT,T1 monotonically increases with
increasing B [the open circles in Fig. 1(b)].
To investigate the anomalous T1ðBÞ dependence further,

we perform measurements at different temperatures with the
results summarized in Fig. 2(a). Interestingly, the minimum
in the T1ðBÞ dependence at increased B (or, alternatively,
peak at B ¼ 0) is observed only at low temperatures
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T ≲ 14 K. Furthermore, with increasing temperature, the
minimum becomes less pronounced due to the decrease of
the zero-field T1 value. The decrease of T1 with magnetic
field or temperature increase is unexpected in view of
existing theories of free-electron spin relaxation in semi-
conductors [4,7,14,37]. This calls for a detailed modeling of
the spin relaxation process, which is presented below.

B. Model

InGaAs-like semiconductors, being in themetallic phase,
the spin relaxation is controlled by the Dyakonov-Perel
mechanism [4,14]: The electron spin precesses around the
effective, spin-orbit coupling-induced magnetic field, and
the spin precession is randomized by scattering events. The
spin dynamics is described in the framework of a kinetic
equation for the spin distribution function sk [4,37–39]:

∂sk
∂t þ Λkfskg þ sk ×Ωk ¼ Qfskg: ð1Þ

Each term in Eq. (1) has a transparent physicalmeaning. The
operatorΛk ¼ −ωc½k × ∂=∂k� describes the electron cyclo-
tron motion in the external magnetic field, where ωc ¼
eB=mc is the cyclotron frequency,m is the electron effective
mass, and e is the electron charge (the Zeeman splitting is
neglected). The term sk ×Ωk describes the precession of the
electron spin around the effective magnetic field arising due
to the spin-orbit interaction in a system with bulk inversion
asymmetry. The corresponding precession frequency Ωk is
cubic on the electron wave vector k. In the last term in
Eq. (1), Qfskg is the collision integral, i.e., the operator
describing the redistribution of electrons between different
states in k-space. It takes into account the electron scattering
and can be generally presented as

Qfskg ¼
X
k0
ðWkk0sk0 −Wk0kskÞ; ð2Þ

(a)

coherent
backscattering

(b) (c)

FIG. 2. Effect of weak localization on longitudinal spin
relaxation time T1. (a) Magnetic field dependence of T1 at
different temperatures. ne ¼ 3.7 × 1016 cm−3. The dashed lines
show fits to the experimental data with Eq. (5). Inset shows
relative variation of T1 with magnetic field for metallic samples
with different electron concentrations. (b) Scheme of constructive
interference of clockwise and counterclockwise electron paths,
starting at the same impurity and related by the time reversal
symmetry. The interference gives rise to the weak localization
effect by increasing the backscattering efficiency. (c) The inter-
ference between the same paths as in Fig. 2(b) is destroyed by the
magnetic field due to the extra phase acquired by the electron
traveling clockwise and counterclockwise.

(a)

(b)

FIG. 1. Longitudinal spin relaxation. (a) Dynamics of the
electron spin polarization (measured as Faraday rotation signal)
at different magnetic fields for the n-GaAs sample with
ne ¼ 3.7 × 1016 cm−3. (b) Magnetic field dependence of the
longitudinal relaxation time T1 for samples with different donor
concentrations. The arrow indicates the minimum in the T1ðBÞ
dependence. (a),(b) Temperature T ¼ 2 K.
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describing the balance between the processes where an
electron leaves the state with wave vector k0 and is promoted
to the state with wave vector k with the rate Wkk0 and vice
versa, accordingly. For the elastic scattering by the central
potential of ionized donors relevant for the studied system,
Wkk0 ¼ Wk0k, and relaxation of different angular harmonics
Ylmðϑk;φkÞ of the distribution function (ϑ and φ are the
angles of the wave vector) occurs independently [4]. Thus,
for the spin distribution sk ¼ δskYlmðϑk;φkÞ, the collision
integralQfδskYlmðϑk;φkÞg ¼ −τ−1l δskYlmðϑk;φkÞ, and it is
described by a set of relaxation times τl (l ¼ 1; 2; 3;…):

1

τl
¼

X
k0
Wk0k½1 − Plðcosϑk0 Þ�; ð3Þ

responsible for the relaxation of different angular harmonics
of the distribution function; PlðxÞ is the corresponding
Legendre polynomial. Note that τ1 ¼ τp describes the
momentum relaxation of electrons. In a classical approach,
these relaxation times are independent of the magnetic field.
The electron scattering slows down the spin relaxation

due to randomization of the spin precession around the
spin-orbit magnetic field: Between the scattering acts,
the electron spin rotates by a small angle ∼Ωkτ (τ is the
characteristic relaxation time), while the scattering proc-
esses change the wave vector k and, correspondingly, the
spin precession frequencyΩk, reducing the cumulative spin
rotation angle. It follows from the solution of Eq. (1) that
the longitudinal spin relaxation time for degenerate elec-
trons in bulk GaAs at B ¼ 0 takes the form [4]

T1ð0Þ ¼
105

32α2
ℏ2Eg

E3
Fτ3

; ð4Þ

where EF is the electron Fermi energy, Eg ¼ 1.52 eV
is the band gap energy, α ≈ 0.063 is the dimensionless
Dresselhaus constant for GaAs, recalculated from data in
Refs. [40,41], and τ3 is the relaxation time of third angular
harmonics of the electron distribution over momentum
given by Eq. (3).
A similar suppression of the spin relaxation takes place

due to the cyclotron motion of the electron in an external
magnetic field accounted for by the operator Λkfskg in
Eq. (1). Indeed, the field induces a rotation of the electron
velocity and the wave vector k, thus, resulting in a rotation
of the effective magnetic field ∝ Ωk. In this way, the
magnetic field acts as an extra scattering source and slows
down the spin relaxation [37,42]. The magnetic field
dependence of T1 was calculated in Ref. [37]:

T1ðBÞ
T1ð0Þ

¼ ½1þ ðωcτ3Þ2�½1þ 9ðωcτ3Þ2�
1þ 6ðωcτ3Þ2

≈ 1þ 4ω2
cτ

2
3: ð5Þ

The last approximate equality in Eq. (5) holds for
ωcτ3 ≪ 1. Equation (5) clearly demonstrates an increase
in the spin relaxation time T1 with growing magnetic
field. This expression with the temperature-independent

τ3 ≈ 40 fs describes the experimental data at B≳ 2 T [the
dashed lines in Fig. 2(a)]. From the value of T1 extrapolated
to B ¼ 0, we obtain after Eq. (4) almost the same τ3 as the
value obtained above from the B-dependence.
The classical theory of the Dyakonov-Perel spin relax-

ation mechanism, expressed by Eqs. (4) and (5), as well as
additional possible mechanisms of spin relaxation due to
the g-factor spread [43], cannot, however, explain the
sizable decrease of the spin relaxation time T1 in rather
weak magnetic fields B≲ 1 T and at low temperatures
T ≲ 14 K. Clearly, other effects, not accounted for by the
approach in Refs. [4,7,14,37–39], must play an important
role in our experiment. In fact, in the derivation of Eqs. (4)
and (5), the electron dynamics is assumed to be classical,
i.e., the inequality EFτp=ℏ ≫ 1 is assumed to hold. For
relatively low electron densities, EFτp=ℏ just slightly
exceeds unity and quantum effects start to play a role.
In particular, for an electron traveling through a disordered
medium, the interference between classical trajectories, as
schematically depicted in Fig. 2(b), becomes important. For
electron waves traveling clockwise and counterclockwise
through the same configuration of impurities, the phases
acquired on these two paths, ϕ↻ ¼ ϕ↺ ¼ H

kdl, are the
same. As a result, the two paths shown by the solid and
dashed lines interfere constructively, leading to coherent
backscattering. In effect, the scattering efficiency by the
impurities increases (τp decreases) and the electron propa-
gation slows down. This is the weak localization effect,
signifying the onset of the MIT with decreasing electron
density. Importantly, a magnetic field destroys the con-
structive interference owing to the extra phase proportional
to the field flux through the trajectory acquired by the
diffusing electron; see Fig. 2(c). Indeed, for clockwise and
counterclockwise propagation, the field-induced phases are
opposite; hence, the magnetic field suppresses the weak
localization [28,33–35,44].
In order to account for the interference effect, we follow

the semiclassical approach where, as illustrated in Figs. 2(b)
and 2(c), the quantum effects are accounted for by renorm-
alization of the cross section for electron scattering by the
impurity [13,36,45]. The momentum relaxation time τp
acquires a correction δτp of the form

δτp
τp

¼ −
2mD
πℏne

X
s;s0¼�1=2

Css0s0sðr ¼ 0Þ; ð6Þ

whereD ¼ v2Fτp=3 is the electron diffusion coefficient, and
vF is the Fermi velocity. In Eq. (6), Cs1s2s3s4ðr ¼ 0Þ is the
Cooperon matrix describing the electron interference along
the closed loops, which is calculated via a standard diagram
technique [28]. Similarly, the interference effects modify the
relaxation time of the third angular harmonics of the spin
distribution function τ3, which defines the spin relaxation
time [Eq. (4)], as
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δτ3
τ3

¼ −
2mD
πℏne

X
s;s0¼�1=2

Css0s0sðr ¼ 0Þð2δss0 − 1Þ: ð7Þ

The factor ð2δss0 − 1Þ is due to the spin vortices in the
corresponding diagrams [13,36].
The Cooperon matrix, i.e., the sum of maximally crossed

diagrams, describes the spin-dependent probabilityPret of an
electron to return to the initial point after an arbitrary number
of collisions conserving its phase, which is the probability to
pass through a loop in the real space [Fig. 2(b)].Qualitatively,
the interference of electronwaves propagating clockwise and
counterclockwise on the loops [Fig. 2(b)] gives rise to the
coherent backscattering effect and modifies the rate of the
scattering by an impurityWkk0. It gives rise to a sharp peak in
Wkk0 at k0 ≈ −k, i.e., for backscattering [45]. The interfer-
ence-induced contribution δWkk0 ¼Wkk0 −Wcl

kk0∝Pret, where
Wcl

kk0 is the classical value found without interference effects,
is proportional to the return probability. It gives rise to the
corrections δτl to the relaxation times τl inEq. (3).Both δWkk0

and δτl are determined by the interference of the trajectories
in Fig. 2(b). The magnetic field destroys the interference and
suppresses δτl, affecting the electron transport and spin
dynamics.
We introduce the phase relaxation time τϕ associated

with inelastic electron-electron or electron-phonon scatter-
ing processes, and we consider hereafter the diffusive
regime where τϕ ≫ τp, τ3 and the magnetic length lB ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏc=ðjejBÞp

exceeds by far the mean free path, lB ≫ vFτp.
Moreover, we impose the condition of rather weak spin-
orbit interaction, T1ð0Þ ≫ τϕ, meaning that the electron
spin is conserved during passage through the closed loops
in which the interference takes place. As a result, we have

δT1ðBÞ
T1ð0Þ

¼ δρðBÞ
ρð0Þ ¼ −

m
2π2ℏneτp

ffiffiffiffiffiffiffiffiffi
jejB
ℏc

r
F3

�
Bϕ

4B

�
: ð8Þ

Here, Bϕ ¼ ℏc=ðjejl2ϕÞ, lϕ ¼ ffiffiffiffiffiffiffiffiffi
Dτϕ

p
is the phase relaxation

length, and the function F3ðxÞ is defined as [33–35]

F3ðxÞ¼
X∞
n¼0

�
2ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nþ1þx
p

−
ffiffiffiffiffiffiffiffiffiffi
nþx

p Þ− 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ1=2þx

p
�
:

Note that, for x ≪ 1, F3ðxÞ ≈ 0.605 and, for x ≫ 1,
F3ðxÞ ≈ 1=ð48x3=2Þ.

C. Discussion and comparison of electron spin
dynamics and transport

To independently experimentally confirm the presence
of weak localization and estimate its magnitude in the
considered system, we have also measured the magneto-
resistance on the same samples [see Fig. 3(a)]. The
low-field negative magnetoresistance is clearly seen; in
agreement with previous works, it arises from the weak

localization effect [29–35,46]. At high fields, positive
magnetoresistance is observed, presumably due to the
field-induced compression of electron wave functions on
donors and also possibly due to the onset of Shubnikov–de
Haas oscillations. The observed behavior is qualitatively
similar to that for T1ðBÞ [Fig. 2(a)] and, in particular, the
scale of magnetic field, destroying the weak localization, is
the same. Further, the negative magnetoresistance persists in
the same range of temperatures as the decrease of T1 with B.
Furthermore, according to Eq. (8), the relative change of

T1 and ρ due to the weak localization should be the same.

(a)

(b) (c)

FIG. 3. Evidence of weak localization in resistivity measure-
ments. (a) Magnetic field dependence of the resistivity ρ at
different temperatures. The inset shows relative variation of ρ
with a magnetic field for metallic samples with different
electron concentrations. (b) Relative variation of T1 (the symbols)
and ρ (the solid lines) with a magnetic field at different temper-
atures. The red dashed lines show fits to both δT1=T1 and δρ=ρ
with Eq. (8). The curves are vertically shifted for clarity.
(c) Curvatures of the magnetic field dependencies of δT1=T1

(the spheres) and δρ=ρ (the squares), κ in Eq. (9), as a function of
temperature. The red dashed line shows a T−3=2 dependence.
(a)–(c) ne ¼ 3.7 × 1016 cm−3.
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Figure 3(b) shows these relative variations of T1 (the
spheres) and ρ (the solid lines), δT1=T1≡T1ðBÞ=T1ð0Þ−1
and δρ=ρ≡ρðBÞ=ρð0Þ−1, with magnetic field, respec-
tively. Equation (8) is, strictly speaking, valid if the
quantum corrections are small, i.e., for
jδT1j=T1; jδρj=ρ ≪ 1, which is not the case in our sample
with ne right above the MIT. Nevertheless, the measured
magnetic field dependencies of δT1=T1 and δρ=ρ are in
remarkable agreement in weak magnetic fields. The analy-
sis of the asymptotic form of Eq. (8) shows that, in weak
fields B ≪ Bϕ,

δT1ðBÞ
T1ð0Þ

¼ δρðBÞ
ρð0Þ ≈ −κB2; ð9Þ

with the prefactor κ ≈ 0.048ðe=mcÞ2
ffiffiffiffiffiffiffiffiffi
τpτ

3
ϕ

q
. In the studied

temperature range, τp is constant, as found above, and
τϕ ¼ A=T, where A is a constant, in accordance with
Refs. [35,47]. Thus, κ ∝ T−3=2. The values of curvature
κ corresponding to T1 and ρ extracted from the fit are
shown in Fig. 3(c). They are in very good agreement and
follow a T−3=2 dependence as shown by the red dashed line.
The dashed lines in Fig. 3(b) show fits to the experiment

by Eq. (8) using a reasonable set of parameters, namely,
τp ¼ 55 fs (temperature independent) and τϕ ¼ A=T, with
A ¼ 19 ps · K. Such inverse temperature dependence of the
phase relaxation time was observed for a similar GaAs
system [35], with ne ¼ 2.9 × 1016 cm−3 giving a similar
value of A ≈ 12 ps · K. In order to compare the value τp ¼
55 fs with the previously obtained τ3 ¼ 40 fs, we calcu-
lated the ratio of τp=τ3 by angular integration of the cross
section of partial scattering at the screened Coulomb
potential of charged impurities (see Supplemental
Material [48]). For the parameters of our sample, the ratio
τp=τ3 ¼ 1.7 and it does not reach the asymptotic value of 6,
obtained for an extremely small scattering angle [4]. Thus,
the time τ3 obtained by considering classical Dyakonov-
Perel relaxation is in good agreement with the time τp
derived from the weak localization anomaly.
We have also studied the magnetic field dependencies of

T1 and ρ for a sample with higher electron concentration
ne ¼ 7.1 × 1016 cm−3. The corresponding results are pre-
sented in the insets in Figs. 2(a) and 3(a) and in more detail
in the Supplemental Material [48]. One can see that the
effect of weak localization is reduced by a factor of about
two for ne ¼ 7.1 × 1016 cm−3 compared to the sample with
ne ¼ 3.7 × 1016 cm−3, as expected from Eq. (8), which
contains ne in the denominator. The times τ3, τp, and τϕ are
similar for both samples.
In conclusion, we have demonstrated that the weak

localization of electrons has a pronounced impact on their
spin dynamics. The longitudinal spin relaxation time T1 in
n-doped GaAs, being in the metallic phase, demonstrates

an anomalous decrease with increasing magnetic field at
low temperatures. This decrease is due to the field-induced
destruction of phase coherence for electrons resulting in the
suppression of the weak localization. This shows that
physics studied in transport experiments capturing the
entirety of physical phenomena between the electrical
contactsmay be studied locally using focused optical probes
of the spin dynamics. The potential of this approach will be
very prominent also in two-dimensional systems where one
can expect visualization of the weak-localization-induced
nonexponential tails in spin polarization.
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