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Abstract—The problem of excitation of a totally reflecting planar optical waveguide using a coupling diffrac-
tion grating in the form of a periodic relief of the waveguide-layer thickness is solved within the single-scat-
tering approximation. The polariton mode in the presence of a quantum well near the waveguide is consid-
ered. Based on the developed concepts, the following experimental features of the dependence of the intensity
of radiation conducted in the waveguide layer on the angle of incidence of the excitation beam on the coupling
diffraction grating are interpreted: the dependence on the mode number, the interference effects in the pres-
ence of two coupling diffraction gratings, and the influence of the lower substrate boundary on the thermal
behavior of the waveguide structure.
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1. INTRODUCTION
In recent decades, layered structures obtained by

molecular-beam epitaxy have been popular objects of
spectroscopic studies. An important class of these
structures includes combined GaAs/AlGaAs/InGaAs
semiconductor structures, which are optical Bragg
waveguides coupled with quantum wells (QWs) [1].
These structures are important because the polariton
mode of an electromagnetic field therein exhibits a
number of interesting phenomena: bimodal ref lection
spectrum (Rabi splitting) [1], parametric amplifica-
tion [2], lasing [3], Bose–Einstein condensation of
polaritons [4], light delay [5], etc.

However, the design of a combined Bragg wave-
guide–QW structure is fairly difficult from the tech-
nological point of view, because Bragg mirrors should
be rather “thick” and consist of several tens of layers to
provide high reflectivity. Therefore, it is an urgent
problem to search for simpler structures with a
strongly interacting electromagnetic optical mode and
material resonance. In this context, a combined struc-
ture [6], similar to the above-described one but with a
Bragg waveguide replaced by a totally ref lecting (TR)
waveguide [7–9], is of great interest.

The structure of a TR waveguide (a layer of high-
reflectivity material inserted in a low-reflectivity
medium) is extremely simple; however, a special
device should be used to inject light into the TR wave-
guide [8]. It can be a prism glued on the TR waveguide

(tunnel injection) [7, 9] or coupling diffraction grating
formed on its surface [8–10]. As far as the possibility
of using TR waveguides in compact optical data-pro-
cessing devices is concerned, light injection using a
diffraction grating is preferred because it does not vio-
late the structure planarity. Moreover, one of the most
widespread types of the aforementioned layered struc-
tures comprises epitaxial GaAs/AlGaAs/InGaAs
semiconductor structures, for which ion etching tech-
nology capable of forming amplitude diffraction grat-
ings on the surface has been developed.

Although light injection into planar waveguides
using coupling diffraction gratings is well known [10,
11], we could find only one reference [12] where this
problem was considered within the single-scattering
approximation. In this study, we present such a con-
sideration as applied to the calculation of the TR
waveguide–QW combined structure. The reported
solution makes it possible to find the electromagnetic-
field amplitude in the TR waveguide at large distances
from the light-injection point for specified parameters
of the diffraction grating and waveguide.

We experimentally observed the dependence of the
field intensity in the TR waveguide on the angle of
incidence of the excitation laser beam with a fixed fre-
quency onto the coupling diffraction grating. This
dependence has a maximum when the angle at which
the beam diffracted into the waveguide propagates is
equal to the characteristic angle of one of the TR-
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waveguide modes. Based on these experimental con-
ditions, we show in the theoretical part of this paper
that the presence of a QW near the waveguide1 may
lead to a bimodal form of the above angular depen-
dence. This phenomenon is similar to the splitting of
the frequency dependence of the intensity of light
reflection from the Bragg waveguide–QW structure in
the strong-coupled mode [1]. The calculated interme-
diate results suggested a simple way to estimate the
amplitude of the coupling diffraction grating.

In the experimental part of the study, we investigate
a GaAs/AlGaAs semiconductor TR waveguide with
coupling diffraction gratings formed by vacuum etch-
ing. Using the obtained solution of the electrodynamic
problem, we interpret the difference in the excitation
of different TR-waveguide modes, the interference
effects arising upon excitation of a TR waveguide by
two gratings, and the thermal behavior of the wave-
guide structure. In addition, we present the results of
testing the proposed method for estimating the grating
amplitude.

2. STATEMENT OF THE PROBLEM
AND THE BOUNDARY CONDITIONS

We consider a structure comprising a TR wave-
guide with a coupling diffraction grating on its surface
(Fig. 1) and state the problem as follows. Let a plane
monochromatic wave with frequency  be incident
from the upper half-space, making angle  with the
structure. The scattered field arising in this case must
be found. The used approximations will be formulated
below during the solution of the above-stated prob-
lem, and this statement will be refined taking into
account that we eventually would like to analyze the
excitation of the TR waveguide formed by layer 2 (we
assume that ). We will consider this struc-
ture as homogeneous along the y axis and perform the
calculations for the case of TE waves, where the elec-
tric field has only the y component in the whole space.

This problem is difficult to solve because the inter-
face between media 1 and 2 (Fig. 1) in the layered sys-
tem under consideration is not planar but determined
by a specified function , which can describe,
in particular, the amplitude diffraction grating. We
will consider the function  small in compari-
son with wavelength  of the used light and sufficiently
smooth. This corresponds to the following conditions
imposed on :

(1)

1 The interaction between a QW and the waveguide modes is due
to the “evanescent tails” of the latter.
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As in the case of a planar interface, the boundary
conditions at the nonplanar interface imply continuity
of the electric ( ) and magnetic
( ) field components
that are tangent to the nonplanar interface.

The requirement of continuity of the tangent elec-
tric-field component  (the y component for the
case of TE wave under consideration) has the form

, where  is the elec-
tric field in the first (second) medium (Fig. 1). If 
is small in the sense of conditions (1), the aforemen-
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Fig. 1. TR waveguide with a coupling diffraction grating.
Oblique arrows indicate a plane wave incident on the
structure. The media are enumerated on the right and the
corresponding refractive indices are presented. The narrow
stripe at the bottom indicates the QW.
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tangent to the nonplanar interface between these
media:

. (5)

Here, we apply an assumption that .
Using the introduced vector (5), one can write mag-
netic-field component  that is tangent to the 1–2
interface as . Let 
( ) be the magnetic field in medium 1 (2).
Then the condition of continuity of the magnetic-field
component tangent to the  interface has the
form

Having written this relation accurate to the first-
order terms with respect to  and , we obtain

(6)

Using the Maxwell equation curl , one
can express the magnetic-field components 
entering (6) in terms of the y component of electric
field  (in the case of TE waves under consideration,
it is the only nonzero electric-field component). Thus,
we have

(7)

Here, i is the number of the medium in which the
field is considered. Substituting these expressions into
(6), we obtain the following boundary condition for
the TE electric field at the nonplanar 1–2 interface:

(8)

Conditions (4) and (8) in combination with the
boundary conditions at the planar 2–3 interface,
which imply the requirements of continuity of the field
and its first derivative over z,

, (9)

allow us to write a closed system of equations for deter-
mining the desired scattered field. To this end, we
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sions in plane waves. The field expansion in the upper
half-space can be written as

(10)

Here, the first term is the wave incident on the
structure and the second term corresponds to the
ascending waves scattered into the upper half-space.

The field in medium 2 (we refer to this part of the
structure as a “waveguide layer”) contains both
ascending and descending waves:

(11)

Field  in the substrate portion between the
waveguide layer and the QW (spaced from the wave-
guide layer by distance Z) may also contain ascending
and descending harmonics:

(12)

The amplitudes of the descending ( ) and ascend-

ing ( ) waves are related via the QW reflectance 

( ), which is assumed to be known. For fur-
ther convenience, we introduce the following parame-
ters:
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(16)

Here, the first pair of equations corresponds to the
continuity of the field and its derivative with respect to
z at the 2–3 interface, while the second pair corre-
sponds to conditions (4) and (8). For the TE wave under
consideration, . System of equations (14)–(16)
describes the case of a TH wave as well, where the only
nonzero magnetic-field component is the y compo-
nent ( ). To this end, we assume that  and
make replacement .

The derived system of equations (14)–(16) com-
pletely describes the TR waveguide–coupling diffrac-
tion grating–QW layered structure. Moreover, this
system can be used to analyze layered structures
obtained from that the above-considered one using a
particular simplification. For example, the experi-
ments on light injection into a TR waveguide (see
below) were performed on a structure without QW.
The equations describing this structure can be devoted
from system (14)–(16) on the assumption that the QW
reflectance is zero: . To estimate the depth of
the coupling diffraction grating, the scattering prob-
lem must be solved for one nonplanar 1–2 interface
(without a waveguide). The corresponding equations,
which make it possible to find diffracted field  ( )
scattered into the upper (lower) half-space, can be
derived from system (14)–(16) if Eqs. (14) describing
the reflection at the 2–3 interface are rejected and
amplitudes  and  in the remaining equations (15)
and (16) are assumed to be zero. In the next section,
we present the solution to system (14)–(16) for a lay-
ered structure of TR waveguide with a coupling dif-
fraction grating, obtained within the single-scattering
approximation (Born approximation).

3. SINGLE-SCATTERING APPROXIMATION 
(CASE OF TE WAVE)

In this section, we consider the case of TE-polar-
ized incident field. The single-scattering approxima-
tion is a widespread method for analyzing various
problems of scattering in quantum mechanics, optics,
acoustics, etc. For the above-stated problem, this
approximation corresponds to the solution of system
of equations (14)–(16) accurate to the first-order
terms with respect to , which are assumed to be

{
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small. As a result, the solution to this system will be
sought in the form
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and the desired vector X (solution to Eq. (20)) can be
expressed in terms of vectors (19) as follows:

(21)

Below, we present the expressions for vectors 
and , which can be obtained by explicit solution of
Eqs. (19):

(22)
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Here, function  is determined as
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formulas (22) and (23).
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Expression (27) makes it possible to find the scat-
tered fields in all regions of the layered structure under
study within the single-scattering approximation using
formulas (17), (12), (11), and (10) and, thus, com-
pletely solve the problem stated in the beginning of
Section 2. As follows from these expressions, the scat-
tered field is a sum of plane-wave components (har-
monics). Below, we will consider only the scattered-
field components corresponding to the waveguide
modes of layer 2. These components will be calculated
in the next section.

4. WAVEGUIDE MODE
It follows from Eq. (26) that, in the general case,

the amplitudes of harmonics    and  of the
scattered fields in the layers of the structure under
study turn to zero at . Exceptions are harmonics
with wave numbers  ( , N), for which
the determinant of the matrix  turns to zero and
Eq. (26) may have a nonzero solution at the zero right-
hand side. Specifically these harmonics correspond to
the waveguide mode of the electromagnetic field in the
layered structure under consideration, and it can be
shown that the condition det  is equivalent to
the condition , where  is determined by
formula (24). Roots  ( , N) of the
equation  depend on the optical-field fre-
quency : . At  (i.e., in the absence
of QW or other objects near the waveguide), the func-
tions  ( ) are real and correspond
to the dispersion relations of modes of the isolated TR
waveguide, the number  of which depends on the
thickness  of waveguide layer 2 (Fig. 1).

It follows from formula (27) and expressions (22)
and (23) for H and G that the first-correction vector
(    ) has poles at  ( , N)
and, therefore, at  its components can be writ-
ten as

(28)

The expressions for pole amplitudes   ,
and  will be given below. A substitution of (28) into
(26) and the limiting transition  show that the
column vector composed of the pole amplitudes satis-
fies the homogeneous equation
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Here, we use the fact that the right-hand side of
(26) remains finite at the limiting transition .
Let us show that specifically the singular parts of (28)
allow us to calculate the desired amplitudes of the
waveguide modes in layer 2.

Let the coupling diffraction grating (Fig. 1) be located
near the coordinate origin . The waveguide-mode
excitation manifests itself in the fact that the electromag-
netic field in waveguide layer 2 does not decay at .
Certainly, we deal with the field part that arose due to the
incident-wave scattering from the coupling diffraction
grating and has the order of smallness . Using formu-
las (11) and (17), we find that this part (we retain the des-
ignation  for it) is determined by the relation

(30)

This expression differs from (11) by the presence of
the second term, which is a sum of the solutions to
homogeneous Eq. (29) taken with weighting factors

. These factors will be determined below based on
additional conditions, which the desired waveguide
mode of electromagnetic field in the structure (Fig. 1)
should satisfy. From the physical point of view, the
second term in (30) is the electromagnetic field of
waveguide modes, which may occur in the structure
even when the incident wave is absent (i.e., at ).

The integral term in (30) does not tend to zero at
large x only when the expression in the square brackets
has singularities in the range of integration. Otherwise,
this integral term tends to zero at  due to the
rapidly oscillating factor . As was shown above, the
singularities of functions  and  are poles; there-
fore, the following formula can be used to calculate the
integral in (30) at :

(31)

which is valid for any function  that is regular at
. Using (31) and (28), we derive the following

expression for the field in waveguide layer 2 at long
distances:
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at 

Constants  entering this formula can now be
found as follows. For clarity,  is assumed to be neg-
ative for the th mode of our waveguide. Conse-
quently, the corresponding wave propagates along the
x axis in the positive direction. We assume that this
mode can be excited in the structure shown in Fig. 1
only due to the incident-wave scattering from the cou-
pling diffraction grating located near the coordinate
origin. Therefore, it should be required that the field of
this mode is nonzero only at positive x values and turns
to zero at . This requirement can be satisfied
assuming that . In this case, the field in the
waveguide gap at positive x is doubled. Based on this
reasoning, we can conclude that the field in the wave-
guide gap at large distances ( ) from the cou-
pling diffraction grating is generally determined by the
formula

(33)

Using expressions (27), (23), and (22), we can eas-
ily obtain the following relations for the pole ampli-
tudes entering the above formula:

(34)

(35)

where

Here, the first and third arguments of the function
 correspond to evanescent waves in media 1

and 3. Thus, with the  values known, formulas (33),
(34), and (35) make it possible to find the field in the
waveguide gap that is excited by the incident wave via
the coupling grating.
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To determine wave numbers  of the waveguide
modes, one should solve the equation , which
is analyzed below. Taking into account that

we find (using (24)) that the equation  can be
expanded as

(36)

The roots  of this equation depend on frequency
 in terms of parameters  and .

QW near the Waveguide

Let us consider the case in which the layered sys-
tem under study is a combination of a TR waveguide
and a thin QW with the optical (exciton) resonance at
frequency  spaced by a distance  from the

 plane (Fig. 1). A similar analysis was performed
in [13]. The QW susceptibility is assumed to be pre-
sentable in the form of a simple pole .
Having denoted the radiative width (see, for example,
[14]) of the reflection spectrum of this well as , one
can obtain the following expressions for reflectance

 and parameters :

(37)

where the following designations are introduced:

(38)

Expressions (37) suggest that ; therefore,
 and  are real values. Based on these relations,

Eq. (36) is reduced to the form
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Equation (39) has roots  only at
some integers m, which are numbers of modes. A
graphical analysis of Eq. (39) shows that, at a specified
m, the roots of this equation can be in the range

 (recall that we assume that ). A
transition to the purely waveguide structure (i.e., QW
is “switched off”) corresponds to any of the following
passages to the limit:  or . In both these
limiting cases, Eq. (39) is transformed into the known
dispersion equation for a TE wave in a planar wave-
guide [7, 8], which can have no more than one root at
specified frequency  and mode number m. The
numerical solution of Eq. (39) shows that the presence
of a QW with optical resonance near the waveguide
may give rise to the second root of this equation,
which corresponds to the presence of two polariton
modes with the same frequency . This fact distin-
guishes the structure under consideration from that
described in [6], where the QW was located inside the
waveguide. If such a structure (waveguide + QW) is
excited using a coupling diffraction grating, the elec-
tromagnetic field and its intensity in the waveguide
layer can be calculated from formulas (25), (33), (34),
(35), and (37). An example of this calculation is shown
in Fig. 2. The structural parameters are in the figure
caption. In this case, there is an interaction between
two electromagnetic field modes: polariton wave
localized near the QW and waveguide mode enclosed
in the waveguide gap. The dispersion relation for the
QW polariton can be obtained as the condition of
infinity of ref lectance (37) (i.e., ):

(40)
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Planar Interface

Let us now consider the case in which the reflecting
object under the waveguide layer is a planar interface
at  , beyond which an infinite medium
with real refractive index  begins. This case corre-
sponds, for example, to the situation, where a wave-
guide structure is grown on a substrate (light is inevi-
tably reflected from the interface between the sub-
strate and air). Here, one can show [15] that

(41)

where . If the substrate thickness is
much larger than the damping length of the evanes-
cent waves under total internal reflection of the ith
mode in the waveguide layer (i.e.,  and
parameter  is purely imaginary), the waveguide
mode leaking through the substrate can be disregarded
(i.e., can be considered zero). However, parame-
ters  entering expression (25) for the zero approx-
imation are not small and should be taken into
account (they describe the interference phenomena
related to the reflection from the substrate–environ-
ment interface). For example, the field strength near
the coupling diffraction grating may change signifi-
cantly with a temperature-induced change in the opti-
cal substrate thickness, which, in turn, significantly
changes the strength in the waveguide gap. It is
important that one can change the degree of the cou-
pling between the waveguide and excitation beam from
strong (the grating is in a field antinode) to weak (the
grating is in a field node) by changing the substrate

= − ,z Z > 0Z
4n

æ
− −= ,

+
32 3 4

3 4

g Z
q

g ge
g g

ı

= −2 2 2
4 4g k n q

3| ( ) | 1ig q Z @

3( )ig q

æ
iq

æ− 1xp

Fig. 2. Polariton mode in the TR waveguide–QW structure (Fig. 1). Angle of incidence  of the excitation wave on the coupling

diffraction grating is plotted on the horizontal axis,  is plotted on the vertical axis, and excitation-wave frequency  is
given in the third direction. The structural parameters are as follows: waveguide-layer thickness  μm and refractive indices
of the layers   and . The coupling diffraction grating is described by formula (3) with the following param-
eters: spatial period  nm and length  μm. The QW parameters are as follows: radiative width  0.0005 eV,
resonant frequency  eV, and distance to the waveguide  nm.
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thickness. Figure 3a shows the temperature behavior
of the angular dependence of the intensity in the
waveguide gap of the structure shown in Fig. 1 with
three modes (  0, 1, and 2) without QW. The
structural parameters are as follows:  μm, 

 , and . The sub-
strate thickness is  μm. We assumed in the
calculations that the optical path in the substrate
changes due to the dependence of refractive index 
on change in temperature , and coefficient  was
taken from [16]. The results of these calculations are
in correspondence with Fig. 3b, which shows the
time dependence of the fundamental-mode ampli-
tude of the real structure with the aforementioned
parameters, initially heated to ~60°C by a heat
blower and cooled to 20°C. The experimental setup
used for the observation will be described in the next
section.

The above consideration concerns the case of the
TE-polarized incident field. One can obtain relations
for TH waves similar to (33)–(41) in a methodologi-
cally similar way by changing the boundary condi-
tions.

=m
= 1L = ,1 1n

= . ,2 3 6n = . + βΔ3 3 2n T −β ≈ × 42 10
= 400Z

3n
ΔT β

5. EXPERIMENTS ON LIGHT INJECTION 
INTO A TR WAVEGUIDE USING

A DIFFRACTION GRATING

To observe the light injection into the above-
described waveguide structure, we used a system pre-
sented in a simplified form in Fig. 4. Light beam 1 with
a diameter of ~3 mm generated by neodymium laser 2
(wavelength  μm), was incident on the surface
of waveguide structure 3. The sample was mounted on
special holder 4, which performed vibrational and
rotational motion around the  axis with a frequency
of ~15 Hz. At some angle of incidence, the wave vector
of the beam diffracted into the waveguide was equal to
that of one of the waveguide modes. In this case, the
light intensity from the waveguide end facing fiber
bundle 5 sharply increased. This increase was detected
by photodetector 6 at the other end of the fiber bundle
and displayed on oscilloscope 7.

A structure similar to that in Fig. 1 but without QW
was fabricated for the experiments. It was a GaAs
waveguide layer with refractive index  and
thickness  μm, enclosed in a layer of Al0.3Ga0.7As
solid solution (refractive index ) and facing air
(refractive index ) from the other side. Two dif-
fraction gratings with length 2B = 300 μm and period
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Fig. 3. (a) Change in intensity  of the waveguide modes (  0, 1, and 2) with a temperature-induced change in the sub-
strate thickness. The angle of incidence of the excitation beam on the structure is plotted on the horizontal axis. Change in tem-
perature  is plotted inward. The temperature dependence of the substrate refractive index was chosen in the form

,  . The length of the coupling diffraction grating is  μm, substrate thick-
ness  μm, and the other parameters are the same as in Fig. 2. (b) Experimental time dependence of the fundamental-
mode amplitude upon cooling the waveguide structure from ~60 to .
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 μm, spaced by a gap of  mm, were
formed on the waveguide-layer surface by plasma
etching. Having denoted the amplitudes of these grat-
ings as  and  (their values will be estimated below),
we obtain the following expression for function 
entering the above formulas:

(42)

Figure 5a shows a typical angular dependence of
the field intensity in the waveguide gap observed on
the display of oscilloscope 7 under illumination of one
of the gratings. One can see all three possible modes
(upper curve); the relative excitation intensity for each
mode is in qualitative correspondence with the results
of the theoretical calculations (the lower curve, which
is obtained using (33)–(35) at  and function 
in form (3)). We relate the presence of the additional
peak (indicated by an arrow in the figure) to the spuri-
ous diffraction peak caused by the slight aperiodicity
of the coupling diffraction grating.

We could illuminate both gratings simultaneously
by scanning the incident beam over the sample sur-
face. In this case, oscillations were observed in the
output signal of photodetector 6 (Fig. 5b). This effect
is described by formulas (33)–(35), in which 
should be equated to zero and function  should be
taken in form (42) at  (Fig. 5c). In the cal-
culations, we estimated the recorded field intensity in
the waveguide as  (35).

Estimation of the Amplitude of the Coupling
Diffraction Grating

The coupling diffraction gratings formed on the
surface of the above-described waveguide structure
had a period of ~300 nm. This period was chosen so as
to provide the waveguide excitation by a neodymium
laser beam (  μm) at small angles of incidence
(about ~±5°). The diffraction of the second-har-

π = .2 / 0 3s Δ = 2x

ε1 ε2

qF

Δ⎡ ⎤− += + ε + ε .⎢ ⎥π − +⎣ ⎦
1 2

sin( ) sin( )1 ( )
2

q x
q

s q B s q BF e
s q s q

ı

æ = 0q qF

æq

qF
ε ε = .1 2/ 0 3

∑ 2| |mm
U

λ = .1 06

monic green beam of neodymium laser (
0.532 μm) can easily be observed for this grating. The
obtained equations describing the scattering from the
layered structure with one nonplanar interface make it
possible to derive formulas for the diffraction effi-
ciency of the coupling diffraction grating; measure-
ment of the diffraction efficiency allows one to exper-
imentally estimate the diffraction-grating amplitude 
without electron microscopy. To obtain the corre-
sponding equations, one should, first, assume that

= 0 in Eqs. (15) and (16) and find reflected field 
within the single-scattering approximation and, sec-
ond, determine the total reflected-field intensity by
integrating over q. Omitting the details of this calcula-
tion, we present the final formula for the TE-polarized
incident wave:

(43)

Here,  is the ratio of the intensities of the dif-
fracted and incident laser beams,  is the ratio of
the grating area to the incident-beam cross section, 
is the angle of incidence of the beam on the grating, 
is the grating amplitude, and  is the grating
period. The other designations were introduced above.
The sign  should be chosen so as to make the radicals
real at a specified sign of the angle of incidence.
Figure 6a shows the experimental and calculated
(using formula (43)) dependences of the diffraction
efficiency on angle of incidence , which varied from
the grazing value  to approximately , when
the diffracted beam “lay” on the grating plane. Based
on the measured absolute value of diffraction effi-
ciency , the grating amplitude was estimated as

 nm. This result is in qualitative agreement
with the electron microscopy image of our structure
(Fig. 6b).
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Fig. 5. (a) Angular dependence of the intensity in the waveguide gap: signal from photodetector 6 (Fig. 4) and  calculated
from formula (35). (b, c) Waveguide excitation using two coupling diffraction gratings: (b) experimental data and (c) calculation
result.
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CONCLUSIONS
We developed a theory of scattering from a nonpla-

nar interface in order to calculate the excitation of a
planar TR waveguide using a diffraction grating. The
equations for the scattered-field components were
derived and solved within the single-scattering
approximation, and the field in the waveguide gap was
found. The proposed solution technique makes it pos-
sible to describe the polariton mode of the TR wave-
guide–QW combined structure. We reported the cal-
culated and experimental results, which show that the
presence of the reflecting boundary near the wave-
guide layer allows one to change the degree of coupling
between the TR waveguide and incident light. Finally,
using the developed technique of calculating the scat-
tering from a nonplanar interface, we derived the for-
mula for the diffraction efficiency, which made it pos-
sible to estimate the amplitude of the coupling diffrac-
tion grating on the samples studied.

Note that, although conditions (1) were poorly sat-
isfied for the prepared gratings, the developed theoret-
ical concepts could, nevertheless, be used to describe
our experiments.
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