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Abstract—The energy states of the exciton in a single square GaAs-based quantum well are obtained from a
numerical solution of the three-dimensional Schrödinger equation for the envelope of the exciton wave func-
tion. This equation is based on the exciton effective energy operator with a spherical approximation of the
Luttinger Hamiltonian. The calculated states are classified based on the types of one-dimensional functions
for the factorized form of the wave function. The upper limit for the energies of the exciton states in a quantum
well is confirmed by the complex scaling method.
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INTRODUCTION
Energy states of excitons in quantum wells (QWs)

and their radiative properties have been intensively
experimentally studied by methods of photolumines-
cence and optical reflectance spectroscopy [1–3]. A
quality of heterostructures is permanently growing
and new experimental data on the energies of exciton
resonances and the exciton-light coupling have
become available recently [4–6].

A purely theoretical description of exciton states in
QWs is difficult due to the degenerate valence band as
well as an interplay of the QW potential and the Cou-
lomb electron–hole (e–h) interaction. A reliable solu-
tion is numerically obtained only for narrow or very
wide QWs (L < 10 nm and L > 150 nm for the GaAs
QWs) [3]. For narrow QWs, it has been mainly calcu-
lated by the variational method [7, 8] and was usually
restricted to the exciton ground state. Recently, more
advanced approach has been developed for narrow
QWs [9], however, a complete e–h spectrum for a
broad range of QW widths has not been understood
thoroughly.

We developed a method for a precise numerical
solution of the Schrödinger equation for the exciton in
the single square QW of a finite barrier [10–12]. The
Schrödinger equation is reduced to the three-dimen-
sional equation, which is solved by the finite-differ-
ence method [13]. As a result, we determine energies
and wave functions of the s-like exciton states. It also
allows us to obtain the radiative decay rates, Γ0, for
calculated states. The computations made it possible
to thoroughly study a dependence of the energy levels
on the QW width. The upper boundary of the e–h

bound states in QW was determined by the complex-
scaling method [14–16], that was applied to this prob-
lem for the first time. The energy levels of the e–h
bound states were classified based on the types of one-
dimensional functions for the factorized form of the
wave function. In calculations, we modeled the heavy-
hole exciton states in a heterostructure with
GaAs/Al0.3Ga0.7As QW.

THEORETICAL MODEL
We calculate the exciton states in a single square

QW from a solution of the three-dimensional equation
derived from the Schrödinger equation for the exciton.
For simplicity, a spherical approximation of the Lut-
tinger Hamiltonian [17] is used as well as the light-
hole-heavy-hole mixing is ignored. This three-dimen-
sional homogeneous equation for s-like exciton states
is given as [10]

where the kinetic term with constant effective masses
reads

In the equations, the unknown function f is related
to the three-dimensional wave function ϕ as [10, 11]

, where radius in the xy-plane1 The article is published in the original.
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. Terms  are QW
potentials. The symbol μ denotes the reduced effective
mass in the xy-plane, mhz is the  hole  mass  in the
z-direction. The exciton binding energy, Eb, is
defined by the exciton ground state energy, EX, with
respect to the lowest quantum-confinement ener-
gies of the electron, Ee1, and the hole, Eh1, in QW:

. Energies Ee1 and Eh1 are
obtained from a solution of one-dimensional
Schrödinger equations for the carriers in the QW. The
sum Ee1 + Eh1 defines the lower boundary of the con-
tinuous spectrum, thus gives the upper energy limit for
the states of the exciton in QW.

The exciton-light coupling is characterized by the
radiative decay rate, Γ0, which describes a radiative
broadening of the exciton resonance. For the exci-
ton in QW, the radiative decay rate is given by
expression [3]:

Here, ,  is the light wave vector,
ω0 is the exciton frequency, m0 is a mass of the electron
in vacuum, ϵ is the dielectric constant, |pcv| is the
matrix element of the momentum operator between
the single-electron conduction- and valence-band
states.

The exponential decrease of the wave functions at
large values of variables allows us to impose zero
boundary conditions for the function  at the
boundary of some rectangular domain. The obtained
boundary value problem for the three-dimensional
homogeneous equation was accurately solved. For dis-
cretization of the equation we employed the second-
order finite-difference approximation [13]. It pro-
duces a sparse block-tridiagonal matrix [18]. A small
part of the matrix spectrum was obtained by the
Arnoldi algorithm [10]. As a result, we calculated sev-
eral lowest eigenstates of the exciton in QW. The radi-
ative decay rate was obtained evaluating the integral
for Γ0. In addition, the method of exterior complex
scaling [14] was applied over each variable to deter-
mine the lower boundary of the continuous (essential)
spectrum. It produced the complex matrix which was
also used as an input for the Arnoldi algorithm.

In calculations we modeled the heavy-hole exci-
tons in the GaAs/Al0.3Ga0.7As heterostructures. A dif-
ference of the band gap energies of the heterostructure
was taken as  meV; a ratio of bar-
riers of QW: ; the Luttinger parameters
are following: ,  for GaAs and

,  for AlAs; the dielectric constant
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 for GaAs and  for AlAs [8, 19].
Masses and dielectric constants for ternary alloys were
obtained by a linear interpolation on x.

RESULTS OF CALCULATIONS

We calculated and classified the s-like exciton
states in GaAs/Al0.3Ga0.7As QWs of various widths, L,
up to 80 nm. Thus, we described the exciton spectrum
as a function of QW width as a parameter. In calcula-
tions, discontinuities of the material parameters at the
heterointerfaces were properly taken into account.

Figure 1 shows the energies of the s-like heavy-hole
exciton states with respect to the lower boundary of the
continuous spectrum, marked as a zero binding
energy. The latter is defined by a sum of energies of the
first quantum-confinement states of the electron and
the hole in QW, Ee1 + Eh1. So, the figure actually shows
the binding energy of each state taken with a negative
sign, –Eb. The energy levels are classified by three
indices: the numbers of the electron and hole quan-
tum-confinement states i and j; the principal number,
N, of the two-dimensional Coulomb s-like ones for
the in-plane relative e–h motion. Such approximate
classification specifies the dominant pure state of the
exciton in very narrow QW, which is contained in the
calculated exciton state. This pure state is a product of
three one-dimensional wave functions: for the elec-
tron in QW, for the hole in QW, and the two-dimen-
sional Coulomb one. An increase of L leads to stronger
coupling of the electron and hole in QW by the three-
dimensional Coulomb potential.

The lowest curve in Fig. 1 presents the ground state
of the exciton in QW, i.e. shows the exciton binding
energy taken with the negative sign. The radiative
decay rates, ħΓ0, in μeV are written by italic for some
curves at several values of QW widths. The upper
curves are the 2s-, 3s-like exciton states of in-plane
relative e–h motion as well as 1s-like states corre-
sponding to excited quantum-confinement states. It
should be noted that the Coulomb-like spectrum
comprises of infinite number of bound states, which
concentrate in the vicinity of the boundary Eb = 0 and
are omitted in the figure. For L < 20 nm, only a set of
Coulomb-like states corresponding to the ground
quantum-confinement states of the electron and the
hole in QW takes place. As a QW width increases, the
excited exciton states drop down from the continuous
spectrum and more bound states appear in the spec-
trum. These states are descending and ranging in the
spectrum by an order of the quantum-confinement
hole states. The upper Coulomb-like state for the
excited quantum-confinement state is observed at L >
60 nm. States with the quantum-confinement compo-
nents of the same symmetry exhibit anticrossings,
whereas the different symmetry lead to crossings of
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Fig. 1. The calculated energy levels of s-like states of the
heavy-hole exciton in GaAs/Al0.3Ga0.7As single square
QW as a function of QW width. The states are shown with
respect to the lower boundary of the continuous spectrum,
that is denoted by zero binding energy. The discontinuities
of the material parameters are taken into account in calcu-
lations. The radiative decay rates in μeV are written by
italic. The energy states are classified based on the types of
one-dimensional functions for the factorized form of the
wave function. The anticrossings of energy states of the
same symmetry are shown by circles.
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Fig. 2. The energy levels of s-like states of the heavy-hole
exciton in GaAs/Al0.3Ga0.7As single square QW calculated
by the complex scaling method. The width of QW equals to
10 nm. The rotated discretized continuum is clearly
observed. The discontinuities of the material parameters
are ignored in calculations.
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states. The anticrossings are shown by circles. Numer-
ical results are consistent with the experimental reflec-
tance spectroscopy data for QW width of 20 nm pre-
sented in [10] as well as with data given in [20].
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In order to support the statement that the sum
Ee1 + Eh1 defines the lower boundary of the continu-
ous spectrum, we applied the exterior complex scaling
method [15] to our problem. This approach allows one
to study resonances in different quantum systems [14].
It introduces a complex scaling of variables in the
Hamiltonian and, as a result, rotates the continuous
(essential) spectrum by some angle. The bound states
remain unchanged and one can distinguish them from
the discretized continuum. Figure 2 shows calculated
energy levels of the heavy-hole exciton states after
application of the smooth rotation into the upper half-
plane by angles θ = 14° and θ = 37°. The QW width is
L = 10 nm. The mismatches of material parameter
were ignored in calculations. One can see the stable
real energies of e–h bound states, namely the exciton
energies, below the zero binding energy level, as well as
the discretized continuum rotated into the lower com-
plex half-plane. The rotation starts at the zero binding
energy which corresponds to the sum Ee1 + Eh1.

CONCLUSIONS

In summary, we calculated energies and wave func-
tions of the s-like states of the heavy-hole exciton in a
single square GaAs/Al0.3Ga0.7As QWs for QW widths
up to 80 nm. The numerical solution includes the
finite-difference discretization of the three-dimen-
sional equation as well as the exact diagonalization of
the obtained matrix equation. The calculated energy
states were classified based on the types of one-dimen-
sional functions for a factorized form of the wave func-
tion. The radiative decay rates of calculated states were
obtained. The determined upper energy limit for states
of the exciton in QW was confirmed by the complex
scaling method.
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