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1. INTRODUCTION

The recent advent of fast digital electrical�signal
spectrum analyzers has inspired renewed interest in
optical noise spectroscopy, which involves a number of
experimental techniques based on information con�
tained in the noise spectrum on the intensity (or polar�
ization) of light transmitted through a system under
study.

In the first experiment of this kind [1], the electron
paramagnetic resonance (EPR) of sodium atoms was
observed in the noise spectrum of Faraday rotation.
The high sensitivity of a polarimetric setup [2] ensured
recording of the EPR spectrum (with a narrow reso�
nance at ~ 1 MHz) by the successive spectrum accu�
mulation method with scanning using the standard
technique of low�frequency modulation of the reso�
nance frequency combined with lock�in detection.
The use of modern digital Fourier analyzers with par�
allel spectrum accumulation drastically reduced the
spectrum accumulation time, made possible the
observation of EPR spectra in a number of solid
objects [3], and also extended the frequency region of
the detected noise signal up to a few gigahertz. In addi�
tion, digital Fourier analyzers can be used to observe
the response of a system to the noise modulation of the
probe light [4–8]. Such measurements not only give
information on the EPR spectrum of the system but
also make it possible to estimate the parameters
describing its interaction with light. All this suggests
that noise spectroscopy, which was initiated in [1], will
in the near feature undergo a rebirth based on new
instrumental equipment with unique possibilities. For
this reason, the search for new objects for noise spec�
troscopy (one of them is considered below) is of cur�
rent interest.

The features of the frequency spectrum of the noise
signal observed in the above�mentioned works were, as
a rule, related to the magnetic structure of spin states
of the system under study. At the same time, magnetic

spin systems do not exhaust the variety of noise spec�
troscopy objects, and in this paper we present an
example of a nonmagnetic optical system with noise
that can be observed using the above�mentioned
equipment. We describe the noise modulation of the
intensity of quasi�monochromatic light transmitted
through an optical microresonator. The modulation
appears due to thermal fluctuations in the microreso�
nator thickness (and, hence, its resonance frequency).
According to calculations presented in our paper, this
effect can be experimentally observed with the above�
mentioned digital spectrum analyzer. In this paper, we
only consider the possibility of observing this effect
and do not discuss its informative properties. Note
that, although effects similar to that described here
have been studied earlier to estimate the sensitivity of
laser interferometers in gravitational�wave detectors
[9, 10], as far as we know, the noise of a thin interfer�
ometer in the context of noise spectroscopy has not
been analyzed so far.

Let us explain in more detail the concept of the
effect. Consider an optical resonator (a Fabry–Perot
interferometer) consisting of two mirrors separated by
distance L. If the reflection coefficient of the mirrors
is close to unity, the frequency dependence of the
transmission coefficient I/I0 of such a resonator can be
written in the form

(1)

Here, I0(I) is the intensity of a plane monochromatic
wave with frequency ω at the input (output) of the
interferometer and ω0 = πc/L is the resonance fre�
quency of the interferometer (c is the speed of light in
the medium between mirrors). The width Δ of the
transmission spectrum of the interferometer is deter�
mined by the reflection coefficient of mirrors, and
quality factor Q for real microresonators, defined as

I
I0

��� Δ2

Δ2 ω ω0–( )2+
�����������������������������.=
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Q ≡ ω0/Δ, can be on the order of 1000 or more. The
change L  L + ξ in the resonator thickness causes
the change ω0  ω0 + δω0 in its resonance frequency,
the relation  =  being fulfilled for ξ/L �
1. Taking this into account, we can easily see from (1)
that the relative change  ~ 1/Q in the resonator
length leads to the change in its transmission coeffi�
cient on the order of unity and can easily be detected.
In this case, the absolute value of the change in thick�
ness ξ for typical values of the optical microresonator
parameters L = 0.25 μm and Q = 1000 is on the order
of the atom size (ξ ~ 0.25 nm). Such a high sensitivity
of the optical resonator transmission to the change in
its parameters is used in physical experiments (see,
e.g., [11]) and suggests the possibility of observing
fluctuations of the resonator transmission caused by

thermal vibrations of the resonator thickness.
1
 Ther�

mal vibrations of the resonator thickness should give
rise to the intensity noise of quasi�monochromatic
light transmitted through the resonator, and to eluci�
date the possibility of observing this noise, its intensity
should be compared with that of the shot noise of the
light used in experiments. The corresponding calcula�
tions are presented in the next section.

2. MODEL CALCULATIONS

Calculation of the noise spectrum of a microreso�
nator performed in this section is based on an
extremely simplified model of the latter and, of
course, does not pretend to detailed correspondence
to a real optical system. The aim of this calculation is,
first, to qualitatively describe the dependence of the
noise spectrum on the experimental and microresona�
tor parameters (the light beam intensity and diameter,
the optical and acoustic Q factors of the microresona�
tor, etc.) and, second, to quantitatively estimate the
noise intensity in the spectral region where it consid�
erably differs from zero.

Let us consider an optical resonator consisting of a
medium layer L in thickness covered by thin mirrors.
Let a monochromatic light beam with intensity I0 and
frequency ω be incident on the resonator. We will
denote the area of a light spot on the resonator layer by

D2 and the resonator quality factor by Q = ω0/Δ.
2
 We

1 Fluctuations in the resonance frequency of a microresonator are
determined by a change in its optical thickness. Fluctuations in
the geometrical thickness of the resonator lead to out�of�phase
fluctuations in the material density of the resonator, resulting in
fluctuations in the refractive index. This effect can reduce the
sensitivity of the resonator frequency to variations in its thick�
ness. However, the total compensation of the sensitivity is very
improbable, and we will neglect this effect in our estimates pre�
sented below.

2 The quality factor determined from the halfwidth of the trans�
mission spectrum can depend on the transverse size D of the
beam; however, in the case of normal incidence this dependence
is weak.

δω0/ω0 ξ/L

ξ/L

will select the coordinated system so that the resonator
plane would coincide with the xy plane. Then, the res�
onator thickness will be a function of x and y, which we
represent as the sum of the constant average thickness
L and small thermal fluctuations ξ(t, x, y). We will
assume that the resonance frequency of the resonator
is determined by its thickness averaged over the light

spot area D2.
3
 Then, the intensity fluctuation δI of

light transmitted through the resonator can be written
in the form

(2)

The maximum value of the factor G(ω)

is obtained when ω = ω0 – Δ.
We are interested in the noise spectrum S(ν) of the

light intensity transmitted through the resonator. The
function S(ν) is related to the correlation function

 by the expression

(3)

Using expression (2), we obtain for  the
expression

(4)

To calculate the correlation function
 entering (4), it is necessary to

(i) specify a model of the motion of the resonator
material, (ii) obtain the corresponding Hamiltonian
H, and (iii) perform averaging in expression (4) with a
thermodynamically equilibrium distribution function
proportional to exp[–H/kT].

To describe the dynamics of the resonator material,
we will use the simplest model according to which the
motion of the resonator material represents weak
sound waves. We will assume that the resonator is
located in the region z ∈ [0, L], x ∈ [0, a], and y ∈
[0, b]. The optical transmission spectrum of the reso�
nator depends on a change in its thickness in the z
direction, and therefore we are interested only in the z

3 If the average thickness of the resonator within the light spot did
not change, it is impossible to say in the linear in deformation
approximation whether the resonator transmission increased or
decreased. In this case, the change in transmission is caused by
scattering, which we do not consider here.

δI G ω( ) x yξ t x y, ,( );dd

D
2
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D
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D
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projection of the displacement of the resonator mate�
rial. According to the accepted model, this displace�
ment represents the sound field u(x, y, z) satisfying the
wave equation

(5)

where v is the speed of sound in the resonator mate�
rial. Energy related to sound field u(x, y, z) is deter�
mined by the expression

(6)

Here, ρ is the density of the resonator material and γ is
a constant describing the density of the elastic defor�
mation energy. The relation between this constant and
speed of sound v will be presented below. Direct sub�
stitution shows that the expansion of the solution of
Eq. (5) in normal modes (i.e., in solutions to Eq. (5)
harmonically dependent on time) satisfying the
boundary conditions

(7)

corresponding to zero mechanical stress at the resona�
tor boundaries has the form

(8)

where p, n, and m > 0 are integers; the degrees of free�
dom of the sound field (generalized coordinates) upmn

satisfy the equations of motion

(9)

Using (8), we will express energy E (6) in terms of the
degrees of freedom upmn:

(10)

To obtain the Hamiltonian corresponding to energy
(10), we should introduce generalized momenta ppmn

conjugated to generalized coordinates upmn so that

∂2u

∂t2
������ v

2Δu,=

E x y z ρu· 2

2
������� γ

2
�� ∂u

∂x
�����⎝ ⎠

⎛ ⎞
2

+
⎩
⎨
⎧

ddd∫=

+ ∂u
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2 ∂u
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2

⎭
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.+
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0,= = =
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b
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L
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2
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∑=

equations of motion (9) will have the form of the
Hamilton equations:

(11)

By setting

and expressing energy (10) in terms of ppmn and upmn as

(12)

where M ≡ ρV is the resonator mass, we can easily ver�
ify that equations of motion (9) are equivalent to (11).
Thus, (12) is the required Hamiltonian.

Using Hamiltonian (12), we can write the distribu�
tion function σ({ppmn}, {upmn}) of generalized coordi�
nates upmn and momenta ppmn in the thermodynami�
cally equilibrium state with inverse temperature β =
1/kT in the form

(13)

where Z is the normalization constant. Using (8) to
express the local change ξ(t, x, y) in the resonator
thickness in terms of degrees of freedom upmn as

(14)

where p, m, n > 0, we obtain the correlation function
in (4) in the form

(15)

Because the distribution function is factorized in
degrees of freedom upnm (i.e., the degrees of freedom
are independent random quantities, moreover, with
zero averages), the double sum in Eq. (15) is replaced
by the single sum and the nondiagonal averages drop
out. We obtain

(16)

We calculate a correlator of the type  (indi�
ces are omitted for compactness). Because the degrees

∂H
∂upmn

����������� p· pmn, ∂H
∂ppmn

����������– u· pmn.= =
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8
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H
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of freedom satisfy the equation of motion  = –ω2u,
we can write u(t) in the form

(17)

The velocity (0) in the last term in (17) is propor�
tional to the corresponding generalized momentum,
which is a random quantity independent of u. There�
fore,  = 0, and we obtain

(18)

By introducing the notation α ≡ Mω2/16kT, we find
from (12) and (13) that

(19)

Thus, by using (16), we obtain

(20)

Let us now take into account that we assume that the
dimensions a and b are large, i.e., a, b � L. This allows
us to pass from summation over p and m to integration.
Introducing notations [πp/a] ≡ A and [πm/b] ≡ B, we
obtain

and

(21)

Because expression (4) contains correlation function
(21) averaged over the light beam area, it is convenient
to introduce the function F(A, B), defined as

(22)

u··
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∫
n

∑

× By( ) Ax'( ) By'( ).coscoscos

F A B,( ) x y Ax[ ] By[ ].coscosdd

D
2

∫≡

Then, taking into account that

we obtain from (3), (21), and (22) the required spectral
density S(ν) of noise in the form

(23)

Here, the “odd” symbol shows that summation is per�
formed over odd n. Using the presence of the delta
function, we can perform integration over B to finally
obtain

(24)

Here, ρ ≡ M/abL is the density of the interferometer
material, and integration is performed in the region of
variable A where the radical in (24) is real. Obviously,
the contribution of the nth mode is nonzero only for
ν > [πnv/L]. As mentioned above, the maximum value
of G(ω) is obtained when the interferometer is tuned to
the “slope,”

In this case, the noise intensity is maximal,

(25)

To make quantitative estimates, we can assume that
the light beam has a square cross section, i.e., x ∈
[a/2 – D/2, a/2 + D/2] and y ∈ [b/2 – D/2, b/2 + D/2].
In this case, function F(A, B) (22) can be obtained in
explicit form:

Note that rapidly oscillating terms of the type
cos2[Bb/2] appearing in the expression for F2(A, B)
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can be replaced by their averages, i.e., by 1/2. Taking
this into account, we can assume that

(26)

The calculations presented here are performed for
the case of the “infinite lifetime” of acoustic vibrations
in the resonator material, and it is for this reason that
correlation function (18) does not decay. Taking into
account the decay of acoustic vibrations and the parity
of the correlation function in time, we obtain the cor�
relator in the form

(27)

where τ is the decay time of acoustic modes. The noise
spectrum S

τ
(ν) in this case is the convolution of (25)

with a Lorentzian with a width equal to τ–1.
4
 

(28)

3. POSSIBILITY OF OBSERVING 
MICRORESONATOR NOISE

The most popular optical microresonator is a Bragg
resonator: a Fabry–Perot interferometer consisting of
two Bragg mirrors separated by a half�wave gap.
Although such microresonators are multilayer struc�
tures, the noise intensity of transmitted light can be
estimated from expressions (25) and (28) for the fol�
lowing reason. An important feature of a simple sin�
gle�layer model is that both optical and acoustic waves
are localized in the same layer of a material, which is a
resonator both for optical and acoustic waves. A simi�
lar situation can also take place in real Bragg resona�
tors because an optical Bragg mirror also has an acous�
tic “stop band” and can efficiently reflect acoustic
waves at the corresponding frequencies. In this case,
the half�wave (for optical waves) gap between two
Bragg mirrors can form an acoustic resonator whose
properties can be approximately described by the sin�
gle�layer model considered in the previous section.
Quantitative estimates show that for a typical half�
wave Bragg microresonator with λ0 = 2πc/ω0 =
800 nm consisting of TiO2 titanium oxide and SiO2 sil�
icon oxide layers, the frequency of the lowest acoustic
mode is 10 GHz and falls within the acoustic stop band
of Bragg mirrors.

Taking into account the above discussion, we will
specify the following values of parameters entering
expressions (25) and (28): L = 0.276 μm, I0 = 0.1 W,
Q = 1000, v = 5570 m/s (SiO2), and ρ = 2000 kg/m3

(SiO2). For these parameter values, the frequency of

4 As we will see, the noise spectrum proves to be localized in a suf�
ficiently narrow spectral region, where the frequency depen�
dence of τ can be neglected.

F2 A B,( ) 1

A2B2
��������� AD

2
������⎝ ⎠

⎛ ⎞ BD
2

������⎝ ⎠
⎛ ⎞ .sin

2
sin

2
=

u 0( )u t( )〈 〉 u2 0( )〈 〉 ωt[ ] t
τ
��–⎝ ⎠

⎛ ⎞ ,expcos=

Sτ ν( ) τ
π
�� S ν ' ν–( )

1 ν 'τ[ ]2+
������������������� ν '.d∫=

the lowest acoustic mode (n = 1) is estimated as ν1 =
v/2L ≈ 10 GHz. As is seen from (25) and (28), the
noise intensity increases with decreasing light spot size
D. We will set D = 10 μm for our calculations. This spot
size does not contradict the quality factor Q = 1000 of

the transmission spectrum.
5
 To estimate decay time τ

of acoustic vibrations in (28), we will take into account
that the quality factor of quartz resonators at frequen�
cies of about 108 Hz can be on the order of 104–105.
At frequencies ~1010 Hz, which are of current inter�
est here, a decrease in the quality factor of acoustic
vibrations should be expected and therefore we will
set in our estimates an acoustic mode quality factor
an order of magnitude lower than 104–105, i.e.,
approximately 103. In this case, τ is estimated from
the relation 2πν1τ ~ 103.

To elucidate the possibility of observing the noise
intensity of light transmitted through a microreso�
nator, the noise intensity (determined by expres�
sions (25) and (28)) should be compared with the shot
noise of light:

(29)

The results of such a comparison are shown in figure,
which presents the noise spectra in the region of the
lowest acoustic mode (n = 1) calculated for infinite
(oscillating curve S(ν)) and finite (smoothed curve
S
τ
(ν)) decay times τ of acoustic vibrations. The hori�

zontal straight line shows the shot noise level (29) of
the light used. Because the shot noise spectrum of light
with relative fluctuations of about 1% can be recorded

using modern digital spectrum analyzers
6
 with an

accumulation time on the order of a few seconds,
there is good reason to believe that this effect can be
detected even in the case when the estimates presented
above are overstated by one to two orders of magni�
tude.

4. CONCLUSIONS

The spectral noise density of the light intensity
transmitted through a microresonator has been calcu�
lated. It has been shown that the spectral density has a
maximum at the frequency of acoustic vibrations of
the resonator, which is similar to a Raman line. Our

5 A further decrease in D by focusing can be accompanied by a
decrease in the quality factor, which occurs due to an increase in
the uncertainty of the angle of incidence. However, for normal
incidence of a focused beam, this effect is comparatively weak
because in this case the transmission coefficient of the interfer�
ometer quadratically depends on the angle of incidence.

6 The spectral region of modern spectrum analyzers is limited by
frequencies ~ 1–2 GHz. Therefore, to observe a noise signal at
frequencies of ~10 GHz described in the paper, the correspond�
ing transfer of the spectrum should be performed. A similar
problem is solved in satellite TV systems by using heterodyne
converts, which can be also used in the given case. In addition,
the spectrum can be transferred by modulating a light beam,
which takes place in mode�locked lasers.

Ssn I0�ω0.=



754

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS  Vol. 116  No. 5  2013

KOZLOV

quantitative estimates have shown that the noise
appearing due to the mechanism considered in the
paper can be detected using the modern noise spec�
troscopy technique.

As mentioned above, discussion of the informative
properties of the effect described in the paper is
beyond the scope of the paper, and here we present
only a few brief remarks on this subject. Thermal
vibrations are usually considered an interfering factor
restricting the operational stability of instruments
(see, e.g., [12]). Our calculation has shown that the
noise spectrum of the light intensity transmitted
through the microresonator is related to the spectrum
of acoustic vibrations of the structure and therefore
contains information similar to that obtained in

Raman scattering experiments. Observation of the
dependence of the noise spectrum on the light spot
diameter will allow us to judge the validity of the sim�
ple model used in the paper, which neglects, e.g., the
disorder of a real structure and possible localization of
acoustic waves in the plane of layers. Finally, observa�
tion of the noise correlation function for two separated
light beams can probably be used to estimate the radius

of localized acoustic vibrations of the structure.
7
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Noise spectrum of light intensity transmitted through a
microresonator. Parameter values: microresonator thick�
ness L = 0.276 μm, quality factor of resonator transmission
spectrum Q = 1000, and light beam intensity I0 = 0.1 W.
Calculation is performed in spectral region of lowest
acoustical mode ν0 ≈ 10 GHz of resonator. Oscillating
curve S(ν) is the noise spectrum for infinite phonon life�
time τ = ∞. Smoothed curve S

τ
(ν) is the noise spectrum for

2πν0τ = 2000. The horizontal straight line is shot noise
level of light.


