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The signal registered by a plane photodetector placed behind an optically inhomogeneous object irradiated by
two coherent Gaussian beams intersecting inside the object at a small angle to each other is calculated in the
single-scattering approximation. In the considered arrangement, only one of the beams hits the detector and
serves as the local oscillator for heterodyning the field scattered by the other beam (not hitting the detector).
The results of analytical calculation show that the signal detected in this way is contributed only by the region
of the inhomogeneous object where the two beams overlap. By moving the scatterer with respect to the overlap
region and monitoring the heterodyned signal, with the aid of the derived expression, one can reconstruct the
refractive-index relief of the scatterer. We also propose a simple method of spatial mapping of the sample that
allows one to estimate the magnitude and characteristic dimensions of the inhomogeneities. © 2018 Optical

Society of America

OCIS codes: (110.4500) Optical coherence tomography; (110.6955) Tomographic imaging; (110.6960) Tomography; (290.5870)

Scattering, Rayleigh; (290.5825) Scattering theory.
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1. INTRODUCTION

Heterodyning is known to be an efficient method of detecting
weak signals. In the simplest case, the heterodyning implies
summation of a weak signal E1 to be detected with a strong
signal of fixed amplitude E0 created by the local oscillator with
subsequent measurement of the obtained sum squared:
S � E2

0 � 2E0E1 � E2
1. Under these conditions, the contribu-

tion linear in E1 (carrying all the information about the weak
signal E1) proves to be proportional to the controllable ampli-
tude E0 that may be increased, thus increasing sensitivity of
detecting the signal E1. The heterodyning method is widely
used nowadays in radio-electronics, microwave technique,
and optics [1–5]. In optics, for the heterodyne detection of
a weak field E1 using conventional photodetectors (PDs) (pho-
todiodes or photomulotipliers), it suffices to apply a strong field
E0 to the same detector. Then, the output signal S of the
detector proportional to total intensity I of the detected field
will contain the above contribution bilinear in the field
amplitudes S ∼ I ∼ �E1 � E0�2 � E2

0 � 2E0E1 �….
One important problem that is often solved with the aid of

heterodyning is related to tomography, which implies detection
of optical fields arising upon scattering of laser beams in an

inhomogeneous medium with subsequent restoration of spatial
relief of the inhomogeneity [6–11]. A specific feature of optical
heterodyning is that dimensions of the photosensitive surface of
the PD, as a rule, considerably exceed the light wavelength,
and, therefore, when calculating the output signal of the
detector, one has to take into account the effects of spatial
interference of the fields of signal and local oscillator.

In this work, we present analysis of heterodyne detection of
optical scattering in the two-beam arrangement [12–14] of
collinear heterodyning [15]. In this arrangement, the two
beams (the main and the tilted), intersecting at a small angle
Θ < 1 rad at some point inside the sample, are obtained from
the same laser. The PD, in its chosen position, directly detects
only the main beam transmitted through the sample. Under
these conditions, this beam plays the role of the local oscillator
needed to detect the scattered light that also hits the PD
(Fig. 1). In papers [12–14], the two-beam arrangement was
used for 3D recording and reading of information. In those
studies, for spatial selection of the recorded holograms, frequen-
cies of the beams were different.

In the present paper, we analyze possibility of using such an
arrangement for tomography and mapping of scattering media
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[16–18]. We show that it is possible to use, for these purposes,
the beams of the same frequency obtained from the same laser
source (what is often called homodyning). The analysis is based
on Eq. (18) (see below) that associates the heterodyned scatter-
ing signal with spatial overlap of the two beams. In spite of the
fact that the collinear heterodyning is well known and has
been actively studied earlier, we did not manage to find in the
literature the simple equation [(18)] that allows one to
formulate and solve the problem of tomography of optically
inhomogeneous transparent media.

It is interesting to note similarity between such experiments
on light scattering and those of the spin-noise spectroscopy—a
new direction of research developed during the last decade
[19–23]. The signal formation in the spin noise spectroscopy
can be considered as heterodyning of the field scattered on fluc-
tuations of gyrotropy [24]. The two-beam arrangement of
the spin-noise experiments and its informative capabilities are
described in Ref. [25].

The paper is organized as follows. In the theoretical part, we
calculate, in the single-scattering approximation, the hetero-
dyned scattering signal (HSS) detected in the above two-beam
arrangement for the sample with weak inhomogeneity of its re-
fractive index. We show [Eq. (18)] that, in the case of a linear
weakly inhomogeneous medium, the HSS is formed only by the
region of spatial overlap of the beams. For this reason, bymoving
the sample and detecting the HSS, it is possible to restore the
profile of susceptibility (refractive index) in the sample. The
calculations are illustrated in the experimental part of the paper.
A simple setup for detection of the HSS described in this section
makes it possible to perform mapping of inhomogeneous trans-
parent objects.We show that from the 2D images thus obtained,
one can evaluate characteristic dimensions and magnitude of
optical inhomogeneities of the sample under study. In the con-
clusion of the paper, a brief comparison of the described tomog-
raphy technique with the existing ones is given.

2. TWO-BEAM ARRANGEMENT FOR
DETECTION OF SCATTERING: BASIC
EQUATIONS

A schematic of the two-beam detection of the HSS is shown in
Fig. 1. The two coherent laser beams (the main and the tilted)
with the frequency ω are incident on the sample and excite the
scattered field E1�r�, which is registered by the PD located at a
distance L from the sample. The main beam, after passing

through the sample, is also incident on the PD. The field E0�r�
of this beam plays the role of a local oscillator for detection of
the scattered field E1�r�.

In what follows, we will use the complex electromagnetic
fields dependent on time as e−ιωt , assigning physical sense only
to their real parts, which will be denoted by the corresponding
calligraphic characters. In addition, we will assume, in the
calculations, that the scattering sample is positioned near the
coordinate origin and has a characteristic size l s much smaller
than the distance to the PD L.

In the chosen coordinate system, the xy plane is aligned par-
allel to the photosensitive surface of the PD, and the axis z is
collinear with the main beam propagation direction. Let us
define the output signal U of the PD as a square of the total
electric field E�r� � E1�r� � E0�r� on the surface of the PD
averaged over the period 2π∕ω of the optical oscillation and
integrated over the photosensitive surface of the detector S:

U � ω

2π

Z
2π∕ω

0

dt
Z
S
dxdy�ReE�x; y; L��2

≡
ω

2π

Z
2π∕ω

0

dt
Z
S
dxdy�E�x; y; L��2: (1)

The HSS we are interested in is the contribution δU into
the output signal of the PD linear in the scattered field strength.
One can see that this contribution is given by the expression

δU � ω

π

Z
2π∕ω

0

dt
Z
S
dxdy�E1x�x; y; L�E0x�x; y; L�

� E1y�x; y; L�E0y�x; y; L��: (2)

Here, in conformity with the notations accepted above,
E0�x; y; L� ≡ ReE0�x; y; L� and E1�x; y; L� ≡ ReE1�x; y; L�.
Thus, to calculate the HSS, we have to find the field E1�r�,
using the fields of the main E0�r� and the tilted Et

0�r� beams,
to take its real part E1�r�, and to calculate integrals (2).

Now, we present expressions for electric fields of the main
and tilted beams that we will further use in our calculations.
Assuming that the main beam is Gaussian and propagates along
the z axis, we can use the expression for the electric field of such
a beam from [25]:

E0�r� � eι�kz−ωt�
ffiffiffiffiffiffiffiffi
8W
c

r
kQ

�2k � ιQ2z�

× exp
�
−
kQ2�x2 � y2�
2�2k � ιQ2z�

�
d ≡ A0�r�e−ιωt ; (3)

where r � �x; y; z�. Polarization of the beam is specified by the
unit Jones vector d, and, for the beam (3), this vector has only x
and y components. This follows from transversality of the
electromagnetic wave and changes of polarization at the edges
of the beam are neglected. For definiteness, we assume that the
main beam is polarized linearly along the x: d � �1; 0; 0�. The
field of the tilted beam, Et

0�r�, can be obtained from that of
the main beam by rotation around the x axis by a small angle
Θ with a shift δr ≡ �δx; δy; δz�:

Et
0�r� � eι�kZ−ωt�ϕt �

ffiffiffiffiffiffiffiffiffi
8W t

c

r
kQ

�2k � ιQ2Z �

× exp
�
−
kQ2�X 2 � Y 2�
2�2k � ιQ2Z �

�
dt ≡ At

0�r�e−ιωt ; (4)

Fig. 1. Two-beam arrangement for heterodyne detection of optical
inhomogeneity.
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where0
@ X

Y
Z

1
A ≡ R̂r� δr; R̂ ≡

0
@ 1 0 0

0 cos Θ sin Θ
0 − sin Θ cos Θ

1
A: (5)

The phase of the tilted beam may be shifted with respect to
that of the main beam (e.g., using the time delay line). This
shift is denoted by ϕt. Polarization of the tilted beam is speci-
fied by the unit vector dt, which can be chosen with no regard
for d (retaining transversality of the beam field). At small Θ, the
tilted beam evidently also has only x and y components. In
Eqs. (3) and (4), the quantities W and W t are the intensities
of the main and tilted beams, respectively, c is the speed of light,
and Q ≡ 2∕ρc , where ρc is the beam radius on the e-level of the
field in the beam waist. Also, in Eqs. (3) and (4), we introduced
time-independent amplitudes of the fields A0�r� and At

0�r�.

3. CALCULATING THE HSS IN THE
SINGLE-SCATTERING APPROXIMATION

Let us pass to mathematical formulation of the scattering prob-
lem that should be solved to employ Eq. (2). The scattering sam-
ple is supposed to be characterized by a spatially inhomogeneous
polarizability α�r�, which will be considered scalar and small
jα�r�j ≪ 1. Generalization for the case of tensor susceptibility
will be presented below. This function is nonzero in the spatial
region whose characteristic dimensions l s are considered to be
small as compared with the distance L from the sample to
the detector, L ≫ l s (Fig. 1). In this case, when the electromag-
netic field varies with time as∼e−ιωt , Maxwell’s equations lead to
the following expressions for the electric field and polarization:

ΔE� k2E � −4πk2P − 4π grad div P;

P�r� � α�r�E�r�; (6)

where k � ω∕c � 2π∕λ (λ is the wavelength of the light with
the frequency ω). In the single-scattering approximation, the
solution of this equation is usually represented in the form of
power series over α�r�, retaining only terms of zeroth and first
order (which is possible when jα�r�j ≪ 1). As the zero-order
terms, one should take the fields of the main and tilted beams.
Then, for the part of the scattered field E1�r� arising due to
scattering of the tilted beam and the part of the scattered field
proportional to that of the main beam E0 (r), for transparent
media, does not contribute to the HSS. With this one can easily
obtain the following inhomogeneous Helmholtz equation:
ΔE1 � k2E1 � −4πk2α�r�Et

0�r� − 4π grad div α�r�Et
0�r�, with

its right-hand side representing a sum of two terms.We will per-
form calculations only for the first term that, at small angles Θ,
provides the main contribution to the HSS. The role of the sec-
ond term, in this case, proves to be small, which can be ascer-
tained by making calculations similar to those presented
below. As will be shown below, the HSS is controlled only by
the region of the sample where the main and tilted beams over-
lap. In our experiments, this is the region of overlap of the main
and tilted beam waists. In our experiments, for the typical angles
Θ ∼ 0.1–0.2 rad, dimensions of this region did not exceed the
Rayleigh length zc ≡ πρ2c ∕λ � 4π∕Q2λ, which was about
2 mm. For this reason, for the experiments described below,
we may assume that the HSS is formed by the region of overlap

of the beam waists in the sample (i.e, regions of quasi-cylindrical
shape). Thus, to find the scattered field E1�r� produced by the
tilted beam, we have to solve the inhomogeneous Helmholtz
equation:

ΔE1 � k2E1 � −4πk2α�r�Et
0�r� ≡ −4πk2Pt�r�: (7)

The solution of this equation can be obtained using Green’s
function Γ�r� of the Helmholtz operator: Γ�r� � −eιkr∕4πr
and has the following form:

E1�r� � k2
Z

eιkjr−Rj

jr − RjP
t�R�d3R: (8)

For further calculations, it is convenient to introduce the
function Φ�R� defined by the equation:

Φ�R� ≡
Z
S
dxdyE0x�x; y; z�

eιkjr−Rj

jr − Rj

����
z�L

: (9)

Here, the integration is performed over the surface of the PD,
whose dimensions we assume to be large as compared with the
size of the main beam spot on the detector. This allows us, in
the calculations, to consider the integration limits infinite. The
function Φ�R� has the sense of the field created by a flat
polarized layer located on the surface of the detector S, with
the spatial dependence of “polarization” of this layer being con-
trolled by the field of the main beam E0x�x; y; L� on the surface
of the detector. This is why we can suppose that the field Φ�R�
will be similar to that of the main beam and hence will re-
present the beam converging at the coordinate origin, which
will be proven below. Using Eq. (2), one can easily show that
the observed HSS δU is expressed through the introduced
function Φ�R� as follows:

δU � k2 Re
ω

π

Z
2π∕ω

0

dt
Z

d3RΦ�R�Pt
x�R�: (10)

It follows from this equation that the HSS δU is determined
by overlap of the fieldΦ�R� (which, as we suppose, is similar to
the field of the main beam E0x�R�) with the field of the tilted
beam Et

0�R� [since Pt
x�R� � α�R�Et

0x�R�]. Let us calculate the
function Φ�R� (9) at large L. When the size of the main beam
spot on the PD surface (this size can be calculated as
LQ∕k � Lλ∕πρc) is much smaller than L, the real part of
the field of the main beam on this surface E0x�x; y; L� is given
by the expression

Ex0�x; y; L� �
ffiffiffiffiffiffiffiffi
8W
c

r
k
QL

sin

�
kL − ωt � k�x2 � y2�

2L

�

× exp
�
−
k2�x2 � y2�

Q2L2

�
; (11)

which can be obtained from Eq. (3) at jxj; jyj ≪ L. Using the
fact that L is much larger than all dimensions of the problem,
we can simplify Eq. (9) for Φ�R� and distinguish explicitly the
factors e�ιωt :

Φ�R� � 1

L

Z
S
dxdyE0x�x; y; z�eιkjr−Rj

���
z�L

≡ e−ιωtΦ��R� � eιωtΦ−�R�: (12)

Below, we will need only the function Φ−�R� since
Pt
x�R� ∼ e−ιωt , and only Φ−�R� will survive upon averaging
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over the light wave period in Eq. (10). Using Eqs. (9) and (12),
we can obtain, for the function Φ−�R�, the expression

Φ−�R� � −

ffiffiffiffiffiffiffiffi
8W
c

r
k

2ιQL2
e−ιkLI −; (13)

where I − represents the following integral:

I − � L2
Z

dξdη exp N
�
ι

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 � η2 � �1 − Rz∕L�2

q

− w��ξ� ρx �2 � �η� ρy �2�
�
: (14)

Here, we introduced the following notations: ξ ≡ x∕L; η≡
y∕L; ρx ≡ Rx∕L; ρy ≡ Ry∕L;N ≡ kL ≫ 1; w ≡ ι∕2� k∕LQ2 �
ι∕2� zc∕2L (where zc � πρ2c ∕λ—is the Rayleigh length,
ρc—is the beam radius on e-level of its waist). It can be shown

that I − depends on ρ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2x � ρ2y

q
, and, upon integration over

the sample volume in Eq. (10), the following condition is
satisfied: ρ ∼ l s∕L ≪ 1. The integrand in Eq. (14) is essen-
tially nonzero in the region with dimensions of about
jN Rewj−1∕2 � λ∕πρc ≪ 1. Since Rz∕L ∼ l s∕L ≪ 1, the
quantity H ≡ 1 − Rz∕L is ∼1. These estimates show that the
square root in Eq. (14) can be expanded as follows:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ξ2 � η2 � �1 − Rz∕L�2
p

� H � �ξ2 � η2�∕2H . After that,
the integral (14) is reduced to the product of two independent
Gaussian integrals in ξ and η, with each of them calculated
using the formulaZ

dx exp�−αx2 � βx� �
ffiffiffi
π

α

r
exp

�
β2

4α

�
: (15)

This formula is valid at arbitrary complex β and at Re α > 0.
We see that, as was supposed above, the function Φ−�R� is
expressed through the main beam amplitude A0x�R�:

Φ−�R� � −
ιπ

k
A	
0x�R� jRj ≪ L: (16)

By substituting this to Eq. (10), we come to the following
expression for the HSS:

δU � 2πk Im
Z

d3rA	
0x�r�α�r�At

0x�r�; (17)

where A0x�r� is given by Eq. (3). In the above calculation of the
HSS, the susceptibility α�r� was assumed scalar and the main
beam polarized along the x axis. In the general case of tensor
susceptibility and an arbitrarily polarized main beam, similar
calculations give the following general expression for the HSS:

δU � 2πk Im
Z

d3r�A0�r�; α̂�r�At
0�r��; (18)

where the amplitudes A0�r� and At
0�r� can be calculated using

Eqs. (3) and (4), with the scalar product given by the standard
relation �A0; α̂At

0� ≡ A	
0iαikA

t
0k. In the considered case of small

angles Θ between the main and tilted beams, in the scalar
product of Eq. (18), we can leave only x and y components
of the vectors playing, in this case, the main role.

In the above treatment, the tilted beam (creating the scat-
tered field) and the main beam (playing the role of the local
oscillator upon detection of the HSS) were considered to be
independent (of course, these beams are supposed to be coher-
ent). Let us show now that, in the case of the transparent scat-

terer, the HSS created by the main beam proper vanishes. To
calculate this HSS, we have to set the tilted beam field equal to
that of the main beam E0�r� ≡ Et

0�r�. For a transparent scat-
terer, the polarizability tensor is Hermitian αik�r� � α	ki�r�,
and, therefore, the quadratic form �A0�r�; α̂�r�A0�r�� entering
Eq. (18) is always real, and δU � 0. This result could be an-
ticipated, because the body inserted into the beam (even trans-
parent) can diminish intensity of the optical field only on the
detector placed behind this body. For this reason, this intensity
should be the even function of α�r� and, hence, in the single-
scattering approximation (linear in α�r�), the HSS should van-
ish. In the next section, we will show that, by moving the sam-
ple with respect to the fixed (main and tilted) beams and
detecting the HSS, it is possible (at least, in principle) to restore
relief of susceptibility of the sample α̂�r�.

4. APPLICATION OF THE HSS TO
TOMOGRAPHY OF TRANSPARENT
NONGYROTROPIC OBJECTS

Consider the possibility of application of the above approach
for optical tomography, i.e., for restoration of spatial relief of
optical susceptibility of inhomogeneous samples (scatterers).
The calculations will be performed for the typical (in our
experiments) values of ρc � 30 μm and Θ ∼ 0.1–0.2 rad. In
addition, it will be convenient to deal with the normalized
HSS δu ≡ δU∕U 0, where U 0 is the signal from the detector
irradiated by the main beam. The signal U 0 is calculated using
Eq. (1), where E�x; y; L� → Ex0�x; y; L�, with Ex0�x; y; L�
defined by Eq. (11). Taking into account that the aperture
of the detector substantially exceeds the size of the main beam
spot and integrating over dxdy, within infinite limits, we obtain
that U 0 � 2πW ∕c.

We will restrict our treatment to the case of a transparent
nongyrotropic scatterer, with the tensor α̂�R� being symmetric
and real Im α̂�R� � 0; αik�R� � αki�R�. Let us fix positions of
the main and tilted beams and replace the scatterer by the vector
−r. Then, the relief of the scatterer susceptibility will also be dis-
placed α̂�R� → α̂�R � r�, and, hence, the HSS will become a
function of r: δu → δu�r�. This function can be measured
and used to restore the unknown function α̂�r� in the following
way. Let us introduce a real tensor T̂ �R� defined by the equation

T ki�R� ≡
kc
W

ImA	
0i�R�At

0k�R�: (19)

One can see that this tensor is essentially nonzero when R
belongs to the region of overlap between the main and tilted
beams. Using Eq. (18), we can easily obtain for the HSS δu�r�
the expression

δu�r� �
Z

dr 0Sp α̂�r 0�T̂ �r 0 − r�; (20)

which represents a convolution-type integral equation for the
tensor function α̂�r�. By passing to the Fourier transform, this
equation can be reduced to the algebraic one and, in certain
cases, can be solved. Consider, e.g., the case in which the main
and tilted beams are polarized along the x axis. In this case,
the tensor T̂ �r� has the only nonzero component T xx�r� �
kc∕2W ImA	

0x�r�At
0x�r�, and Eq. (20) acquires the form
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δu�r� �
Z

dr 0αxx�r 0�T xx�r 0 − r�: (21)

We will denote the Fourier transforms of the functions
entering this equation by letters with tilde. For instance,
T xx�r� � �2π�−3 R eιqrT̃ xx�q�d3q. Then, by passing in
Eq. (21) to Fourier transforms, we have

α̃xx�q� �
δũ�q�

T̃ xx�−q�
: (22)

The region of overlap of the beams, under conditions typical
for our experiments (ρc � 30 μm and Θ ∼ 0.1–0.2 rad.),
appears to be essentially smaller than the Rayleigh length of
the beams. For this reason, when calculating the component
T xx�r� of the tensor T̂ �r�, the beams, in the region of their
overlap, may be considered as quasi-cylindrical, and we can
write

T xx�r� � −2kQ2

ffiffiffiffiffiffiffi
W t

W

r
sin

�
kz

Θ2

2
� kyΘ − ϕt

�

× exp
�
−
Q2

2

�
x2 � y2 � z2Θ2

2
� yzΘ

��
: (23)

We used here Eq. (5) for X ; Y ; Z at δr � 0 and small Θ.
From Eq. (23), one can see that the functionT xx�r� is essentially
nonzero in the region with dimensions estimated as 4∕QΘ �
2ρc∕Θ (along the z axis) and as 2

ffiffiffi
2

p
∕Q � ffiffiffi

2
p

ρc (in the xy
plane). For the beams used in our experiments, these quantities
are, respectively, ∼300 μm × 50 μm. Remember that the
angle Θ should be sufficiently small for applicability of the em-
ployed approximations of trigonometric functions and suffi-
ciently large enough to make sure that the region of beam
overlap does not exceed the Rayleigh length. This imposes
the following conditions upon the angle: 1 > Θ > λ∕πρc ,
which is well satisfied in our experiments. By performing the
Fourier transform of the function T xx�r� at ϕt � 0, we obtain

T̃ xx�q��
2ιk�2π�3∕2

QΘ

ffiffiffiffiffiffiffi
W t

W

r
exp

�
−
1

Q2

�
q2x
2
�
�
2qz
Θ

−qy

�
2
��

×
�
exp

�
−
�kΘ�qy �2

2Q2

�
− exp

�
−
�kΘ−qy�2
2Q2

��
: (24)

By measuring the spatial dependence of the HSS δu�r� and
calculating its Fourier image δũ�q�, we can calculate, using
Eqs. (22) and (24), the quantity α̃xx�q� and thus find spatial
relief of the xx component of the susceptibility tensor of the
sample: αxx�r� � �2π�−3 R d3qeιqrα̃xx�q�. By rotating the
polarization directions of the main and tilted beams by 90°
and making similar measurements of the HSS δu�r�, we can
obtain spatial relief of the yy component of the susceptibility
tensor αyy�r�, and, finally, by measuring the HSS δu�r� with
the main beam polarized along the x axis and the tilted beam
along the y axis, we can restore spatial relief of the xy compo-
nent αxy�r�.

In real experiments, we often have to distinguish between
the HSS and different spurious signals. For that purpose, it
is possible, e.g., to modulate intensity of the tilted beam (which
does not hit the detector) and to detect synchronous modula-
tion of the detected signal. Our experience shows that it is most
convenient, for this purpose, to slightly modulate the phase of

the tilted beam ϕt � ϕt0 sin Ωt;ϕt0 < 1. This can be made
either with the aid of a mechanically variable delay or using
a Pockels cell in the channel of the tilted beam. In this case,
the observed modulation of the HSS [denote it S�r�] varies
with time as

S�r� sin Ωt � ∂δu�r�
∂ϕt

ϕt0 sin Ωt; (25)

and can be easily distinguished as a component of the output
signal at the frequency Ω. When restoring the susceptibility re-
lief with the aid of the S�r� signal, one has to use the tensor
D̂ ≡ ∂T̂∕∂ϕt and its Fourier transform

D̃xx�q��2ϕt0k
�2π�3∕2
QΘ

ffiffiffiffiffiffiffi
W t

W

r
exp

�
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2
��

×
�
exp

�
−
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2Q2

�
�exp

�
−
�kΘ−qy �2
2Q2

��
: (26)

5. MAPPING OF THIN SAMPLES

When the sample is a plate normal to the z axis, with its
thickness h so small that the changes of the functions
T xx�r� and α̂�r� along the z direction within the plate thick-
ness can be neglected T xx�x; y; z�jz∈�−h∕2;h∕2� ≈ T xx�x; y; 0�,
α̂�r� → α̂�x; y�, then the above treatment can be simplified.
Let us introduce the susceptibility axx�x; y� averaged over
the beam along the x direction:

axx�x; y 0� ≡
Qffiffiffiffiffi
2π

p
Z

αxx�x 0; y 0�e−Q2�x−x 0�2∕2dx 0: (27)

Then Eq. (21) for the HSS obtained upon displacement
of the plate with respect to the region of beam overlap along
the y axis can be rewritten as follows:

δu�x; y� � −2hkQ

ffiffiffiffiffiffiffiffiffiffiffiffi
2πW t

W

r Z
dy 0axx�x; y 0�

× sin�k�y − y 0�Θ − ϕt � exp
�
−
Q2�y − y 0�2

2

�
: (28)

This is a one-dimensional convolution-type equation with re-
spect to axx�x; y� that, at a given x, can be solved by passing to
the Fourier transform over y variable. The signal in Eq. (28) can
be easily observed by placing the studied quasi-plane scatterer
onto a vibrator oscillating along the y axis. By smoothly moving
the vibrator with the scatterer along the x axis, one can record
the function δu�x; y� and thus restore the susceptibility relief
α̂�x; y� as it was described above.

In certain cases, however, one can get some idea about the
character and magnitude of the inhomogeneity using direct
mapping of the function δu�x; y� (or jδu�x; y�j). Let us illustrate
it by two model examples.

As the first example, let us consider a small scatterer with the
susceptibility α0 and area S0 < �λ∕Θ�2, with its center at x0; y0.
In this case, the spatial dependence of the susceptibility can be
presented in the form αxx�x; y� � S0α0δ�x − x0�δ�y − y0�.
Then, from Eqs. (27) and (28), we can obtain, for the HSS
detected from such a scatterer, the following expression:
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δu�x; y� � −2hkQ2α0S0

ffiffiffiffiffiffiffi
W t

W

r
sin�k�y − y0�Θ − ϕt �

× exp
�
−
Q2��y − y0�2 � �x − x0�2�

2

�
: (29)

Thus, when, upon moving of the sample in the y direction,
dependence of the HSS δu�x; y� reveals behavior of the type
(29) [26], it indicates the presence of a localized inhomogene-
ity. The volume to susceptibility product for this inhomogene-
ity can be estimated using Eq. (29):

A0 � 2hkQ2α0S0

ffiffiffiffiffiffiffi
W t

W

r
�

ffiffiffiffiffiffiffi
W t

W

r
16π

λρ2c
V α0

⇒ α0V � A0

ffiffiffiffiffiffiffi
W
W t

s
λρ2c
16π

: (30)

Here, V ≡ S0h is the scatterer volume. As the second example,
let us consider a thin plate extended in the xy plane uniformly
translated with respect to the beam overlap region in the y
direction with the velocity v. Inhomogeneity of the plate is si-
mulated by a set of identical point scatterers randomly arranged
in the xy plane with the mean surface density σ. In this case, the
HSS will depend on time δu → δu�t�, and for its calculation,
we have to set y � vt in Eq. (28). With no loss of generality, we
can assume that x � 0. By analogy with the previous example,
we can write for the susceptibility of the plate the expression

αxx�x; y� � S0
XN
i�1

αiδ�x − xi�δ�y − yi�: (31)

Here, xi and yi are independent random quantities uniformly
distributed over the intervals �−X ∕2; X ∕2� and �−Y ∕2; Y ∕2�,
respectively (X ; Y ≫ 2∕Q � ρc are dimensions of the plate
in the x and y directions), N is the total number of scatterers
with N∕XY � σ. In the simplest case of identical scatterers, all
amplitudes αi are the same αi � α0. In this case, Eq. (28)
acquires the form

δu�t� � −2hkQ2

ffiffiffiffiffiffiffi
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r
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2

�
: (32)

One can see that δu�t�, in this case, represents a random
process. Standard calculation of the correlation function of this
process hδu�t�δu�0�i yields the following result:

hδu�t�δu�0�i � 8�hkS0α0�2
W t

W
πσ

ρ2c
exp

�
−
v2t2

ρ2c

�
cos�kΘvt�:

(33)

Equation (33) shows that the random process δu�t�, in the
considered case, is spectrally localized in the vicinity of the fre-
quency Ω0 � kΘv and represents random oscillations at this
frequency with characteristic amplitude A0 ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hδu�0�δu�0�i

p
.

This amplitude can be easily estimated in a real experiment and
used to express parameters of the considered model of the
random scatterer:

A0 ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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Figure 2 shows oscillograms of the HSS δu�t� obtained from
a thin glass plate using the above method. They, indeed, show
oscillations at the frequency Ω0 � kΘv and often, at least
qualitatively, can be referred to one of the two types of scatterers
considered above: localized [Fig. 2(a)] and extended [Fig. 2(b)].

The informative potential of the proposed method of map-
ping can be estimated using numerical modeling, which was
carried out as follows. The distribution of susceptibility of a

Fig. 2. Oscillograms of the HSS δu�t� obtained from a thin glass
plate mounted on the vibrator oscillating in the plane of the main and
tilted beams. Two types of scatterers are presented: localized (a) and
extended (b).

Fig. 3. Numerical modeling of the mapping. The modeling param-
eters are the following: radius of the optical beams ρc � 30 μm, angle
between the beams Θ � 0.1 rad, defect density σ � 0.00037 μm−2

(a), (b), σ � 0.0037 μm−2 (c), (d). The dimensions of each image
are 450 × 450 μm2.
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plane scatterer was obtained using Eq. (31), where the ampli-
tudes αi were assumed to be random variables uniformly
distributed over the interval �−1; 1�. The signal recorded in
the mapping procedure described above was calculated as
jδu�x; y�j, where the function δu�x; y� was determined by
Eqs. (27) and (28). The functions jδu�x; y�j obtained in this
way are shown in the right panels (b), (d) of Fig. 3, as a relief
of brightness. The distribution of the effective susceptibility,
represented as the brightness relief in the left panels (a), (c),
was obtained by convolution of the susceptibility (31) with
the function exp −2�x2 � y2�∕ρ2c , which determines the lateral
dimension of the probing beams. Calculations were made for
two values of the defect density σ: small, when defects are well
resolved in mapping, and large, when this does not occur. As
seen from Fig. 3, in the first case, the mapping clearly indicates
positions of the defects, with information about sign of suscep-
tibility of the defect being lost. In the second case, the mapping
does not give such a clear picture, and in order to restore the
susceptibility distribution, a solution of the inverse problem
described above is required. In the next section, we present
results of a simple experiment on mapping of a quasi-plane
sample.

6. EXPERIMENTAL ILLUSTRATION

A schematic of the setup for detection of the HSS and obser-
vation of properties of this signal is shown in Fig. 4. The main
and tilted beams intersecting inside sample 7 are split from the
initial laser beam (W 0 ∼ 2 − 3 mW, λ � 650 nm) using beam
splitter 1, mirror 2, and lens 6 (f � 100 mm). In the treat-
ment presented above, the main and tilted beams were not
equivalent—the tilted beam produced the scattering, while
the main one served as a local oscillator for detection of the
scattered field. The two-channel differential detector 9 allowed
us to get use of symmetry of the main and tilted beams, due to
which the scattered field created by the main beam produced
HSS in the channel of the tilted beam (upper PD in Fig. 4). So,
the roles of the tilted and main beams, in this case, are inter-
changed. For this reason, when calculating the HSS in the
channel of the tilted beam, one has to interchange, in Eq. (18),
the amplitudes of the tilted and main beams. This will lead to
complex conjugation of the scalar product in this equation,
and, as a result, the HSSs detected in the channels of the main
and tilted beams appear to be equal in magnitude and opposite
in sign. One can use both signals with the help of the differ-
ential PD shown in Fig. 4, which makes it possible not only to
increase twice the observed HSS, but also to get rid of excess

noise of the laser beamW 0. The phase modulation of the tilted
beam mentioned in the previous section, which allows one to
distinguish HSS on the background of spurious signals, is per-
formed either by using mirror 2 on vibrator 3, or by means of
Pockels cell 4.

Vibrator 8 provided displacement of the sample ∼1 mm
and served for mapping described in the previous section.
The result of such a mapping is presented in Fig. 5 and was
obtained in the following way. The sample (a thin plate of sil-
icate glass positioned in the region of the beam overlap) was
fixed on vibrator 8 oscillating in the plane of the beams (see
Fig. 4) with the amplitude 0.5 mm and frequency 60 Hz.
Under these conditions, at the output of the differential detec-
tor 9 (on resistor 10), there has been detected the HSS that
represented oscillations at the frequency kΘv [see Eq. (33)
and Figs. 2(a) and 2(b)] with varying amplitude. These varia-
tions reflected inhomogeneity of the plate along the direction of
the sample displacement. Dependence of amplitude of these
vibrations on displacement of vibrator 8 was recorded into
the computer memory as a row of a 2D array (we recorded
300 counts). Then, we performed a small displacement in
the direction orthogonal to the plane of the beams, and the
next row was recorded, and so on. The 2D array of 200 rows
was displayed on the monitor of the computer in the form of a
relief of brightness (Fig. 5). In accordance with the model pic-
ture presented in the previous section, the isolated bright re-
gions with dimensions ∼2ρc � 60 μm can be interpreted
using the first of the above examples (a small isolated scatterrer),
while the extended regions with relatively small amplitude of
the HSS—using the second example (a cluster of randomly
arranged scatterers).

The pattern presented in Fig. 5 serves only for illustration of
the results of the above treatment, and we will not analyze it in

Fig. 4. Heterodyne detection of scattering with subtraction of sig-
nals of the two beams. 1, beam splitter; 2, mirror, 3, vibrator; 4,
Pockels cell; 5, attenuator; 6, lense; 7, sample; 8, vibrator; 9, two-chan-
nel differential detector.

Fig. 5. Mapping of a plane scatterer. The image was obtained from
a glass plate 150 μm thick using the setup shown in Fig. 4. Amplitude
of the vibrator oscillations is 1 mm, and the direction of oscillations
coincides with the y axis. The image is obtained by a slow displacement
of the sample in the direction of the x axis by a distance of 3 mm.
Bright regions correspond to relatively large spatial fluctuations in
the refractive index and show their characteristic scale. In dark regions,
the fluctuations are relatively small. The technique described does
not give information about sign of the fluctuation. For example, two
adjacent bright spots may correspond to two regions of the sample,
with different signs of the susceptibility fluctuations.
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more detail. Note only that the dimensionless HSS jδuj in these
experiments was of the order of 10−3 and could be easily de-
tected experimentally. The double amplitude of the vibrator
oscillations was 1 mm (in Fig. 5, it is shown by a horizontal
two-headed arrow). Displacement in the orthogonal direction
was around 3 mm. One can easily see in Fig. 5 the turning
points of the vibrator and subsequent mirror replica of the pat-
tern. One can also notice distortion of scale in the vicinity of
these points, because our vibrator performed sinusoidal, rather
than saw-wise, vibration.

Note that on the setup shown in Fig. 4, the HSS could be
observed practically from any transparent scatterer placed into
the region of the beam overlap. In particular, we easily detected
the HSS from a cuvette filled with pure water. In this case, we
modulated the phase of the tilted beam using the Pockels cell,
and the detected temporal fluctuations of HSS reflected the
convective motion of suspended particles and random temper-
ature-related variations of the refractive index of the water. The
experiments on volume tomography, which require precise 3D
positioners, lie outside the scope of this paper. Still, the above
conclusion that the HSS is formed in the 3D region of overlap
of the main and tilted beams was confirmed by the observation
that when the cuvette was shifted in the direction of the z axis,
we could pass from the HSS fluctuating in time (when the over-
lap region was inside the water) to the stationary HSS (when it
shifted to the glass wall of the cuvette).

7. DISCUSSION

Despite the fact that the proposed scheme of the HSS-based
tomography of inhomogeneous transparent objects is still in
the stage of development and approbation, it is appropriate to
compare it with similar methods of optical tomography and to
indicate the distinctive features of the HSS-based tomography
(HSST) that may be its merits and drawbacks. Among such
techniques, the closest, in our opinion, is the widely used in
medicine optical coherence tomography (OCT) [27]. The sim-
ilarity between the OCT and HSST is primarily due to the fact
that in both cases the detected signal is generated by a relatively
small region of the sample. In the OCT, the position and size of
this region are determined, respectively, by position of the mir-
ror in the reference arm of the Michelson interferometer and by
the coherence length of the nonmonochromatic source. In our
HSST scheme, this region corresponds to the overlap of the
main and tilted beams. This facilitates computer processing
of the obtained data, which distinguishes both these techniques
from, e.g., the x-ray and nuclear magnetic resonance (NMR)
tomography, with more complicated procedures of image resto-
ration. One more common feature of the HSST and OCT is
that when recording signals in the OCT, heterodyning of the
scattered field takes place, with the field of the reference beam
acting as the local oscillator.

A distinctive feature of HSST is related to the use of
monochromatic light and, correspondingly, with possibility
to perform spectrally selective tomography of objects with
resonant optical susceptibility (e.g., glasses with impurities).
Another distinction of the HSST is related to the possibility
to independently manipulate polarizations of the main and
tilted beams. As shown above, this allows us to independently

study various tensor components of the inhomogeneous optical
susceptibility (optical anisotropy), which is difficult in the
OCT and other tomography schemes. Simplicity of the meas-
uring system is one more advantage of the HSST, which gives
grounds to believe that the light losses in the HSST will not
exceed those in the OCT systems, which require special mea-
sures for efficient illumination of the detector in the output
channel of the interferometer (lenses with pin-hole or fiber sys-
tem). If the sample is fixed in space, the displacement of the
overlapping region of the beams (both lateral and in depth),
in our scheme, can be accomplished by moving lens 6 (Fig. 4).
This is not more complicated than in the OCT, where such a
displacement is performed by shifting the mirror in the refer-
ence channel of the interferometer and by rotating the lens in
its output channel [27]. This gives grounds to conclude that the
scanning of the sample in OCT and in HSST can be performed
at comparable rates. Finally, it is noteworthy that the OCT uses
the backscattered field, in contrast to the HSST, which employs
the two-beam geometry. When analyzing inhomogeneities of
solid objects, this difference does not play an obvious role,
while, from the viewpoint of medical applications, the OCT
seems to be more convenient.

Another type of optical tomography of transparent objects,
which allows the spatial distribution of the refractive index to
be restored, is the tomography phase microscopy (TPM)
[28,29]. From our point of view, this type of optical tomogra-
phy has much in common with the x-ray tomography, since
reconstruction of the refractive-index relief is performed by in-
terferometric measurements of optical paths of the rays passing
through the sample at various angles. This kind of tomography
implies a more complicated measuring system and software
than the HSST. In addition, measurement of the distribution
of various components of the optical susceptibility tensor by the
TPM method is hampered.

Finally, it makes sense to mention the optical diffraction
tomography (ODT) [30]. In the simplest case, this kind of
tomography is based on the connection between Fourier images
of the refractive-index relief and angular distribution of the
field diffracted by the sample when it is irradiated by a plane
wave. In the last decade, the ODT method has been developing
(see, e.g., Ref. [31]). The effectiveness of the ODT depends on
which method is used to record the scattered field. Apparently,
however, implementation of a simple mapping procedure (sim-
ilar to that described above) based on the ODT, is difficult. The
same can be said about recording the inhomogeneous optical
anisotropy, which is possible in the HSST.

This brief comparative analysis shows that the proposed
HSST technique, in some cases, can be competitive with
known techniques. In our opinion, the HSST may prove to be
convenient for studying the tensor inhomogeneity (e.g., gyro-
tropy) of solid objects, the inhomogeneity associated with
internal electric fields in semiconductor objects, and the inho-
mogeneities of the resonant optical susceptibility.

8. CONCLUSIONS

In this paper, we have calculated the signal detected with a flat
PD irradiated by a strong optical beam of constant intensity
(local oscillator) and a relatively weak signal field. We show
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that when the signal field is a result of linear scattering of the
additional tilted beam by a transparent inhomogeneous object
(illuminated also by the light of the local oscillator), the
detected signal is determined only by the part of the scatterer
that lies in the region of beam overlap. We also show that
observation of such signals allows one to solve problems of
tomography of optically inhomogeneous transparent objects.
Experimental illustration of mapping of a thin glass plate is
presented.
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